2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
100 #include <net/ip_fib.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
108 #include <linux/sysctl.h>
110 #include <net/secure_seq.h>
112 #define RT_FL_TOS(oldflp) \
113 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115 #define IP_MAX_MTU 0xFFF0
117 #define RT_GC_TIMEOUT (300*HZ)
119 static int ip_rt_max_size
;
120 static int ip_rt_gc_timeout __read_mostly
= RT_GC_TIMEOUT
;
121 static int ip_rt_gc_interval __read_mostly
= 60 * HZ
;
122 static int ip_rt_gc_min_interval __read_mostly
= HZ
/ 2;
123 static int ip_rt_redirect_number __read_mostly
= 9;
124 static int ip_rt_redirect_load __read_mostly
= HZ
/ 50;
125 static int ip_rt_redirect_silence __read_mostly
= ((HZ
/ 50) << (9 + 1));
126 static int ip_rt_error_cost __read_mostly
= HZ
;
127 static int ip_rt_error_burst __read_mostly
= 5 * HZ
;
128 static int ip_rt_gc_elasticity __read_mostly
= 8;
129 static int ip_rt_mtu_expires __read_mostly
= 10 * 60 * HZ
;
130 static int ip_rt_min_pmtu __read_mostly
= 512 + 20 + 20;
131 static int ip_rt_min_advmss __read_mostly
= 256;
132 static int ip_rt_secret_interval __read_mostly
= 10 * 60 * HZ
;
133 static int rt_chain_length_max __read_mostly
= 20;
135 static struct delayed_work expires_work
;
136 static unsigned long expires_ljiffies
;
139 * Interface to generic destination cache.
142 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
143 static void ipv4_dst_destroy(struct dst_entry
*dst
);
144 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
145 struct net_device
*dev
, int how
);
146 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
147 static void ipv4_link_failure(struct sk_buff
*skb
);
148 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
149 static int rt_garbage_collect(struct dst_ops
*ops
);
150 static void rt_emergency_hash_rebuild(struct net
*net
);
153 static struct dst_ops ipv4_dst_ops
= {
155 .protocol
= cpu_to_be16(ETH_P_IP
),
156 .gc
= rt_garbage_collect
,
157 .check
= ipv4_dst_check
,
158 .destroy
= ipv4_dst_destroy
,
159 .ifdown
= ipv4_dst_ifdown
,
160 .negative_advice
= ipv4_negative_advice
,
161 .link_failure
= ipv4_link_failure
,
162 .update_pmtu
= ip_rt_update_pmtu
,
163 .local_out
= __ip_local_out
,
164 .entries
= ATOMIC_INIT(0),
167 #define ECN_OR_COST(class) TC_PRIO_##class
169 const __u8 ip_tos2prio
[16] = {
173 ECN_OR_COST(BESTEFFORT
),
179 ECN_OR_COST(INTERACTIVE
),
181 ECN_OR_COST(INTERACTIVE
),
182 TC_PRIO_INTERACTIVE_BULK
,
183 ECN_OR_COST(INTERACTIVE_BULK
),
184 TC_PRIO_INTERACTIVE_BULK
,
185 ECN_OR_COST(INTERACTIVE_BULK
)
193 /* The locking scheme is rather straight forward:
195 * 1) Read-Copy Update protects the buckets of the central route hash.
196 * 2) Only writers remove entries, and they hold the lock
197 * as they look at rtable reference counts.
198 * 3) Only readers acquire references to rtable entries,
199 * they do so with atomic increments and with the
203 struct rt_hash_bucket
{
204 struct rtable
*chain
;
207 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
208 defined(CONFIG_PROVE_LOCKING)
210 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
211 * The size of this table is a power of two and depends on the number of CPUS.
212 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
214 #ifdef CONFIG_LOCKDEP
215 # define RT_HASH_LOCK_SZ 256
218 # define RT_HASH_LOCK_SZ 4096
220 # define RT_HASH_LOCK_SZ 2048
222 # define RT_HASH_LOCK_SZ 1024
224 # define RT_HASH_LOCK_SZ 512
226 # define RT_HASH_LOCK_SZ 256
230 static spinlock_t
*rt_hash_locks
;
231 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
233 static __init
void rt_hash_lock_init(void)
237 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
240 panic("IP: failed to allocate rt_hash_locks\n");
242 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
243 spin_lock_init(&rt_hash_locks
[i
]);
246 # define rt_hash_lock_addr(slot) NULL
248 static inline void rt_hash_lock_init(void)
253 static struct rt_hash_bucket
*rt_hash_table __read_mostly
;
254 static unsigned rt_hash_mask __read_mostly
;
255 static unsigned int rt_hash_log __read_mostly
;
257 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
258 #define RT_CACHE_STAT_INC(field) \
259 (__raw_get_cpu_var(rt_cache_stat).field++)
261 static inline unsigned int rt_hash(__be32 daddr
, __be32 saddr
, int idx
,
264 return jhash_3words((__force u32
)(__be32
)(daddr
),
265 (__force u32
)(__be32
)(saddr
),
270 static inline int rt_genid(struct net
*net
)
272 return atomic_read(&net
->ipv4
.rt_genid
);
275 #ifdef CONFIG_PROC_FS
276 struct rt_cache_iter_state
{
277 struct seq_net_private p
;
282 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
284 struct rt_cache_iter_state
*st
= seq
->private;
285 struct rtable
*r
= NULL
;
287 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
288 if (!rt_hash_table
[st
->bucket
].chain
)
291 r
= rcu_dereference(rt_hash_table
[st
->bucket
].chain
);
293 if (dev_net(r
->u
.dst
.dev
) == seq_file_net(seq
) &&
294 r
->rt_genid
== st
->genid
)
296 r
= rcu_dereference(r
->u
.dst
.rt_next
);
298 rcu_read_unlock_bh();
303 static struct rtable
*__rt_cache_get_next(struct seq_file
*seq
,
306 struct rt_cache_iter_state
*st
= seq
->private;
308 r
= r
->u
.dst
.rt_next
;
310 rcu_read_unlock_bh();
312 if (--st
->bucket
< 0)
314 } while (!rt_hash_table
[st
->bucket
].chain
);
316 r
= rt_hash_table
[st
->bucket
].chain
;
318 return rcu_dereference(r
);
321 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
,
324 struct rt_cache_iter_state
*st
= seq
->private;
325 while ((r
= __rt_cache_get_next(seq
, r
)) != NULL
) {
326 if (dev_net(r
->u
.dst
.dev
) != seq_file_net(seq
))
328 if (r
->rt_genid
== st
->genid
)
334 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
336 struct rtable
*r
= rt_cache_get_first(seq
);
339 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
341 return pos
? NULL
: r
;
344 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
346 struct rt_cache_iter_state
*st
= seq
->private;
348 return rt_cache_get_idx(seq
, *pos
- 1);
349 st
->genid
= rt_genid(seq_file_net(seq
));
350 return SEQ_START_TOKEN
;
353 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
357 if (v
== SEQ_START_TOKEN
)
358 r
= rt_cache_get_first(seq
);
360 r
= rt_cache_get_next(seq
, v
);
365 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
367 if (v
&& v
!= SEQ_START_TOKEN
)
368 rcu_read_unlock_bh();
371 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
373 if (v
== SEQ_START_TOKEN
)
374 seq_printf(seq
, "%-127s\n",
375 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
376 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
379 struct rtable
*r
= v
;
382 seq_printf(seq
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
383 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
384 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
385 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
386 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
387 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
388 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
389 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
390 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
391 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
392 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
394 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
395 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
397 r
->rt_spec_dst
, &len
);
399 seq_printf(seq
, "%*s\n", 127 - len
, "");
404 static const struct seq_operations rt_cache_seq_ops
= {
405 .start
= rt_cache_seq_start
,
406 .next
= rt_cache_seq_next
,
407 .stop
= rt_cache_seq_stop
,
408 .show
= rt_cache_seq_show
,
411 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
413 return seq_open_net(inode
, file
, &rt_cache_seq_ops
,
414 sizeof(struct rt_cache_iter_state
));
417 static const struct file_operations rt_cache_seq_fops
= {
418 .owner
= THIS_MODULE
,
419 .open
= rt_cache_seq_open
,
422 .release
= seq_release_net
,
426 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
431 return SEQ_START_TOKEN
;
433 for (cpu
= *pos
-1; cpu
< nr_cpu_ids
; ++cpu
) {
434 if (!cpu_possible(cpu
))
437 return &per_cpu(rt_cache_stat
, cpu
);
442 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
446 for (cpu
= *pos
; cpu
< nr_cpu_ids
; ++cpu
) {
447 if (!cpu_possible(cpu
))
450 return &per_cpu(rt_cache_stat
, cpu
);
456 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
461 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
463 struct rt_cache_stat
*st
= v
;
465 if (v
== SEQ_START_TOKEN
) {
466 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
470 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
471 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
472 atomic_read(&ipv4_dst_ops
.entries
),
495 static const struct seq_operations rt_cpu_seq_ops
= {
496 .start
= rt_cpu_seq_start
,
497 .next
= rt_cpu_seq_next
,
498 .stop
= rt_cpu_seq_stop
,
499 .show
= rt_cpu_seq_show
,
503 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
505 return seq_open(file
, &rt_cpu_seq_ops
);
508 static const struct file_operations rt_cpu_seq_fops
= {
509 .owner
= THIS_MODULE
,
510 .open
= rt_cpu_seq_open
,
513 .release
= seq_release
,
516 #ifdef CONFIG_NET_CLS_ROUTE
517 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
518 int length
, int *eof
, void *data
)
522 if ((offset
& 3) || (length
& 3))
525 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
