* better
[mascara-docs.git] / i386 / linux-2.3.21 / Documentation / video4linux / API.html
blobb4b9d0dcc61ff9e184f8f150f31c00d1dbc78824
1 <HTML><HEAD>
2 <TITLE>Video4Linux Kernel API Reference v0.1:19990430</TITLE>
3 </HEAD>
4 <! Revision History: >
5 <! 4/30/1999 - Fred Gleason (fredg@wava.com)>
6 <! Documented extensions for the Radio Data System (RDS) extensions >
7 <BODY bgcolor="#ffffff">
8 <H3>Devices</H3>
9 Video4Linux provides the following sets of device files. These live on the
10 character device formerly known as "/dev/bttv". /dev/bttv should be a
11 symlink to /dev/video0 for most people.
12 <P>
13 <TABLE>
14 <TR><TH>Device Name</TH><TH>Minor Range</TH><TH>Function</TH>
15 <TR><TD>/dev/video</TD><TD>0-63</TD><TD>Video Capture Interface</TD>
16 <TR><TD>/dev/radio</TD><TD>64-127</TD><TD>AM/FM Radio Devices</TD>
17 <TR><TD>/dev/vtx</TD><TD>192-223</TD><TD>Teletext Interface Chips</TD>
18 <TR><TD>/dev/vbi</TD><TD>224-239</TD><TD>Raw VBI Data (Intercast/teletext)</TD>
19 </TABLE>
20 <P>
21 Video4Linux programs open and scan the devices to find what they are looking
22 for. Capability queries define what each interface supports. The
23 described API is only defined for video capture cards. The relevant subset
24 applies to radio cards. Teletext interfaces talk the existing VTX API.
25 <P>
26 <H3>Capability Query Ioctl</H3>
27 The <B>VIDIOCGCAP</B> ioctl call is used to obtain the capability
28 information for a video device. The <b>struct video_capability</b> object
29 passed to the ioctl is completed and returned. It contains the following
30 information
31 <P>
32 <TABLE>
33 <TR><TD><b>name[32]</b><TD>Cannonical name for this interface</TD>
34 <TR><TD><b>type</b><TD>Type of interface</TD>
35 <TR><TD><b>channels</b><TD>Number of radio/tv channels if appropriate</TD>
36 <TR><TD><b>audios</b><TD>Number of audio devices if appropriate</TD>
37 <TR><TD><b>maxwidth</b><TD>Maximum capture width in pixels</TD>
38 <TR><TD><b>maxheight</b><TD>Maximum capture height in pixels</TD>
39 <TR><TD><b>minwidth</b><TD>Minimum capture width in pixels</TD>
40 <TR><TD><b>minheight</b><TD>Minimum capture height in pixels</TD>
41 </TABLE>
42 <P>
43 The type field lists the capability flags for the device. These are
44 as follows
45 <P>
46 <TABLE>
47 <TR><TH>Name</TH><TH>Description</TH>
48 <TR><TD><b>VID_TYPE_CAPTURE</b><TD>Can capture to memory</TD>
49 <TR><TD><b>VID_TYPE_TUNER</b><TD>Has a tuner of some form</TD>
50 <TR><TD><b>VID_TYPE_TELETEXT</b><TD>Has teletext capability</TD>
51 <TR><TD><b>VID_TYPE_OVERLAY</b><TD>Can overlay its image onto the frame buffer</TD>
52 <TR><TD><b>VID_TYPE_CHROMAKEY</b><TD>Overlay is Chromakeyed</TD>
53 <TR><TD><b>VID_TYPE_CLIPPING</b><TD>Overlay clipping is supported</TD>
54 <TR><TD><b>VID_TYPE_FRAMERAM</b><TD>Overlay overwrites frame buffer memory</TD>
55 <TR><TD><b>VID_TYPE_SCALES</b><TD>The hardware supports image scaling</TD>
56 <TR><TD><b>VID_TYPE_MONOCHROME</b><TD>Image capture is grey scale only</TD>
57 <TR><TD><b>VID_TYPE_SUBCAPTURE</b><TD>Capture can be of only part of the image</TD>
58 </TABLE>
59 <P>
60 The minimum and maximum sizes listed for a capture device do not imply all
61 that all height/width ratios or sizes within the range are possible. A
62 request to set a size will be honoured by the largest available capture
63 size whose capture is no large than the requested rectangle in either
64 direction. For example the quickcam has 3 fixed settings.