530 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
531 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
535 offset
/= sizeof(u32
);
538 u32
*dst
= (u32
*) buffer
;
541 memset(dst
, 0, length
);
543 for_each_possible_cpu(i
) {
547 src
= ((u32
*) per_cpu_ptr(ip_rt_acct
, i
)) + offset
;
548 for (j
= 0; j
< length
/4; j
++)
556 static int __net_init
ip_rt_do_proc_init(struct net
*net
)
558 struct proc_dir_entry
*pde
;
560 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
565 pde
= proc_create("rt_cache", S_IRUGO
,
566 net
->proc_net_stat
, &rt_cpu_seq_fops
);
570 #ifdef CONFIG_NET_CLS_ROUTE
571 pde
= create_proc_read_entry("rt_acct", 0, net
->proc_net
,
572 ip_rt_acct_read
, NULL
);
578 #ifdef CONFIG_NET_CLS_ROUTE
580 remove_proc_entry("rt_cache", net
->proc_net_stat
);
583 remove_proc_entry("rt_cache", net
->proc_net
);
588 static void __net_exit
ip_rt_do_proc_exit(struct net
*net
)
590 remove_proc_entry("rt_cache", net
->proc_net_stat
);
591 remove_proc_entry("rt_cache", net
->proc_net
);
592 remove_proc_entry("rt_acct", net
->proc_net
);
595 static struct pernet_operations ip_rt_proc_ops __net_initdata
= {
596 .init
= ip_rt_do_proc_init
,
597 .exit
= ip_rt_do_proc_exit
,
600 static int __init
ip_rt_proc_init(void)
602 return register_pernet_subsys(&ip_rt_proc_ops
);
606 static inline int ip_rt_proc_init(void)
610 #endif /* CONFIG_PROC_FS */
612 static inline void rt_free(struct rtable
*rt
)
614 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
617 static inline void rt_drop(struct rtable
*rt
)
620 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
623 static inline int rt_fast_clean(struct rtable
*rth
)
625 /* Kill broadcast/multicast entries very aggresively, if they
626 collide in hash table with more useful entries */
627 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
628 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
631 static inline int rt_valuable(struct rtable
*rth
)
633 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
637 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
642 if (atomic_read(&rth
->u
.dst
.__refcnt
))
646 if (rth
->u
.dst
.expires
&&
647 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
650 age
= jiffies
- rth
->u
.dst
.lastuse
;
652 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
653 (age
<= tmo2
&& rt_valuable(rth
)))
659 /* Bits of score are:
661 * 30: not quite useless
662 * 29..0: usage counter
664 static inline u32
rt_score(struct rtable
*rt
)
666 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
668 score
= ~score
& ~(3<<30);
674 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
680 static inline bool rt_caching(const struct net
*net
)
682 return net
->ipv4
.current_rt_cache_rebuild_count
<=
683 net
->ipv4
.sysctl_rt_cache_rebuild_count
;
686 static inline bool compare_hash_inputs(const struct flowi
*fl1
,
687 const struct flowi
*fl2
)
689 return (__force u32
)(((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
690 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
) |
691 (fl1
->iif
^ fl2
->iif
)) == 0);
694 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
696 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
697 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
698 (fl1
->mark
^ fl2
->mark
) |
699 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
700 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
701 (fl1
->oif
^ fl2
->oif
) |
702 (fl1
->iif
^ fl2
->iif
)) == 0;
705 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
707 return dev_net(rt1
->u
.dst
.dev
) == dev_net(rt2
->u
.dst
.dev
);
710 static inline int rt_is_expired(struct rtable
*rth
)
712 return rth
->rt_genid
!= rt_genid(dev_net(rth
->u
.dst
.dev
));
716 * Perform a full scan of hash table and free all entries.
717 * Can be called by a softirq or a process.
718 * In the later case, we want to be reschedule if necessary
720 static void rt_do_flush(int process_context
)
723 struct rtable
*rth
, *next
;
724 struct rtable
* tail
;
726 for (i
= 0; i
<= rt_hash_mask
; i
++) {
727 if (process_context
&& need_resched())
729 rth
= rt_hash_table
[i
].chain
;
733 spin_lock_bh(rt_hash_lock_addr(i
));
736 struct rtable
** prev
, * p
;
738 rth
= rt_hash_table
[i
].chain
;
740 /* defer releasing the head of the list after spin_unlock */
741 for (tail
= rth
; tail
; tail
= tail
->u
.dst
.rt_next
)
742 if (!rt_is_expired(tail
))
745 rt_hash_table
[i
].chain
= tail
;
747 /* call rt_free on entries after the tail requiring flush */
748 prev
= &rt_hash_table
[i
].chain
;
749 for (p
= *prev
; p
; p
= next
) {
750 next
= p
->u
.dst
.rt_next
;
751 if (!rt_is_expired(p
)) {
752 prev
= &p
->u
.dst
.rt_next
;
760 rth
= rt_hash_table
[i
].chain
;
761 rt_hash_table
[i
].chain
= NULL
;
764 spin_unlock_bh(rt_hash_lock_addr(i
));
766 for (; rth
!= tail
; rth
= next
) {
767 next
= rth
->u
.dst
.rt_next
;
774 * While freeing expired entries, we compute average chain length
775 * and standard deviation, using fixed-point arithmetic.
776 * This to have an estimation of rt_chain_length_max
777 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
778 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
782 #define ONE (1UL << FRACT_BITS)
784 static void rt_check_expire(void)
786 static unsigned int rover
;
787 unsigned int i
= rover
, goal
;
788 struct rtable
*rth
, *aux
, **rthp
;
789 unsigned long samples
= 0;
790 unsigned long sum
= 0, sum2
= 0;
794 delta
= jiffies
- expires_ljiffies
;
795 expires_ljiffies
= jiffies
;
796 mult
= ((u64
)delta
) << rt_hash_log
;
797 if (ip_rt_gc_timeout
> 1)
798 do_div(mult
, ip_rt_gc_timeout
);
799 goal
= (unsigned int)mult
;
800 if (goal
> rt_hash_mask
)
801 goal
= rt_hash_mask
+ 1;
802 for (; goal
> 0; goal
--) {
803 unsigned long tmo
= ip_rt_gc_timeout
;
804 unsigned long length
;
806 i
= (i
+ 1) & rt_hash_mask
;
807 rthp
= &rt_hash_table
[i
].chain
;
817 spin_lock_bh(rt_hash_lock_addr(i
));
818 while ((rth
= *rthp
) != NULL
) {
819 prefetch(rth
->u
.dst
.rt_next
);
820 if (rt_is_expired(rth
)) {
821 *rthp
= rth
->u
.dst
.rt_next
;
825 if (rth
->u
.dst
.expires
) {
826 /* Entry is expired even if it is in use */
827 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
830 rthp
= &rth
->u
.dst
.rt_next
;
832 * We only count entries on
833 * a chain with equal hash inputs once
834 * so that entries for different QOS
835 * levels, and other non-hash input
836 * attributes don't unfairly skew
837 * the length computation
839 for (aux
= rt_hash_table
[i
].chain
;;) {
844 if (compare_hash_inputs(&aux
->fl
, &rth
->fl
))
846 aux
= aux
->u
.dst
.rt_next
;
850 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
))
853 /* Cleanup aged off entries. */
854 *rthp
= rth
->u
.dst
.rt_next
;
857 spin_unlock_bh(rt_hash_lock_addr(i
));
859 sum2
+= length
*length
;
862 unsigned long avg
= sum
/ samples
;
863 unsigned long sd
= int_sqrt(sum2
/ samples
- avg
*avg
);
864 rt_chain_length_max
= max_t(unsigned long,
866 (avg
+ 4*sd
) >> FRACT_BITS
);
872 * rt_worker_func() is run in process context.
873 * we call rt_check_expire() to scan part of the hash table
875 static void rt_worker_func(struct work_struct
*work
)
878 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
882 * Pertubation of rt_genid by a small quantity [1..256]
883 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
884 * many times (2^24) without giving recent rt_genid.
885 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
887 static void rt_cache_invalidate(struct net
*net
)
889 unsigned char shuffle
;
891 get_random_bytes(&shuffle
, sizeof(shuffle
));
892 atomic_add(shuffle
+ 1U, &net
->ipv4
.rt_genid
);
896 * delay < 0 : invalidate cache (fast : entries will be deleted later)
897 * delay >= 0 : invalidate & flush cache (can be long)
899 void rt_cache_flush(struct net
*net
, int delay
)
901 rt_cache_invalidate(net
);
903 rt_do_flush(!in_softirq());
907 * We change rt_genid and let gc do the cleanup
909 static void rt_secret_rebuild(unsigned long __net
)
911 struct net
*net
= (struct net
*)__net
;
912 rt_cache_invalidate(net
);
913 mod_timer(&net
->ipv4
.rt_secret_timer
, jiffies
+ ip_rt_secret_interval
);
916 static void rt_secret_rebuild_oneshot(struct net
*net
)
918 del_timer_sync(&net
->ipv4
.rt_secret_timer
);
919 rt_cache_invalidate(net
);
920 if (ip_rt_secret_interval
) {
921 net
->ipv4
.rt_secret_timer
.expires
+= ip_rt_secret_interval
;
922 add_timer(&net
->ipv4
.rt_secret_timer
);
926 static void rt_emergency_hash_rebuild(struct net
*net
)
928 if (net_ratelimit()) {
929 printk(KERN_WARNING
"Route hash chain too long!\n");
930 printk(KERN_WARNING
"Adjust your secret_interval!\n");
933 rt_secret_rebuild_oneshot(net
);
937 Short description of GC goals.
939 We want to build algorithm, which will keep routing cache
940 at some equilibrium point, when number of aged off entries
941 is kept approximately equal to newly generated ones.
943 Current expiration strength is variable "expire".
944 We try to adjust it dynamically, so that if networking
945 is idle expires is large enough to keep enough of warm entries,
946 and when load increases it reduces to limit cache size.
949 static int rt_garbage_collect(struct dst_ops
*ops
)
951 static unsigned long expire
= RT_GC_TIMEOUT
;
952 static unsigned long last_gc
;
954 static int equilibrium
;
955 struct rtable
*rth
, **rthp
;
956 unsigned long now
= jiffies
;
960 * Garbage collection is pretty expensive,
961 * do not make it too frequently.
964 RT_CACHE_STAT_INC(gc_total
);
966 if (now
- last_gc
< ip_rt_gc_min_interval
&&
967 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
968 RT_CACHE_STAT_INC(gc_ignored
);
972 /* Calculate number of entries, which we want to expire now. */
973 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
974 (ip_rt_gc_elasticity
<< rt_hash_log
);
976 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
977 equilibrium
= ipv4_dst_ops
.gc_thresh
;
978 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
980 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
981 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
984 /* We are in dangerous area. Try to reduce cache really
987 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
988 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
991 if (now
- last_gc
>= ip_rt_gc_min_interval
)
1002 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
1003 unsigned long tmo
= expire
;
1005 k
= (k
+ 1) & rt_hash_mask
;
1006 rthp
= &rt_hash_table
[k
].chain
;
1007 spin_lock_bh(rt_hash_lock_addr(k
));
1008 while ((rth
= *rthp
) != NULL
) {
1009 if (!rt_is_expired(rth
) &&
1010 !rt_may_expire(rth
, tmo
, expire
)) {
1012 rthp
= &rth
->u
.dst
.rt_next
;
1015 *rthp
= rth
->u
.dst
.rt_next
;
1019 spin_unlock_bh(rt_hash_lock_addr(k
));
1028 /* Goal is not achieved. We stop process if:
1030 - if expire reduced to zero. Otherwise, expire is halfed.
1031 - if table is not full.
1032 - if we are called from interrupt.
1033 - jiffies check is just fallback/debug loop breaker.
1034 We will not spin here for long time in any case.
1037 RT_CACHE_STAT_INC(gc_goal_miss
);
1043 #if RT_CACHE_DEBUG >= 2
1044 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
1045 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
1048 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
1050 } while (!in_softirq() && time_before_eq(jiffies
, now
));
1052 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
1054 if (net_ratelimit())
1055 printk(KERN_WARNING
"dst cache overflow\n");
1056 RT_CACHE_STAT_INC(gc_dst_overflow
);
1060 expire
+= ip_rt_gc_min_interval
;
1061 if (expire
> ip_rt_gc_timeout
||
1062 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
1063 expire
= ip_rt_gc_timeout
;
1064 #if RT_CACHE_DEBUG >= 2
1065 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
1066 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
1071 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
,
1072 struct rtable
**rp
, struct sk_buff
*skb
)
1074 struct rtable
*rth
, **rthp
;
1076 struct rtable
*cand
, **candp
;
1079 int attempts
= !in_softirq();
1083 min_score
= ~(u32
)0;
1088 if (!rt_caching(dev_net(rt
->u
.dst
.dev
))) {
1090 * If we're not caching, just tell the caller we
1091 * were successful and don't touch the route. The
1092 * caller hold the sole reference to the cache entry, and
1093 * it will be released when the caller is done with it.
1094 * If we drop it here, the callers have no way to resolve routes
1095 * when we're not caching. Instead, just point *rp at rt, so
1096 * the caller gets a single use out of the route
1097 * Note that we do rt_free on this new route entry, so that
1098 * once its refcount hits zero, we are still able to reap it
1100 * Note also the rt_free uses call_rcu. We don't actually
1101 * need rcu protection here, this is just our path to get
1102 * on the route gc list.
1105 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1106 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1108 if (net_ratelimit())
1110 "Neighbour table failure & not caching routes.\n");
1120 rthp
= &rt_hash_table
[hash
].chain
;
1122 spin_lock_bh(rt_hash_lock_addr(hash
));
1123 while ((rth
= *rthp
) != NULL
) {
1124 if (rt_is_expired(rth
)) {
1125 *rthp
= rth
->u
.dst
.rt_next
;
1129 if (compare_keys(&rth
->fl
, &rt
->fl
) && compare_netns(rth
, rt
)) {
1131 *rthp
= rth
->u
.dst
.rt_next
;
1133 * Since lookup is lockfree, the deletion
1134 * must be visible to another weakly ordered CPU before
1135 * the insertion at the start of the hash chain.
1137 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
1138 rt_hash_table
[hash
].chain
);
1140 * Since lookup is lockfree, the update writes
1141 * must be ordered for consistency on SMP.
1143 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
1145 dst_use(&rth
->u
.dst
, now
);
1146 spin_unlock_bh(rt_hash_lock_addr(hash
));
1152 skb_dst_set(skb
, &rth
->u
.dst
);
1156 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
1157 u32 score
= rt_score(rth
);
1159 if (score
<= min_score
) {
1168 rthp
= &rth
->u
.dst
.rt_next
;
1172 /* ip_rt_gc_elasticity used to be average length of chain
1173 * length, when exceeded gc becomes really aggressive.
1175 * The second limit is less certain. At the moment it allows
1176 * only 2 entries per bucket. We will see.
1178 if (chain_length
> ip_rt_gc_elasticity
) {
1179 *candp
= cand
->u
.dst
.rt_next
;
1183 if (chain_length
> rt_chain_length_max
) {
1184 struct net
*net
= dev_net(rt
->u
.dst
.dev
);
1185 int num
= ++net
->ipv4
.current_rt_cache_rebuild_count
;
1186 if (!rt_caching(dev_net(rt
->u
.dst
.dev
))) {
1187 printk(KERN_WARNING
"%s: %d rebuilds is over limit, route caching disabled\n",
1188 rt
->u
.dst
.dev
->name
, num
);
1190 rt_emergency_hash_rebuild(dev_net(rt
->u
.dst
.dev
));
1194 /* Try to bind route to arp only if it is output
1195 route or unicast forwarding path.
1197 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1198 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1200 spin_unlock_bh(rt_hash_lock_addr(hash
));
1202 if (err
!= -ENOBUFS
) {
1207 /* Neighbour tables are full and nothing
1208 can be released. Try to shrink route cache,
1209 it is most likely it holds some neighbour records.
1211 if (attempts
-- > 0) {
1212 int saved_elasticity
= ip_rt_gc_elasticity
;
1213 int saved_int
= ip_rt_gc_min_interval
;
1214 ip_rt_gc_elasticity
= 1;
1215 ip_rt_gc_min_interval
= 0;
1216 rt_garbage_collect(&ipv4_dst_ops
);
1217 ip_rt_gc_min_interval
= saved_int
;
1218 ip_rt_gc_elasticity
= saved_elasticity
;
1222 if (net_ratelimit())
1223 printk(KERN_WARNING
"Neighbour table overflow.\n");
1229 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1231 #if RT_CACHE_DEBUG >= 2
1232 if (rt
->u
.dst
.rt_next
) {
1234 printk(KERN_DEBUG
"rt_cache @%02x: %pI4",
1236 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1237 printk(" . %pI4", &trt
->rt_dst
);
1242 * Since lookup is lockfree, we must make sure
1243 * previous writes to rt are comitted to memory
1244 * before making rt visible to other CPUS.
1246 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rt
);
1248 spin_unlock_bh(rt_hash_lock_addr(hash
));
1254 skb_dst_set(skb
, &rt
->u
.dst
);
1258 void rt_bind_peer(struct rtable
*rt
, int create
)
1260 static DEFINE_SPINLOCK(rt_peer_lock
);
1261 struct inet_peer
*peer
;
1263 peer
= inet_getpeer(rt
->rt_dst
, create
);
1265 spin_lock_bh(&rt_peer_lock
);
1266 if (rt
->peer
== NULL
) {
1270 spin_unlock_bh(&rt_peer_lock
);
1276 * Peer allocation may fail only in serious out-of-memory conditions. However
1277 * we still can generate some output.
1278 * Random ID selection looks a bit dangerous because we have no chances to
1279 * select ID being unique in a reasonable period of time.
1280 * But broken packet identifier may be better than no packet at all.
1282 static void ip_select_fb_ident(struct iphdr
*iph
)
1284 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1285 static u32 ip_fallback_id
;
1288 spin_lock_bh(&ip_fb_id_lock
);
1289 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1290 iph
->id
= htons(salt
& 0xFFFF);
1291 ip_fallback_id
= salt
;
1292 spin_unlock_bh(&ip_fb_id_lock
);
1295 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1297 struct rtable
*rt
= (struct rtable
*) dst
;
1300 if (rt
->peer
== NULL
)
1301 rt_bind_peer(rt
, 1);
1303 /* If peer is attached to destination, it is never detached,
1304 so that we need not to grab a lock to dereference it.