65 <P>
66 <H3>Frame Buffer</H3>
67 Capture cards that drop data directly onto the frame buffer must be told the
68 base address of the frame buffer, its size and organisation. This is a
69 privileged ioctl and one that eventually X itself should set.
70 <P>
71 The <b>VIDIOCSFBUF</b> ioctl sets the frame buffer parameters for a capture
72 card. If the card does not do direct writes to the frame buffer then this
73 ioctl will be unsupported. The <b>VIDIOCGFBUF</b> ioctl returns the
74 currently used parameters. The structure used in both cases is a
75 <b>struct video_buffer</b>.
76 <P>
77 <TABLE>
78 <TR><TD><b>void *base</b></TD><TD>Base physical address of the buffer</TD>
79 <TR><TD><b>int height</b></TD><TD>Height of the frame buffer</TD>
80 <TR><TD><b>int width</b></TD><TD>Width of the frame buffer</TD>
81 <TR><TD><b>int depth</b></TD><TD>Depth of the frame buffer</TD>
82 <TR><TD><b>int bytesperline</b></TD><TD>Number of bytes of memory between the start of two adjacent lines</TD>
83 </TABLE>
84 <P>
85 Note that these values reflect the physical layout of the frame buffer.
86 The visible area may be smaller. In fact under XFree86 this is commonly the
87 case. XFree86 DGA can provide the parameters required to set up this ioctl.
88 Setting the base address to NULL indicates there is no physical frame buffer
89 access.
90 <P>
91 <H3>Capture Windows</H3>
92 The capture area is described by a <b>struct video_window</b>. This defines
93 a capture area and the clipping information if relevant. The
94 <b>VIDIOCGWIN</b> ioctl recovers the current settings and the
95 <b>VIDIOCSWIN</b> sets new values. A successful call to <b>VIDIOCSWIN</b>
96 indicates that a suitable set of parameters have been chosen. They do not
97 indicate that exactly what was requested was granted. The program should
98 call <b>VIDIOCGWIN</b> to check if the nearest match was suitable. The
99 <b>struct video_window</b> contains the following fields.
101 <TABLE>
102 <TR><TD><b>x</b><TD>The X co-ordinate specified in X windows format.</TD>
103 <TR><TD><b>y</b><TD>The Y co-ordinate specified in X windows format.</TD>
104 <TR><TD><b>width</b><TD>The width of the image capture.</TD>
105 <TR><TD><b>height</b><TD>The height of the image capture.</TD>
106 <TR><TD><b>chromakey</b><TD>A host order RGB32 value for the chroma key.</TD>
107 <TR><TD><b>flags</b><TD>Additional capture flags.</TD>
108 <TR><TD><b>clips</b><TD>A list of clipping rectangles. <em>(Set only)</em)</TD>
109 <TR><TD><b>clipcount</b><TD>The number of clipping rectangles. <em>(Set only)</em></TD>
110 </TABLE>
112 Clipping rectangles are passed as an array. Each clip consists of the following
113 fields available to the user.
115 <TABLE>
116 <TR><TD><b>x</b></TD><TD>X co-ordinate of rectangle to skip</TD>
117 <TR><TD><b>y</b></TD><TD>Y co-ordinate of rectangle to skip</TD>
118 <TR><TD><b>width</b></TD><TD>Width of rectangle to skip</TD>
119 <TR><TD><b>height</b></TD><TD>Height of rectangle to skip</TD>
120 </TABLE>
122 Merely setting the window does not enable capturing. Overlay capturing
123 is activated by passing the <b>VIDIOCCAPTURE</b> ioctl a value of 1, and
124 disabled by passing it a value of 0.