1307 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1311 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1312 __builtin_return_address(0));
1314 ip_select_fb_ident(iph
);
1317 static void rt_del(unsigned hash
, struct rtable
*rt
)
1319 struct rtable
**rthp
, *aux
;
1321 rthp
= &rt_hash_table
[hash
].chain
;
1322 spin_lock_bh(rt_hash_lock_addr(hash
));
1324 while ((aux
= *rthp
) != NULL
) {
1325 if (aux
== rt
|| rt_is_expired(aux
)) {
1326 *rthp
= aux
->u
.dst
.rt_next
;
1330 rthp
= &aux
->u
.dst
.rt_next
;
1332 spin_unlock_bh(rt_hash_lock_addr(hash
));
1335 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1336 __be32 saddr
, struct net_device
*dev
)
1339 struct in_device
*in_dev
= in_dev_get(dev
);
1340 struct rtable
*rth
, **rthp
;
1341 __be32 skeys
[2] = { saddr
, 0 };
1342 int ikeys
[2] = { dev
->ifindex
, 0 };
1343 struct netevent_redirect netevent
;
1350 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1351 || ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
)
1352 || ipv4_is_zeronet(new_gw
))
1353 goto reject_redirect
;
1355 if (!rt_caching(net
))
1356 goto reject_redirect
;
1358 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1359 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1360 goto reject_redirect
;
1361 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1362 goto reject_redirect
;
1364 if (inet_addr_type(net
, new_gw
) != RTN_UNICAST
)
1365 goto reject_redirect
;
1368 for (i
= 0; i
< 2; i
++) {
1369 for (k
= 0; k
< 2; k
++) {
1370 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1373 rthp
=&rt_hash_table
[hash
].chain
;
1376 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1379 if (rth
->fl
.fl4_dst
!= daddr
||
1380 rth
->fl
.fl4_src
!= skeys
[i
] ||
1381 rth
->fl
.oif
!= ikeys
[k
] ||
1383 rt_is_expired(rth
) ||
1384 !net_eq(dev_net(rth
->u
.dst
.dev
), net
)) {
1385 rthp
= &rth
->u
.dst
.rt_next
;
1389 if (rth
->rt_dst
!= daddr
||
1390 rth
->rt_src
!= saddr
||
1392 rth
->rt_gateway
!= old_gw
||
1393 rth
->u
.dst
.dev
!= dev
)
1396 dst_hold(&rth
->u
.dst
);
1399 rt
= dst_alloc(&ipv4_dst_ops
);
1406 /* Copy all the information. */
1408 rt
->u
.dst
.__use
= 1;
1409 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1410 rt
->u
.dst
.child
= NULL
;
1412 dev_hold(rt
->u
.dst
.dev
);
1414 in_dev_hold(rt
->idev
);
1415 rt
->u
.dst
.obsolete
= 0;
1416 rt
->u
.dst
.lastuse
= jiffies
;
1417 rt
->u
.dst
.path
= &rt
->u
.dst
;
1418 rt
->u
.dst
.neighbour
= NULL
;
1419 rt
->u
.dst
.hh
= NULL
;
1421 rt
->u
.dst
.xfrm
= NULL
;
1423 rt
->rt_genid
= rt_genid(net
);
1424 rt
->rt_flags
|= RTCF_REDIRECTED
;
1426 /* Gateway is different ... */
1427 rt
->rt_gateway
= new_gw
;
1429 /* Redirect received -> path was valid */
1430 dst_confirm(&rth
->u
.dst
);
1433 atomic_inc(&rt
->peer
->refcnt
);
1435 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1436 !(rt
->u
.dst
.neighbour
->nud_state
&
1438 if (rt
->u
.dst
.neighbour
)
1439 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1445 netevent
.old
= &rth
->u
.dst
;
1446 netevent
.new = &rt
->u
.dst
;
1447 call_netevent_notifiers(NETEVENT_REDIRECT
,
1451 if (!rt_intern_hash(hash
, rt
, &rt
, NULL
))
1464 #ifdef CONFIG_IP_ROUTE_VERBOSE
1465 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1466 printk(KERN_INFO
"Redirect from %pI4 on %s about %pI4 ignored.\n"
1467 " Advised path = %pI4 -> %pI4\n",
1468 &old_gw
, dev
->name
, &new_gw
,
1474 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1476 struct rtable
*rt
= (struct rtable
*)dst
;
1477 struct dst_entry
*ret
= dst
;
1480 if (dst
->obsolete
) {
1483 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1484 rt
->u
.dst
.expires
) {
1485 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1487 rt_genid(dev_net(dst
->dev
)));
1488 #if RT_CACHE_DEBUG >= 1
1489 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1490 &rt
->rt_dst
, rt
->fl
.fl4_tos
);
1501 * 1. The first ip_rt_redirect_number redirects are sent
1502 * with exponential backoff, then we stop sending them at all,
1503 * assuming that the host ignores our redirects.
1504 * 2. If we did not see packets requiring redirects
1505 * during ip_rt_redirect_silence, we assume that the host
1506 * forgot redirected route and start to send redirects again.
1508 * This algorithm is much cheaper and more intelligent than dumb load limiting
1511 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1512 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1515 void ip_rt_send_redirect(struct sk_buff
*skb
)
1517 struct rtable
*rt
= skb_rtable(skb
);
1518 struct in_device
*in_dev
;
1522 in_dev
= __in_dev_get_rcu(rt
->u
.dst
.dev
);
1523 if (!in_dev
|| !IN_DEV_TX_REDIRECTS(in_dev
)) {
1527 log_martians
= IN_DEV_LOG_MARTIANS(in_dev
);
1530 /* No redirected packets during ip_rt_redirect_silence;
1531 * reset the algorithm.
1533 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1534 rt
->u
.dst
.rate_tokens
= 0;
1536 /* Too many ignored redirects; do not send anything
1537 * set u.dst.rate_last to the last seen redirected packet.
1539 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1540 rt
->u
.dst
.rate_last
= jiffies
;
1544 /* Check for load limit; set rate_last to the latest sent
1547 if (rt
->u
.dst
.rate_tokens
== 0 ||
1549 (rt
->u
.dst
.rate_last
+
1550 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1551 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1552 rt
->u
.dst
.rate_last
= jiffies
;
1553 ++rt
->u
.dst
.rate_tokens
;
1554 #ifdef CONFIG_IP_ROUTE_VERBOSE
1556 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1558 printk(KERN_WARNING
"host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1559 &rt
->rt_src
, rt
->rt_iif
,
1560 &rt
->rt_dst
, &rt
->rt_gateway
);
1565 static int ip_error(struct sk_buff
*skb
)
1567 struct rtable
*rt
= skb_rtable(skb
);
1571 switch (rt
->u
.dst
.error
) {
1576 code
= ICMP_HOST_UNREACH
;
1579 code
= ICMP_NET_UNREACH
;
1580 IP_INC_STATS_BH(dev_net(rt
->u
.dst
.dev
),
1581 IPSTATS_MIB_INNOROUTES
);
1584 code
= ICMP_PKT_FILTERED
;
1589 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1590 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1591 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1592 rt
->u
.dst
.rate_last
= now
;
1593 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1594 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1595 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1598 out
: kfree_skb(skb
);
1603 * The last two values are not from the RFC but
1604 * are needed for AMPRnet AX.25 paths.
1607 static const unsigned short mtu_plateau
[] =
1608 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1610 static inline unsigned short guess_mtu(unsigned short old_mtu
)
1614 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1615 if (old_mtu
> mtu_plateau
[i
])
1616 return mtu_plateau
[i
];
1620 unsigned short ip_rt_frag_needed(struct net
*net
, struct iphdr
*iph
,
1621 unsigned short new_mtu
,
1622 struct net_device
*dev
)
1625 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1627 int ikeys
[2] = { dev
->ifindex
, 0 };
1628 __be32 skeys
[2] = { iph
->saddr
, 0, };
1629 __be32 daddr
= iph
->daddr
;
1630 unsigned short est_mtu
= 0;
1632 if (ipv4_config
.no_pmtu_disc
)
1635 for (k
= 0; k
< 2; k
++) {
1636 for (i
= 0; i
< 2; i
++) {
1637 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1641 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1642 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1643 unsigned short mtu
= new_mtu
;
1645 if (rth
->fl
.fl4_dst
!= daddr
||
1646 rth
->fl
.fl4_src
!= skeys
[i
] ||
1647 rth
->rt_dst
!= daddr
||
1648 rth
->rt_src
!= iph
->saddr
||
1649 rth
->fl
.oif
!= ikeys
[k
] ||
1651 dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
) ||
1652 !net_eq(dev_net(rth
->u
.dst
.dev
), net
) ||
1656 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1658 /* BSD 4.2 compatibility hack :-( */
1660 old_mtu
>= dst_mtu(&rth
->u
.dst
) &&
1661 old_mtu
>= 68 + (iph
->ihl
<< 2))
1662 old_mtu
-= iph
->ihl
<< 2;
1664 mtu
= guess_mtu(old_mtu
);
1666 if (mtu
<= dst_mtu(&rth
->u
.dst
)) {
1667 if (mtu
< dst_mtu(&rth
->u
.dst
)) {
1668 dst_confirm(&rth
->u
.dst
);
1669 if (mtu
< ip_rt_min_pmtu
) {
1670 mtu
= ip_rt_min_pmtu
;
1671 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1674 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1675 dst_set_expires(&rth
->u
.dst
,
1684 return est_mtu
? : new_mtu
;
1687 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1689 if (dst_mtu(dst
) > mtu
&& mtu
>= 68 &&
1690 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1691 if (mtu
< ip_rt_min_pmtu
) {
1692 mtu
= ip_rt_min_pmtu
;
1693 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1695 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1696 dst_set_expires(dst
, ip_rt_mtu_expires
);
1697 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1701 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1706 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1708 struct rtable
*rt
= (struct rtable
*) dst
;
1709 struct inet_peer
*peer
= rt
->peer
;
1710 struct in_device
*idev
= rt
->idev
;
1723 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1726 struct rtable
*rt
= (struct rtable
*) dst
;
1727 struct in_device
*idev
= rt
->idev
;
1728 if (dev
!= dev_net(dev
)->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1729 struct in_device
*loopback_idev
=
1730 in_dev_get(dev_net(dev
)->loopback_dev
);
1731 if (loopback_idev
) {
1732 rt
->idev
= loopback_idev
;
1738 static void ipv4_link_failure(struct sk_buff
*skb
)
1742 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1744 rt
= skb_rtable(skb
);
1746 dst_set_expires(&rt
->u
.dst
, 0);
1749 static int ip_rt_bug(struct sk_buff
*skb
)
1751 printk(KERN_DEBUG
"ip_rt_bug: %pI4 -> %pI4, %s\n",
1752 &ip_hdr(skb
)->saddr
, &ip_hdr(skb
)->daddr
,
1753 skb
->dev
? skb
->dev
->name
: "?");
1759 We do not cache source address of outgoing interface,
1760 because it is used only by IP RR, TS and SRR options,
1761 so that it out of fast path.