126 Some capture devices can capture a subfield of the image they actually see.
127 This is indicated when VIDEO_TYPE_SUBCAPTURE is defined.
128 The video_capture describes the time and spacial subfields to capture.
129 The video_capture structure contains the following fields.
131 <TABLE>
132 <TR><TD><b>x</b></TD><TD>X co-ordinate of source rectangle to grab</TD>
133 <TR><TD><b>y</b></TD><TD>Y co-ordinate of source rectangle to grab</TD>
134 <TR><TD><b>width</b></TD><TD>Width of source rectangle to grab</TD>
135 <TR><TD><b>height</b></TD><TD>Height of source rectangle to grab</TD>
136 <TR><TD><b>decimation</b></TD><TD>Decimation to apply</TD>
137 <TR><TD><b>flags</b></TD><TD>Flag settings for grabbing</TD>
138 </TABLE>
139 The available flags are
141 <TABLE>
142 <TR><TH>Name</TH><TH>Description</TH>
143 <TR><TD><b>VIDEO_CAPTURE_ODD</b><TD>Capture only odd frames</TD>
144 <TR><TD><b>VIDEO_CAPTURE_EVEN</b><TD>Capture only even frames</TD>
145 </TABLE>
147 <H3>Video Sources</H3>
148 Each video4linux video or audio device captures from one or more
149 source <b>channels</b>. Each channel can be queries with the
150 <b>VDIOCGCHAN</b> ioctl call. Before invoking this function the caller
151 must set the channel field to the channel that is being queried. On return
152 the <b>struct video_channel</b> is filled in with information about the
153 nature of the channel itself.
155 The <b>VIDIOCSCHAN</b> ioctl takes an integer argument and switches the
156 capture to this input. It is not defined whether parameters such as colour
157 settings or tuning are maintained across a channel switch. The caller should
158 maintain settings as desired for each channel. (This is reasonable as
159 different video inputs may have different properties).
161 The <b>struct video_channel</b> consists of the following
163 <TABLE>
164 <TR><TD><b>channel</b></TD><TD>The channel number</TD>
165 <TR><TD><b>name</b></TD><TD>The input name - preferably reflecting the label
166 on the card input itself</TD>
167 <TR><TD><b>tuners</b></TD><TD>Number of tuners for this input</TD>
168 <TR><TD><b>flags</b></TD><TD>Properties the tuner has</TD>
169 <TR><TD><b>type</b></TD><TD>Input type (if known)</TD>
170 <TR><TD><b>norm</b><TD>The norm for this channel</TD>
171 </TABLE>
173 The flags defined are
175 <TABLE>
176 <TR><TD><b>VIDEO_VC_TUNER</b><TD>Channel has tuners.</TD>
177 <TR><TD><b>VIDEO_VC_AUDIO</b><TD>Channel has audio.</TD>
178 <TR><TD><b>VIDEO_VC_NORM</b><TD>Channel has norm setting.</TD>
179 </TABLE>
181 The types defined are
183 <TABLE>
184 <TR><TD><b>VIDEO_TYPE_TV</b><TD>The input is a TV input.</TD>
185 <TR><TD><b>VIDEO_TYPE_CAMERA</b><TD>The input is a camera.</TD>
186 </TABLE>
188 <H3>Image Properties</H3>
189 The image properties of the picture can be queried with the <b>VIDIOCGPICT</b>
190 ioctl which fills in a <b>struct video_picture</b>. The <b>VIDIOCSPICT</b>
191 ioctl allows values to be changed. All values except for the palette type
192 are scaled between 0-65535.
194 The <b>struct video_picture</b> consists of the following fields
196 <TABLE>
197 <TR><TD><b>brightness</b><TD>Picture brightness</TD>
198 <TR><TD><b>hue</b><TD>Picture hue (colour only)</TD>
199 <TR><TD><b>colour</b><TD>Picture colour (colour only)</TD>
200 <TR><TD><b>contrast</b><TD>Picture contrast</TD>
201 <TR><TD><b>whiteness</b><TD>The whiteness (greyscale only)</TD>
202 <TR><TD><b>depth</b><TD>The capture depth (may need to match the frame buffer depth)</TD>
203 <TR><TD><b>palette</b><TD>Reports the palette that should be used for this image</TD>
204 </TABLE>
206 The following palettes are defined
208 <TABLE>
209 <TR><TD><b>VIDEO_PALETTE_GREY</b><TD>Linear intensity grey scale (255 is brightest).</TD>
210 <TR><TD><b>VIDEO_PALETTE_HI240</b><TD>The BT848 8bit colour cube.</TD>
211 <TR><TD><b>VIDEO_PALETTE_RGB565</b><TD>RGB565 packed into 16 bit words.</TD>
212 <TR><TD><b>VIDEO_PALETTE_RGB555</b><TD>RGV555 packed into 16 bit words, top bit undefined.</TD>
213 <TR><TD><b>VIDEO_PALETTE_RGB24</b><TD>RGB888 packed into 24bit words.</TD>
214 <TR><TD><b>VIDEO_PALETTE_RGB32</b><TD>RGB888 packed into the low 3 bytes of 32bit words. The top 8bits are undefined.</TD>
215 <TR><TD><b>VIDEO_PALETTE_YUV422</b><TD>Video style YUV422 - 8bits packed 4bits Y 2bits U 2bits V</TD>
216 <TR><TD><b>VIDEO_PALETTE_YUYV</b><TD>Describe me</TD>
217 <TR><TD><b>VIDEO_PALETTE_UYVY</b><TD>Describe me</TD>
218 <TR><TD><b>VIDEO_PALETTE_YUV420</b><TD>YUV420 capture</TD>
219 <TR><TD><b>VIDEO_PALETTE_YUV411</b><TD>YUV411 capture</TD>
220 <TR><TD><b>VIDEO_PALETTE_RAW</b><TD>RAW capture (BT848)</TD>
221 <TR><TD><b>VIDEO_PALETTE_YUV422P</b><TD>YUV 4:2:2 Planar</TD>
222 <TR><TD><b>VIDEO_PALETTE_YUV411P</b><TD>YUV 4:1:1 Planar</TD>
223 </TABLE>
225 <H3>Tuning</H3>
226 Each video input channel can have one or more tuners associated with it. Many
227 devices will not have tuners. TV cards and radio cards will have one or more
228 tuners attached.