1763 BTW remember: "addr" is allowed to be not aligned
1767 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1770 struct fib_result res
;
1772 if (rt
->fl
.iif
== 0)
1774 else if (fib_lookup(dev_net(rt
->u
.dst
.dev
), &rt
->fl
, &res
) == 0) {
1775 src
= FIB_RES_PREFSRC(res
);
1778 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1780 memcpy(addr
, &src
, 4);
1783 #ifdef CONFIG_NET_CLS_ROUTE
1784 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1786 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1787 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1788 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1789 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1793 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1795 struct fib_info
*fi
= res
->fi
;
1798 if (FIB_RES_GW(*res
) &&
1799 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1800 rt
->rt_gateway
= FIB_RES_GW(*res
);
1801 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1802 sizeof(rt
->u
.dst
.metrics
));
1803 if (fi
->fib_mtu
== 0) {
1804 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1805 if (dst_metric_locked(&rt
->u
.dst
, RTAX_MTU
) &&
1806 rt
->rt_gateway
!= rt
->rt_dst
&&
1807 rt
->u
.dst
.dev
->mtu
> 576)
1808 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1810 #ifdef CONFIG_NET_CLS_ROUTE
1811 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1814 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1816 if (dst_metric(&rt
->u
.dst
, RTAX_HOPLIMIT
) == 0)
1817 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1818 if (dst_mtu(&rt
->u
.dst
) > IP_MAX_MTU
)
1819 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1820 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) == 0)
1821 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1823 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) > 65535 - 40)
1824 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1826 #ifdef CONFIG_NET_CLS_ROUTE
1827 #ifdef CONFIG_IP_MULTIPLE_TABLES
1828 set_class_tag(rt
, fib_rules_tclass(res
));
1830 set_class_tag(rt
, itag
);
1832 rt
->rt_type
= res
->type
;
1835 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1836 u8 tos
, struct net_device
*dev
, int our
)
1841 struct in_device
*in_dev
= in_dev_get(dev
);
1844 /* Primary sanity checks. */
1849 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1850 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1853 if (ipv4_is_zeronet(saddr
)) {
1854 if (!ipv4_is_local_multicast(daddr
))
1856 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1857 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1858 dev
, &spec_dst
, &itag
, 0) < 0)
1861 rth
= dst_alloc(&ipv4_dst_ops
);
1865 rth
->u
.dst
.output
= ip_rt_bug
;
1867 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1868 rth
->u
.dst
.flags
= DST_HOST
;
1869 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1870 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1871 rth
->fl
.fl4_dst
= daddr
;
1872 rth
->rt_dst
= daddr
;
1873 rth
->fl
.fl4_tos
= tos
;
1874 rth
->fl
.mark
= skb
->mark
;
1875 rth
->fl
.fl4_src
= saddr
;
1876 rth
->rt_src
= saddr
;
1877 #ifdef CONFIG_NET_CLS_ROUTE
1878 rth
->u
.dst
.tclassid
= itag
;
1881 rth
->fl
.iif
= dev
->ifindex
;
1882 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1883 dev_hold(rth
->u
.dst
.dev
);
1884 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1886 rth
->rt_gateway
= daddr
;
1887 rth
->rt_spec_dst
= spec_dst
;
1888 rth
->rt_genid
= rt_genid(dev_net(dev
));
1889 rth
->rt_flags
= RTCF_MULTICAST
;
1890 rth
->rt_type
= RTN_MULTICAST
;
1892 rth
->u
.dst
.input
= ip_local_deliver
;
1893 rth
->rt_flags
|= RTCF_LOCAL
;
1896 #ifdef CONFIG_IP_MROUTE
1897 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1898 rth
->u
.dst
.input
= ip_mr_input
;
1900 RT_CACHE_STAT_INC(in_slow_mc
);
1903 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
, rt_genid(dev_net(dev
)));
1904 return rt_intern_hash(hash
, rth
, NULL
, skb
);
1916 static void ip_handle_martian_source(struct net_device
*dev
,
1917 struct in_device
*in_dev
,
1918 struct sk_buff
*skb
,
1922 RT_CACHE_STAT_INC(in_martian_src
);
1923 #ifdef CONFIG_IP_ROUTE_VERBOSE
1924 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1926 * RFC1812 recommendation, if source is martian,
1927 * the only hint is MAC header.
1929 printk(KERN_WARNING
"martian source %pI4 from %pI4, on dev %s\n",
1930 &daddr
, &saddr
, dev
->name
);
1931 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1933 const unsigned char *p
= skb_mac_header(skb
);
1934 printk(KERN_WARNING
"ll header: ");
1935 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1937 if (i
< (dev
->hard_header_len
- 1))
1946 static int __mkroute_input(struct sk_buff
*skb
,
1947 struct fib_result
*res
,
1948 struct in_device
*in_dev
,
1949 __be32 daddr
, __be32 saddr
, u32 tos
,
1950 struct rtable
**result
)
1955 struct in_device
*out_dev
;
1960 /* get a working reference to the output device */
1961 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1962 if (out_dev
== NULL
) {
1963 if (net_ratelimit())
1964 printk(KERN_CRIT
"Bug in ip_route_input" \
1965 "_slow(). Please, report\n");
1970 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1971 in_dev
->dev
, &spec_dst
, &itag
, skb
->mark
);
1973 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1981 flags
|= RTCF_DIRECTSRC
;
1983 if (out_dev
== in_dev
&& err
&&
1984 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1985 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1986 flags
|= RTCF_DOREDIRECT
;
1988 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1989 /* Not IP (i.e. ARP). Do not create route, if it is
1990 * invalid for proxy arp. DNAT routes are always valid.
1992 if (out_dev
== in_dev
) {
1999 rth
= dst_alloc(&ipv4_dst_ops
);
2005 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2006 rth
->u
.dst
.flags
= DST_HOST
;
2007 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2008 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2009 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
2010 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2011 rth
->fl
.fl4_dst
= daddr
;
2012 rth
->rt_dst
= daddr
;
2013 rth
->fl
.fl4_tos
= tos
;
2014 rth
->fl
.mark
= skb
->mark
;
2015 rth
->fl
.fl4_src
= saddr
;
2016 rth
->rt_src
= saddr
;
2017 rth
->rt_gateway
= daddr
;
2019 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
2020 rth
->u
.dst
.dev
= (out_dev
)->dev
;
2021 dev_hold(rth
->u
.dst
.dev
);
2022 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2024 rth
->rt_spec_dst
= spec_dst
;
2026 rth
->u
.dst
.input
= ip_forward
;
2027 rth
->u
.dst
.output
= ip_output
;
2028 rth
->rt_genid
= rt_genid(dev_net(rth
->u
.dst
.dev
));
2030 rt_set_nexthop(rth
, res
, itag
);
2032 rth
->rt_flags
= flags
;
2037 /* release the working reference to the output device */
2038 in_dev_put(out_dev
);
2042 static int ip_mkroute_input(struct sk_buff
*skb
,
2043 struct fib_result
*res
,
2044 const struct flowi
*fl
,
2045 struct in_device
*in_dev
,
2046 __be32 daddr
, __be32 saddr
, u32 tos
)
2048 struct rtable
* rth
= NULL
;
2052 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2053 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
2054 fib_select_multipath(fl
, res
);
2057 /* create a routing cache entry */
2058 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
2062 /* put it into the cache */
2063 hash
= rt_hash(daddr
, saddr
, fl
->iif
,
2064 rt_genid(dev_net(rth
->u
.dst
.dev
)));
2065 return rt_intern_hash(hash
, rth
, NULL
, skb
);
2069 * NOTE. We drop all the packets that has local source
2070 * addresses, because every properly looped back packet
2071 * must have correct destination already attached by output routine.
2073 * Such approach solves two big problems:
2074 * 1. Not simplex devices are handled properly.
2075 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2078 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2079 u8 tos
, struct net_device
*dev
)
2081 struct fib_result res
;
2082 struct in_device
*in_dev
= in_dev_get(dev
);
2083 struct flowi fl
= { .nl_u
= { .ip4_u
=
2087 .scope
= RT_SCOPE_UNIVERSE
,
2090 .iif
= dev
->ifindex
};
2093 struct rtable
* rth
;
2098 struct net
* net
= dev_net(dev
);
2100 /* IP on this device is disabled. */
2105 /* Check for the most weird martians, which can be not detected
2109 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
2110 ipv4_is_loopback(saddr
))
2111 goto martian_source
;
2113 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
2116 /* Accept zero addresses only to limited broadcast;
2117 * I even do not know to fix it or not. Waiting for complains :-)
2119 if (ipv4_is_zeronet(saddr
))
2120 goto martian_source
;
2122 if (ipv4_is_lbcast(daddr
) || ipv4_is_zeronet(daddr
) ||
2123 ipv4_is_loopback(daddr
))
2124 goto martian_destination
;
2127 * Now we are ready to route packet.
2129 if ((err
= fib_lookup(net
, &fl
, &res
)) != 0) {
2130 if (!IN_DEV_FORWARD(in_dev
))
2136 RT_CACHE_STAT_INC(in_slow_tot
);
2138 if (res
.type
== RTN_BROADCAST
)
2141 if (res
.type
== RTN_LOCAL
) {
2143 result
= fib_validate_source(saddr
, daddr
, tos
,
2144 net
->loopback_dev
->ifindex
,
2145 dev
, &spec_dst
, &itag
, skb
->mark
);
2147 goto martian_source
;
2149 flags
|= RTCF_DIRECTSRC
;
2154 if (!IN_DEV_FORWARD(in_dev
))
2156 if (res
.type
!= RTN_UNICAST
)
2157 goto martian_destination
;
2159 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
2167 if (skb
->protocol
!= htons(ETH_P_IP
))
2170 if (ipv4_is_zeronet(saddr
))
2171 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
2173 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
2176 goto martian_source
;
2178 flags
|= RTCF_DIRECTSRC
;
2180 flags
|= RTCF_BROADCAST
;
2181 res
.type
= RTN_BROADCAST
;
2182 RT_CACHE_STAT_INC(in_brd
);
2185 rth
= dst_alloc(&ipv4_dst_ops
);
2189 rth
->u
.dst
.output
= ip_rt_bug
;
2190 rth
->rt_genid
= rt_genid(net
);
2192 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2193 rth
->u
.dst
.flags
= DST_HOST
;
2194 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2195 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2196 rth
->fl
.fl4_dst
= daddr
;
2197 rth
->rt_dst
= daddr
;
2198 rth
->fl
.fl4_tos
= tos
;
2199 rth
->fl
.mark
= skb
->mark
;
2200 rth
->fl
.fl4_src
= saddr
;
2201 rth
->rt_src
= saddr
;
2202 #ifdef CONFIG_NET_CLS_ROUTE
2203 rth
->u
.dst
.tclassid
= itag
;
2206 rth
->fl
.iif
= dev
->ifindex
;
2207 rth
->u
.dst
.dev
= net
->loopback_dev
;
2208 dev_hold(rth
->u
.dst
.dev
);
2209 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2210 rth
->rt_gateway
= daddr
;
2211 rth
->rt_spec_dst
= spec_dst
;
2212 rth
->u
.dst
.input
= ip_local_deliver
;
2213 rth
->rt_flags
= flags
|RTCF_LOCAL
;
2214 if (res
.type
== RTN_UNREACHABLE
) {
2215 rth
->u
.dst
.input
= ip_error
;
2216 rth
->u
.dst
.error
= -err
;
2217 rth
->rt_flags
&= ~RTCF_LOCAL
;
2219 rth
->rt_type
= res
.type
;
2220 hash
= rt_hash(daddr
, saddr
, fl
.iif
, rt_genid(net
));
2221 err
= rt_intern_hash(hash
, rth
, NULL
, skb
);
2225 RT_CACHE_STAT_INC(in_no_route
);
2226 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2227 res
.type
= RTN_UNREACHABLE
;
2233 * Do not cache martian addresses: they should be logged (RFC1812)
2235 martian_destination
:
2236 RT_CACHE_STAT_INC(in_martian_dst
);
2237 #ifdef CONFIG_IP_ROUTE_VERBOSE
2238 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2239 printk(KERN_WARNING
"martian destination %pI4 from %pI4, dev %s\n",
2240 &daddr
, &saddr
, dev
->name
);
2244 err
= -EHOSTUNREACH
;
2256 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2260 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2261 u8 tos
, struct net_device
*dev
)
2263 struct rtable
* rth
;
2265 int iif
= dev
->ifindex
;
2270 if (!rt_caching(net
))
2273 tos
&= IPTOS_RT_MASK
;
2274 hash
= rt_hash(daddr
, saddr
, iif
, rt_genid(net
));
2277 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2278 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2279 if (((rth
->fl
.fl4_dst
^ daddr
) |
2280 (rth
->fl
.fl4_src
^ saddr
) |
2281 (rth
->fl
.iif
^ iif
) |
2283 (rth
->fl
.fl4_tos
^ tos
)) == 0 &&
2284 rth
->fl
.mark
== skb
->mark
&&
2285 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2286 !rt_is_expired(rth
)) {
2287 dst_use(&rth
->u
.dst
, jiffies
);
2288 RT_CACHE_STAT_INC(in_hit
);
2290 skb_dst_set(skb
, &rth
->u
.dst
);
2293 RT_CACHE_STAT_INC(in_hlist_search
);
2298 /* Multicast recognition logic is moved from route cache to here.