230 Tuners are described by a <b>struct video_tuner</b> which can be obtained by
231 the <b>VIDIOCGTUNER</b> ioctl. Fill in the tuner number in the structure
232 then pass the structure to the ioctl to have the data filled in. The
233 tuner can be switched using <b>VIDIOCSTUNER</b> which takes an integer argument
234 giving the tuner to use. A struct tuner has the following fields
236 <TABLE>
237 <TR><TD><b>tuner</b><TD>Number of the tuner</TD>
238 <TR><TD><b>name</b><TD>Cannonical name for this tuner (eg FM/AM/TV)</TD>
239 <TR><TD><b>rangelow</b><TD>Lowest tunable frequency</TD>
240 <TR><TD><b>rangehigh</b><TD>Highest tunable frequency</TD>
241 <TR><TD><b>flags</b><TD>Flags describing the tuner</TD>
242 <TR><TD><b>mode</b><TD>The video signal mode if relevant</TD>
243 <TR><TD><b>signal</b><TD>Signal strength if known - between 0-65535</TD>
244 </TABLE>
246 The following flags exist
248 <TABLE>
249 <TR><TD><b>VIDEO_TUNER_PAL</b><TD>PAL tuning is supported</TD>
250 <TR><TD><b>VIDEO_TUNER_NTSC</b><TD>NTSC tuning is supported</TD>
251 <TR><TD><b>VIDEO_TUNER_SECAM</b><TD>SECAM tuning is supported</TD>
252 <TR><TD><b>VIDEO_TUNER_LOW</b><TD>Frequency is in a lower range</TD>
253 <TR><TD><b>VIDEO_TUNER_NORM</b><TD>The norm for this tuner is settable</TD>
254 <TR><TD><b>VIDEO_TUNER_STEREO_ON</b><TD>The tuner is seeing stereo audio</TD>
255 <TR><TD><b>VIDEO_TUNER_RDS_ON</b><TD>The tuner is seeing a RDS datastream</TD>
256 <TR><TD><b>VIDEO_TUNER_MBS_ON</b><TD>The tuner is seeing a MBS datastream</TD>
257 </TABLE>
259 The following modes are defined
261 <TABLE>
262 <TR><TD><b>VIDEO_MODE_PAL</b><TD>The tuner is in PAL mode</TD>
263 <TR><TD><b>VIDEO_MODE_NTSC</b><TD>The tuner is in NTSC mode</TD>
264 <TR><TD><b>VIDEO_MODE_SECAM</b><TD>The tuner is in SECAM mode</TD>
265 <TR><TD><b>VIDEO_MODE_AUTO</b><TD>The tuner auto switches, or mode does not apply</TD>
266 </TABLE>
268 Tuning frequencies are an unsigned 32bit value in 1/16th MHz or if the
269 <b>VIDEO_TUNER_LOW</b> flag is set they are in 1/16th KHz. The current
270 frequency is obtained as an unsigned long via the <b>VIDIOCGFREQ</b> ioctl and
271 set by the <b>VIDIOCSFREQ</b> ioctl.
273 <H3>Audio</H3>
274 TV and Radio devices have one or more audio inputs that may be selected.
275 The audio properties are queried by passing a <b>struct video_audio</b> to <b>VIDIOCGAUDIO</b> ioctl. The
276 <b>VIDIOCSAUDIO</b> ioctl sets audio properties.
278 The structure contains the following fields
280 <TABLE>
281 <TR><TD><b>audio</b><TD>The channel number</TD>
282 <TR><TD><b>volume</b><TD>The voume level</TD>
283 <TR><TD><b>bass</b><TD>The bass level</TD>
284 <TR><TD><b>treble</b><TD>The treble level</TD>
285 <TR><TD><b>flags</b><TD>Flags describing the audio channel</TD>
286 <TR><TD><b>name</b><TD>Canonical name for the audio input</TD>
287 <TR><TD><b>mode</b><TD>The mode the audio input is in</TD>
288 <TR><TD><b>balance</b><TD>The left/right balance</TD>
289 <TR><TD><b>step</b><TD>Actual step used by the hardware</TD>
290 </TABLE>
292 The following flags are defined
294 <TABLE>
295 <TR><TD><b>VIDEO_AUDIO_MUTE</b><TD>The audio is muted</TD>
296 <TR><TD><b>VIDEO_AUDIO_MUTABLE</b><TD>Audio muting is supported</TD>
297 <TR><TD><b>VIDEO_AUDIO_VOLUME</b><TD>The volume is controllable</TD>
298 <TR><TD><b>VIDEO_AUDIO_BASS</b><TD>The bass is controllable</TD>
299 <TR><TD><b>VIDEO_AUDIO_TREBLE</b><TD>The treble is controllable</TD>
300 <TR><TD><b>VIDEO_AUDIO_BALANCE</b><TD>The balance is controllable</TD>
301 </TABLE>
303 The following decoding modes are defined
305 <TABLE>
306 <TR><TD><b>VIDEO_SOUND_MONO</b><TD>Mono signal</TD>
307 <TR><TD><b>VIDEO_SOUND_STEREO</b><TD>Stereo signal (NICAM for TV)</TD>
308 <TR><TD><b>VIDEO_SOUND_LANG1</b><TD>European TV alternate language 1</TD>
309 <TR><TD><b>VIDEO_SOUND_LANG2</b><TD>European TV alternate language 2</TD>
310 </TABLE>
312 <H3>Reading Images</H3>
313 Each call to the <b>read</b> syscall returns the next available image from
314 the device. It is up to the caller to set the format and then to pass a
315 suitable size buffer and length to the function. Not all devices will support
316 read operations.
318 A second way to handle image capture is via the mmap interface if supported.
319 To use the mmap interface a user first sets the desired image size and depth
320 properties. Next the VIDIOCGMBUF ioctl is issued. This reports the size
321 of buffer to mmap and the offset within the buffer for each frame. The
322 number of frames supported is device dependent and may only be one.
324 The video_mbuf structure contains the following fields
326 <TABLE>
327 <TR><TD><b>size</b><TD>The number of bytes to map</TD>
328 <TR><TD><b>frames</b><TD>The number of frames</TD>
329 <TR><TD><b>offsets</b><TD>The offset of each frame</TD>
330 </TABLE>
332 Once the mmap has been made the VIDIOCMCAPTURE ioctl sets the image size
333 you wish to use (which should match or be below the initial query size).
334 Having done so it will begin capturing to the memory mapped buffer. Whenever
335 a buffer is "used" by the program it should called VIDIOCSYNC to free this
336 frame up and continue. <em>to add:</em>VIDIOCSYNC takes the frame number
337 you are freeing as its argument. When the buffer is unmapped or all the
338 buffers are full capture ceases. While capturing to memory the driver will
339 make a "best effort" attempt to capture to screen as well if requested. This
340 normally means all frames that "miss" memory mapped capture will go to the
341 display.
343 A final ioctl exists to allow a device to obtain related devices if a
344 driver has multiple components (for example video0 may not be associated
345 with vbi0 which would cause an intercast display program to make a bad
346 mistake). The VIDIOCGUNIT ioctl reports the unit numbers of the associated
347 devices if any exist. The video_unit structure has the following fields.
349 <TABLE>
350 <TR><TD><b>video</b><TD>Video capture device</TD>
351 <TR><TD><b>vbi</b><TD>VBI capture device</TD>
352 <TR><TD><b>radio</b><TD>Radio device</TD>
353 <TR><TD><b>audio</b><TD>Audio mixer</TD>
354 <TR><TD><b>teletext</b><TD>Teletext device</TD>
355 </TABLE>
357 <H3>RDS Datastreams</H3>
358 For radio devices that support it, it is possible to receive Radio Data
359 System (RDS) data by means of a read() on the device. The data is packed in
360 groups of three, as follows:
361 <TABLE>
362 <TR><TD>First Octet</TD><TD>Least Siginificant Byte of RDS Block</TD></TR>
363 <TR><TD>Second Octet</TD><TD>Most Siginificant Byte of RDS Block
364 <TR><TD>Third Octet</TD><TD>Bit 7:</TD><TD>Error bit. Indicates that
365 an uncorrectable error occured during reception of this block.</TD></TR>
366 <TR><TD>&nbsp;</TD><TD>Bit 6:</TD><TD>Corrected bit. Indicates that
367 an error was corrected for this data block.</TD></TR>
368 <TR><TD>&nbsp;</TD><TD>Bits 5-3:</TD><TD>Reeived Offset. Indicates the
369 offset received by the sync system.</TD></TR>
370 <TR><TD>&nbsp;</TD><TD>Bits 2-0:</TD><TD>Offset Name. Indicates the
371 offset applied to this data.</TD></TR>
372 </TABLE>
373 </BODY>
374 </HTML>