2299 The problem was that too many Ethernet cards have broken/missing
2300 hardware multicast filters :-( As result the host on multicasting
2301 network acquires a lot of useless route cache entries, sort of
2302 SDR messages from all the world. Now we try to get rid of them.
2303 Really, provided software IP multicast filter is organized
2304 reasonably (at least, hashed), it does not result in a slowdown
2305 comparing with route cache reject entries.
2306 Note, that multicast routers are not affected, because
2307 route cache entry is created eventually.
2309 if (ipv4_is_multicast(daddr
)) {
2310 struct in_device
*in_dev
;
2313 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2314 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2315 ip_hdr(skb
)->protocol
);
2317 #ifdef CONFIG_IP_MROUTE
2318 || (!ipv4_is_local_multicast(daddr
) &&
2319 IN_DEV_MFORWARD(in_dev
))
2323 return ip_route_input_mc(skb
, daddr
, saddr
,
2330 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2333 static int __mkroute_output(struct rtable
**result
,
2334 struct fib_result
*res
,
2335 const struct flowi
*fl
,
2336 const struct flowi
*oldflp
,
2337 struct net_device
*dev_out
,
2341 struct in_device
*in_dev
;
2342 u32 tos
= RT_FL_TOS(oldflp
);
2345 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2348 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2349 res
->type
= RTN_BROADCAST
;
2350 else if (ipv4_is_multicast(fl
->fl4_dst
))
2351 res
->type
= RTN_MULTICAST
;
2352 else if (ipv4_is_lbcast(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2355 if (dev_out
->flags
& IFF_LOOPBACK
)
2356 flags
|= RTCF_LOCAL
;
2358 /* get work reference to inet device */
2359 in_dev
= in_dev_get(dev_out
);
2363 if (res
->type
== RTN_BROADCAST
) {
2364 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2366 fib_info_put(res
->fi
);
2369 } else if (res
->type
== RTN_MULTICAST
) {
2370 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2371 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2373 flags
&= ~RTCF_LOCAL
;
2374 /* If multicast route do not exist use
2375 default one, but do not gateway in this case.
2378 if (res
->fi
&& res
->prefixlen
< 4) {
2379 fib_info_put(res
->fi
);
2385 rth
= dst_alloc(&ipv4_dst_ops
);
2391 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2392 rth
->u
.dst
.flags
= DST_HOST
;
2393 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2394 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2395 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2396 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2398 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2399 rth
->fl
.fl4_tos
= tos
;
2400 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2401 rth
->fl
.oif
= oldflp
->oif
;
2402 rth
->fl
.mark
= oldflp
->mark
;
2403 rth
->rt_dst
= fl
->fl4_dst
;
2404 rth
->rt_src
= fl
->fl4_src
;
2405 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2406 /* get references to the devices that are to be hold by the routing
2408 rth
->u
.dst
.dev
= dev_out
;
2410 rth
->idev
= in_dev_get(dev_out
);
2411 rth
->rt_gateway
= fl
->fl4_dst
;
2412 rth
->rt_spec_dst
= fl
->fl4_src
;
2414 rth
->u
.dst
.output
=ip_output
;
2415 rth
->rt_genid
= rt_genid(dev_net(dev_out
));
2417 RT_CACHE_STAT_INC(out_slow_tot
);
2419 if (flags
& RTCF_LOCAL
) {
2420 rth
->u
.dst
.input
= ip_local_deliver
;
2421 rth
->rt_spec_dst
= fl
->fl4_dst
;
2423 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2424 rth
->rt_spec_dst
= fl
->fl4_src
;
2425 if (flags
& RTCF_LOCAL
&&
2426 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2427 rth
->u
.dst
.output
= ip_mc_output
;
2428 RT_CACHE_STAT_INC(out_slow_mc
);
2430 #ifdef CONFIG_IP_MROUTE
2431 if (res
->type
== RTN_MULTICAST
) {
2432 if (IN_DEV_MFORWARD(in_dev
) &&
2433 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2434 rth
->u
.dst
.input
= ip_mr_input
;
2435 rth
->u
.dst
.output
= ip_mc_output
;
2441 rt_set_nexthop(rth
, res
, 0);
2443 rth
->rt_flags
= flags
;
2447 /* release work reference to inet device */
2453 static int ip_mkroute_output(struct rtable
**rp
,
2454 struct fib_result
*res
,
2455 const struct flowi
*fl
,
2456 const struct flowi
*oldflp
,
2457 struct net_device
*dev_out
,
2460 struct rtable
*rth
= NULL
;
2461 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2464 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
,
2465 rt_genid(dev_net(dev_out
)));
2466 err
= rt_intern_hash(hash
, rth
, rp
, NULL
);
2473 * Major route resolver routine.
2476 static int ip_route_output_slow(struct net
*net
, struct rtable
**rp
,
2477 const struct flowi
*oldflp
)
2479 u32 tos
= RT_FL_TOS(oldflp
);
2480 struct flowi fl
= { .nl_u
= { .ip4_u
=
2481 { .daddr
= oldflp
->fl4_dst
,
2482 .saddr
= oldflp
->fl4_src
,
2483 .tos
= tos
& IPTOS_RT_MASK
,
2484 .scope
= ((tos
& RTO_ONLINK
) ?
2488 .mark
= oldflp
->mark
,
2489 .iif
= net
->loopback_dev
->ifindex
,
2490 .oif
= oldflp
->oif
};
2491 struct fib_result res
;
2493 struct net_device
*dev_out
= NULL
;
2499 #ifdef CONFIG_IP_MULTIPLE_TABLES
2503 if (oldflp
->fl4_src
) {
2505 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2506 ipv4_is_lbcast(oldflp
->fl4_src
) ||
2507 ipv4_is_zeronet(oldflp
->fl4_src
))
2510 /* I removed check for oif == dev_out->oif here.
2511 It was wrong for two reasons:
2512 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2513 is assigned to multiple interfaces.
2514 2. Moreover, we are allowed to send packets with saddr
2515 of another iface. --ANK
2518 if (oldflp
->oif
== 0
2519 && (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2520 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2521 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2522 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2523 if (dev_out
== NULL
)
2526 /* Special hack: user can direct multicasts
2527 and limited broadcast via necessary interface
2528 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2529 This hack is not just for fun, it allows
2530 vic,vat and friends to work.
2531 They bind socket to loopback, set ttl to zero
2532 and expect that it will work.
2533 From the viewpoint of routing cache they are broken,
2534 because we are not allowed to build multicast path
2535 with loopback source addr (look, routing cache
2536 cannot know, that ttl is zero, so that packet
2537 will not leave this host and route is valid).
2538 Luckily, this hack is good workaround.
2541 fl
.oif
= dev_out
->ifindex
;
2545 if (!(oldflp
->flags
& FLOWI_FLAG_ANYSRC
)) {
2546 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2547 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2548 if (dev_out
== NULL
)
2557 dev_out
= dev_get_by_index(net
, oldflp
->oif
);
2559 if (dev_out
== NULL
)
2562 /* RACE: Check return value of inet_select_addr instead. */
2563 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2565 goto out
; /* Wrong error code */
2568 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2569 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2571 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2576 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2577 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2579 else if (!oldflp
->fl4_dst
)
2580 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2586 fl
.fl4_dst
= fl
.fl4_src
;
2588 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2591 dev_out
= net
->loopback_dev
;
2593 fl
.oif
= net
->loopback_dev
->ifindex
;
2594 res
.type
= RTN_LOCAL
;
2595 flags
|= RTCF_LOCAL
;
2599 if (fib_lookup(net
, &fl
, &res
)) {
2602 /* Apparently, routing tables are wrong. Assume,
2603 that the destination is on link.
2606 Because we are allowed to send to iface
2607 even if it has NO routes and NO assigned
2608 addresses. When oif is specified, routing
2609 tables are looked up with only one purpose:
2610 to catch if destination is gatewayed, rather than
2611 direct. Moreover, if MSG_DONTROUTE is set,
2612 we send packet, ignoring both routing tables
2613 and ifaddr state. --ANK
2616 We could make it even if oif is unknown,
2617 likely IPv6, but we do not.
2620 if (fl
.fl4_src
== 0)
2621 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2623 res
.type
= RTN_UNICAST
;
2633 if (res
.type
== RTN_LOCAL
) {
2635 fl
.fl4_src
= fl
.fl4_dst
;
2638 dev_out
= net
->loopback_dev
;
2640 fl
.oif
= dev_out
->ifindex
;
2642 fib_info_put(res
.fi
);
2644 flags
|= RTCF_LOCAL
;
2648 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2649 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2650 fib_select_multipath(&fl
, &res
);
2653 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2654 fib_select_default(net
, &fl
, &res
);
2657 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2661 dev_out
= FIB_RES_DEV(res
);
2663 fl
.oif
= dev_out
->ifindex
;
2667 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2677 int __ip_route_output_key(struct net
*net
, struct rtable
**rp
,
2678 const struct flowi
*flp
)
2683 if (!rt_caching(net
))
2686 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
, rt_genid(net
));
2689 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2690 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2691 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2692 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2694 rth
->fl
.oif
== flp
->oif
&&
2695 rth
->fl
.mark
== flp
->mark
&&
2696 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2697 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2698 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2699 !rt_is_expired(rth
)) {
2700 dst_use(&rth
->u
.dst
, jiffies
);
2701 RT_CACHE_STAT_INC(out_hit
);
2702 rcu_read_unlock_bh();
2706 RT_CACHE_STAT_INC(out_hlist_search
);
2708 rcu_read_unlock_bh();
2711 return ip_route_output_slow(net
, rp
, flp
);
2714 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2716 static struct dst_entry
*ipv4_blackhole_dst_check(struct dst_entry
*dst
, u32 cookie
)
2721 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2725 static struct dst_ops ipv4_dst_blackhole_ops
= {
2727 .protocol
= cpu_to_be16(ETH_P_IP
),
2728 .destroy
= ipv4_dst_destroy
,
2729 .check
= ipv4_blackhole_dst_check
,
2730 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2731 .entries
= ATOMIC_INIT(0),
2735 static int ipv4_dst_blackhole(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2737 struct rtable
*ort
= *rp
;
2738 struct rtable
*rt
= (struct rtable
*)
2739 dst_alloc(&ipv4_dst_blackhole_ops
);
2742 struct dst_entry
*new = &rt
->u
.dst
;
2744 atomic_set(&new->__refcnt
, 1);
2746 new->input
= dst_discard
;
2747 new->output
= dst_discard
;
2748 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2750 new->dev
= ort
->u
.dst
.dev
;
2756 rt
->idev
= ort
->idev
;
2758 in_dev_hold(rt
->idev
);
2759 rt
->rt_genid
= rt_genid(net
);
2760 rt
->rt_flags
= ort
->rt_flags
;
2761 rt
->rt_type
= ort
->rt_type
;
2762 rt
->rt_dst
= ort
->rt_dst
;
2763 rt
->rt_src
= ort
->rt_src
;
2764 rt
->rt_iif
= ort
->rt_iif
;
2765 rt
->rt_gateway
= ort
->rt_gateway
;
2766 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2767 rt
->peer
= ort
->peer
;
2769 atomic_inc(&rt
->peer
->refcnt
);
2774 dst_release(&(*rp
)->u
.dst
);
2776 return (rt
? 0 : -ENOMEM
);
2779 int ip_route_output_flow(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
,
2780 struct sock
*sk
, int flags
)
2784 if ((err
= __ip_route_output_key(net
, rp
, flp
)) != 0)
2789 flp
->fl4_src
= (*rp
)->rt_src
;
2791 flp
->fl4_dst
= (*rp
)->rt_dst
;
2792 err
= __xfrm_lookup(net
, (struct dst_entry
**)rp
, flp
, sk
,
2793 flags
? XFRM_LOOKUP_WAIT
: 0);
2794 if (err
== -EREMOTE
)
2795 err
= ipv4_dst_blackhole(net
, rp
, flp
);
2803 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2805 int ip_route_output_key(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2807 return ip_route_output_flow(net
, rp
, flp
, NULL
, 0);
2810 static int rt_fill_info(struct net
*net
,
2811 struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2812 int nowait
, unsigned int flags
)
2814 struct rtable
*rt
= skb_rtable(skb
);
2816 struct nlmsghdr
*nlh
;
2818 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2820 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2824 r
= nlmsg_data(nlh
);
2825 r
->rtm_family
= AF_INET
;
2826 r
->rtm_dst_len
= 32;
2828 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2829 r
->rtm_table
= RT_TABLE_MAIN
;
2830 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2831 r
->rtm_type
= rt
->rt_type
;
2832 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2833 r
->rtm_protocol
= RTPROT_UNSPEC
;
2834 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2835 if (rt
->rt_flags
& RTCF_NOTIFY
)
2836 r
->rtm_flags
|= RTM_F_NOTIFY
;
2838 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2840 if (rt
->fl
.fl4_src
) {
2841 r
->rtm_src_len
= 32;
2842 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2845 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2846 #ifdef CONFIG_NET_CLS_ROUTE
2847 if (rt
->u
.dst
.tclassid
)
2848 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2851 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2852 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2853 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2855 if (rt
->rt_dst
!= rt
->rt_gateway
)
2856 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2858 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2859 goto nla_put_failure
;
2861 error
= rt
->u
.dst
.error
;
2862 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2864 id
= rt
->peer
->ip_id_count
;
2865 if (rt
->peer
->tcp_ts_stamp
) {
2866 ts
= rt
->peer
->tcp_ts
;
2867 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2872 #ifdef CONFIG_IP_MROUTE
2873 __be32 dst
= rt
->rt_dst
;
2875 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2876 IPV4_DEVCONF_ALL(net
, MC_FORWARDING
)) {
2877 int err
= ipmr_get_route(net
, skb
, r
, nowait
);
2882 goto nla_put_failure
;
2884 if (err
== -EMSGSIZE
)
2885 goto nla_put_failure
;
2891 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2894 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2895 expires
, error
) < 0)
2896 goto nla_put_failure
;
2898 return nlmsg_end(skb
, nlh
);
2901 nlmsg_cancel(skb
, nlh
);
2905 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2907 struct net
*net
= sock_net(in_skb
->sk
);
2909 struct nlattr
*tb
[RTA_MAX
+1];
2910 struct rtable
*rt
= NULL
;
2915 struct sk_buff
*skb
;
2917 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2921 rtm
= nlmsg_data(nlh
);
2923 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2929 /* Reserve room for dummy headers, this skb can pass
2930 through good chunk of routing engine.
2932 skb_reset_mac_header(skb
);
2933 skb_reset_network_header(skb
);
2935 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2936 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2937 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2939 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2940 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2941 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2944 struct net_device
*dev
;
2946 dev
= __dev_get_by_index(net
, iif
);
2952 skb
->protocol
= htons(ETH_P_IP
);
2955 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2958 rt
= skb_rtable(skb
);
2959 if (err
== 0 && rt
->u
.dst
.error
)
2960 err
= -rt
->u
.dst
.error
;
2967 .tos
= rtm
->rtm_tos
,
2970 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2972 err
= ip_route_output_key(net
, &rt
, &fl
);
2978 skb_dst_set(skb
, &rt
->u
.dst
);
2979 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2980 rt
->rt_flags
|= RTCF_NOTIFY
;
2982 err
= rt_fill_info(net
, skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2983 RTM_NEWROUTE
, 0, 0);
2987 err
= rtnl_unicast(skb
, net
, NETLINK_CB(in_skb
).pid
);
2996 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
3003 net
= sock_net(skb
->sk
);
3008 s_idx
= idx
= cb
->args
[1];
3009 for (h
= s_h
; h
<= rt_hash_mask
; h
++, s_idx
= 0) {
3010 if (!rt_hash_table
[h
].chain
)
3013 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
3014 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
3015 if (!net_eq(dev_net(rt
->u
.dst
.dev
), net
) || idx
< s_idx
)
3017 if (rt_is_expired(rt
))
3019 skb_dst_set(skb
, dst_clone(&rt
->u
.dst
));
3020 if (rt_fill_info(net
, skb
, NETLINK_CB(cb
->skb
).pid
,
3021 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
3022 1, NLM_F_MULTI
) <= 0) {
3024 rcu_read_unlock_bh();
3029 rcu_read_unlock_bh();
3038 void ip_rt_multicast_event(struct in_device
*in_dev
)
3040 rt_cache_flush(dev_net(in_dev
->dev
), 0);
3043 #ifdef CONFIG_SYSCTL
3044 static int ipv4_sysctl_rtcache_flush(ctl_table
*__ctl
, int write
,
3045 void __user
*buffer
,
3046 size_t *lenp
, loff_t
*ppos
)
3053 memcpy(&ctl
, __ctl
, sizeof(ctl
));
3054 ctl
.data
= &flush_delay
;
3055 proc_dointvec(&ctl
, write
, buffer
, lenp
, ppos
);
3057 net
= (struct net
*)__ctl
->extra1
;
3058 rt_cache_flush(net
, flush_delay
);
3065 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
3066 void __user
*oldval
,
3067 size_t __user
*oldlenp
,
3068 void __user
*newval
,
3073 if (newlen
!= sizeof(int))
3075 if (get_user(delay
, (int __user
*)newval
))
3077 net
= (struct net
*)table
->extra1
;
3078 rt_cache_flush(net
, delay
);
3082 static void rt_secret_reschedule(int old
)
3085 int new = ip_rt_secret_interval
;
3086 int diff
= new - old
;
3093 int deleted
= del_timer_sync(&net
->ipv4
.rt_secret_timer
);
3099 long time
= net
->ipv4
.rt_secret_timer
.expires
- jiffies
;
3101 if (time
<= 0 || (time
+= diff
) <= 0)
3104 net
->ipv4
.rt_secret_timer
.expires
= time
;
3106 net
->ipv4
.rt_secret_timer
.expires
= new;
3108 net
->ipv4
.rt_secret_timer
.expires
+= jiffies
;
3109 add_timer(&net
->ipv4
.rt_secret_timer
);
3114 static int ipv4_sysctl_rt_secret_interval(ctl_table
*ctl
, int write
,
3115 void __user
*buffer
, size_t *lenp
,
3118 int old
= ip_rt_secret_interval
;
3119 int ret
= proc_dointvec_jiffies(ctl
, write
, buffer
, lenp
, ppos
);
3121 rt_secret_reschedule(old
);
3126 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table
*table
,
3127 void __user
*oldval
,
3128 size_t __user
*oldlenp
,
3129 void __user
*newval
,
3132 int old
= ip_rt_secret_interval
;
3133 int ret
= sysctl_jiffies(table
, oldval
, oldlenp
, newval
, newlen
);
3135 rt_secret_reschedule(old
);
3140 static ctl_table ipv4_route_table
[] = {
3142 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
3143 .procname
= "gc_thresh",
3144 .data
= &ipv4_dst_ops
.gc_thresh
,
3145 .maxlen
= sizeof(int),
3147 .proc_handler
= proc_dointvec
,
3150 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
3151 .procname
= "max_size",
3152 .data
= &ip_rt_max_size
,
3153 .maxlen
= sizeof(int),
3155 .proc_handler
= proc_dointvec
,
3158 /* Deprecated. Use gc_min_interval_ms */
3160 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
3161 .procname
= "gc_min_interval",
3162 .data
= &ip_rt_gc_min_interval
,
3163 .maxlen
= sizeof(int),
3165 .proc_handler
= proc_dointvec_jiffies
,
3166 .strategy
= sysctl_jiffies
,
3169 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
3170 .procname
= "gc_min_interval_ms",
3171 .data
= &ip_rt_gc_min_interval
,
3172 .maxlen
= sizeof(int),
3174 .proc_handler
= proc_dointvec_ms_jiffies
,
3175 .strategy
= sysctl_ms_jiffies
,
3178 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
3179 .procname
= "gc_timeout",
3180 .data
= &ip_rt_gc_timeout
,
3181 .maxlen
= sizeof(int),
3183 .proc_handler
= proc_dointvec_jiffies
,
3184 .strategy
= sysctl_jiffies
,
3187 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
3188 .procname
= "gc_interval",
3189 .data
= &ip_rt_gc_interval
,
3190 .maxlen
= sizeof(int),
3192 .proc_handler
= proc_dointvec_jiffies
,
3193 .strategy
= sysctl_jiffies
,
3196 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
3197 .procname
= "redirect_load",
3198 .data
= &ip_rt_redirect_load
,
3199 .maxlen
= sizeof(int),
3201 .proc_handler
= proc_dointvec
,
3204 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
3205 .procname
= "redirect_number",
3206 .data
= &ip_rt_redirect_number
,
3207 .maxlen
= sizeof(int),
3209 .proc_handler
= proc_dointvec
,
3212 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
3213 .procname
= "redirect_silence",
3214 .data
= &ip_rt_redirect_silence
,
3215 .maxlen
= sizeof(int),
3217 .proc_handler
= proc_dointvec
,
3220 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
3221 .procname
= "error_cost",
3222 .data
= &ip_rt_error_cost
,
3223 .maxlen
= sizeof(int),
3225 .proc_handler
= proc_dointvec
,
3228 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
3229 .procname
= "error_burst",
3230 .data
= &ip_rt_error_burst
,
3231 .maxlen
= sizeof(int),
3233 .proc_handler
= proc_dointvec
,
3236 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
3237 .procname
= "gc_elasticity",
3238 .data
= &ip_rt_gc_elasticity
,
3239 .maxlen
= sizeof(int),
3241 .proc_handler
= proc_dointvec
,
3244 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
3245 .procname
= "mtu_expires",
3246 .data
= &ip_rt_mtu_expires
,
3247 .maxlen
= sizeof(int),
3249 .proc_handler
= proc_dointvec_jiffies
,
3250 .strategy
= sysctl_jiffies
,
3253 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
3254 .procname
= "min_pmtu",
3255 .data
= &ip_rt_min_pmtu
,
3256 .maxlen
= sizeof(int),
3258 .proc_handler
= proc_dointvec
,
3261 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
3262 .procname
= "min_adv_mss",
3263 .data
= &ip_rt_min_advmss
,
3264 .maxlen
= sizeof(int),
3266 .proc_handler
= proc_dointvec
,
3269 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
3270 .procname
= "secret_interval",
3271 .data
= &ip_rt_secret_interval
,
3272 .maxlen
= sizeof(int),
3274 .proc_handler
= ipv4_sysctl_rt_secret_interval
,
3275 .strategy
= ipv4_sysctl_rt_secret_interval_strategy
,
3280 static struct ctl_table empty
[1];
3282 static struct ctl_table ipv4_skeleton
[] =
3284 { .procname
= "route", .ctl_name
= NET_IPV4_ROUTE
,
3285 .mode
= 0555, .child
= ipv4_route_table
},
3286 { .procname
= "neigh", .ctl_name
= NET_IPV4_NEIGH
,
3287 .mode
= 0555, .child
= empty
},
3291 static __net_initdata
struct ctl_path ipv4_path
[] = {
3292 { .procname
= "net", .ctl_name
= CTL_NET
, },
3293 { .procname
= "ipv4", .ctl_name
= NET_IPV4
, },
3297 static struct ctl_table ipv4_route_flush_table
[] = {
3299 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
3300 .procname
= "flush",
3301 .maxlen
= sizeof(int),
3303 .proc_handler
= ipv4_sysctl_rtcache_flush
,
3304 .strategy
= ipv4_sysctl_rtcache_flush_strategy
,
3309 static __net_initdata
struct ctl_path ipv4_route_path
[] = {
3310 { .procname
= "net", .ctl_name
= CTL_NET
, },
3311 { .procname
= "ipv4", .ctl_name
= NET_IPV4
, },
3312 { .procname
= "route", .ctl_name
= NET_IPV4_ROUTE
, },
3316 static __net_init
int sysctl_route_net_init(struct net
*net
)
3318 struct ctl_table
*tbl
;
3320 tbl
= ipv4_route_flush_table
;
3321 if (net
!= &init_net
) {
3322 tbl
= kmemdup(tbl
, sizeof(ipv4_route_flush_table
), GFP_KERNEL
);
3326 tbl
[0].extra1
= net
;
3328 net
->ipv4
.route_hdr
=
3329 register_net_sysctl_table(net
, ipv4_route_path
, tbl
);
3330 if (net
->ipv4
.route_hdr
== NULL
)
3335 if (tbl
!= ipv4_route_flush_table
)
3341 static __net_exit
void sysctl_route_net_exit(struct net
*net
)
3343 struct ctl_table
*tbl
;
3345 tbl
= net
->ipv4
.route_hdr
->ctl_table_arg
;
3346 unregister_net_sysctl_table(net
->ipv4
.route_hdr
);
3347 BUG_ON(tbl
== ipv4_route_flush_table
);
3351 static __net_initdata
struct pernet_operations sysctl_route_ops
= {
3352 .init
= sysctl_route_net_init
,
3353 .exit
= sysctl_route_net_exit
,
3358 static __net_init
int rt_secret_timer_init(struct net
*net
)
3360 atomic_set(&net
->ipv4
.rt_genid
,
3361 (int) ((num_physpages
^ (num_physpages
>>8)) ^
3362 (jiffies
^ (jiffies
>> 7))));
3364 net
->ipv4
.rt_secret_timer
.function
= rt_secret_rebuild
;
3365 net
->ipv4
.rt_secret_timer
.data
= (unsigned long)net
;
3366 init_timer_deferrable(&net
->ipv4
.rt_secret_timer
);
3368 if (ip_rt_secret_interval
) {
3369 net
->ipv4
.rt_secret_timer
.expires
=
3370 jiffies
+ net_random() % ip_rt_secret_interval
+
3371 ip_rt_secret_interval
;
3372 add_timer(&net
->ipv4
.rt_secret_timer
);
3377 static __net_exit
void rt_secret_timer_exit(struct net
*net
)
3379 del_timer_sync(&net
->ipv4
.rt_secret_timer
);
3382 static __net_initdata
struct pernet_operations rt_secret_timer_ops
= {
3383 .init
= rt_secret_timer_init
,
3384 .exit
= rt_secret_timer_exit
,
3388 #ifdef CONFIG_NET_CLS_ROUTE
3389 struct ip_rt_acct
*ip_rt_acct __read_mostly
;
3390 #endif /* CONFIG_NET_CLS_ROUTE */
3392 static __initdata
unsigned long rhash_entries
;
3393 static int __init
set_rhash_entries(char *str
)
3397 rhash_entries
= simple_strtoul(str
, &str
, 0);
3400 __setup("rhash_entries=", set_rhash_entries
);
3402 int __init
ip_rt_init(void)
3406 #ifdef CONFIG_NET_CLS_ROUTE
3407 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
), __alignof__(struct ip_rt_acct
));
3409 panic("IP: failed to allocate ip_rt_acct\n");
3412 ipv4_dst_ops
.kmem_cachep
=
3413 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3414 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3416 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3418 rt_hash_table
= (struct rt_hash_bucket
*)
3419 alloc_large_system_hash("IP route cache",
3420 sizeof(struct rt_hash_bucket
),
3422 (totalram_pages
>= 128 * 1024) ?
3427 rhash_entries
? 0 : 512 * 1024);
3428 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3429 rt_hash_lock_init();
3431 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3432 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3437 /* All the timers, started at system startup tend
3438 to synchronize. Perturb it a bit.
3440 INIT_DELAYED_WORK_DEFERRABLE(&expires_work
, rt_worker_func
);
3441 expires_ljiffies
= jiffies
;
3442 schedule_delayed_work(&expires_work
,
3443 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3445 if (register_pernet_subsys(&rt_secret_timer_ops
))
3446 printk(KERN_ERR
"Unable to setup rt_secret_timer\n");
3448 if (ip_rt_proc_init())
3449 printk(KERN_ERR
"Unable to create route proc files\n");
3452 xfrm4_init(ip_rt_max_size
);
3454 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3456 #ifdef CONFIG_SYSCTL
3457 register_pernet_subsys(&sysctl_route_ops
);
3462 #ifdef CONFIG_SYSCTL
3464 * We really need to sanitize the damn ipv4 init order, then all
3465 * this nonsense will go away.
3467 void __init
ip_static_sysctl_init(void)
3469 register_sysctl_paths(ipv4_path
, ipv4_skeleton
);
3473 EXPORT_SYMBOL(__ip_select_ident
);
3474 EXPORT_SYMBOL(ip_route_input
);
3475 EXPORT_SYMBOL(ip_route_output_key
);