2 * linux/include/asm-arm/proc-armo/pgtable.h
4 * Copyright (C) 1995, 1996 Russell King
5 * Modified 18/19-Oct-1997 for two-level page table
7 #ifndef __ASM_PROC_PGTABLE_H
8 #define __ASM_PROC_PGTABLE_H
10 #include <linux/config.h>
11 #include <linux/slab.h>
12 #include <asm/arch/memory.h> /* For TASK_SIZE */
14 #define LIBRARY_TEXT_START 0x0c000000
19 #define flush_cache_all() do { } while (0)
20 #define flush_cache_mm(mm) do { } while (0)
21 #define flush_cache_range(mm,start,end) do { } while (0)
22 #define flush_cache_page(vma,vmaddr) do { } while (0)
23 #define flush_page_to_ram(page) do { } while (0)
24 #define flush_icache_range(start,end) do { } while (0)
29 * - flush_tlb() flushes the current mm struct TLBs
30 * - flush_tlb_all() flushes all processes TLBs
31 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
32 * - flush_tlb_page(vma, vmaddr) flushes one page
33 * - flush_tlb_range(mm, start, end) flushes a range of pages
35 #define flush_tlb() do { } while (0)
36 #define flush_tlb_all() do { } while (0)
37 #define flush_tlb_mm(mm) do { } while (0)
38 #define flush_tlb_range(mm, start, end) do { } while (0)
39 #define flush_tlb_page(vma, vmaddr) do { } while (0)
42 * We have a mem map cache...
44 extern __inline__
void update_memc_all(void)
46 struct task_struct
*p
;
50 processor
.u
.armv2
._update_map(p
);
52 } while (p
!= &init_task
);
54 processor
.u
.armv2
._remap_memc (current
);
57 extern __inline__
void update_memc_task(struct task_struct
*tsk
)
59 processor
.u
.armv2
._update_map(tsk
);
62 processor
.u
.armv2
._remap_memc (tsk
);
65 extern __inline__
void update_memc_mm(struct mm_struct
*mm
)
67 struct task_struct
*p
;
72 processor
.u
.armv2
._update_map(p
);
74 } while (p
!= &init_task
);
76 if (current
->mm
== mm
)
77 processor
.u
.armv2
._remap_memc (current
);
80 extern __inline__
void update_memc_addr(struct mm_struct
*mm
, unsigned long addr
, pte_t pte
)
82 struct task_struct
*p
;
87 processor
.u
.armv2
._update_mmu_cache(p
, addr
, pte
);
89 } while (p
!= &init_task
);
91 if (current
->mm
== mm
)
92 processor
.u
.armv2
._remap_memc (current
);
95 #define __flush_entry_to_ram(entry)
97 /* PMD_SHIFT determines the size of the area a second-level page table can map */
99 #define PMD_SIZE (1UL << PMD_SHIFT)
100 #define PMD_MASK (~(PMD_SIZE-1))
102 /* PGDIR_SHIFT determines what a third-level page table entry can map */
103 #define PGDIR_SHIFT 20
104 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
105 #define PGDIR_MASK (~(PGDIR_SIZE-1))
108 * entries per page directory level: the arm3 is one-level, so
109 * we don't really have any PMD or PTE directory physically.
111 * 18-Oct-1997 RMK Now two-level (32x32)
113 #define PTRS_PER_PTE 32
114 #define PTRS_PER_PMD 1
115 #define PTRS_PER_PGD 32
116 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
118 #define VMALLOC_START 0x01a00000
119 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
120 #define VMALLOC_END 0x01c00000
122 #define _PAGE_PRESENT 0x01
123 #define _PAGE_READONLY 0x02
124 #define _PAGE_NOT_USER 0x04
125 #define _PAGE_OLD 0x08
126 #define _PAGE_CLEAN 0x10
128 #define _PAGE_TABLE (_PAGE_PRESENT)
129 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_OLD | _PAGE_CLEAN)
131 /* -- present -- -- !dirty -- --- !write --- ---- !user --- */
132 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY | _PAGE_NOT_USER)
133 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_CLEAN )
134 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY )
135 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY )
136 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_NOT_USER)
139 * The arm can't do page protection for execute, and considers that the same are read.
140 * Also, write permissions imply read permissions. This is the closest we can get..
142 #define __P000 PAGE_NONE
143 #define __P001 PAGE_READONLY
144 #define __P010 PAGE_COPY
145 #define __P011 PAGE_COPY
146 #define __P100 PAGE_READONLY
147 #define __P101 PAGE_READONLY
148 #define __P110 PAGE_COPY
149 #define __P111 PAGE_COPY
151 #define __S000 PAGE_NONE
152 #define __S001 PAGE_READONLY
153 #define __S010 PAGE_SHARED
154 #define __S011 PAGE_SHARED
155 #define __S100 PAGE_READONLY
156 #define __S101 PAGE_READONLY
157 #define __S110 PAGE_SHARED
158 #define __S111 PAGE_SHARED
160 #undef TEST_VERIFY_AREA
162 extern unsigned long *empty_zero_page
;
165 * BAD_PAGETABLE is used when we need a bogus page-table, while
166 * BAD_PAGE is used for a bogus page.
168 * ZERO_PAGE is a global shared page that is always zero: used
169 * for zero-mapped memory areas etc..
171 extern pte_t
__bad_page(void);
172 extern pte_t
*__bad_pagetable(void);
174 #define BAD_PAGETABLE __bad_pagetable()
175 #define BAD_PAGE __bad_page()
176 #define ZERO_PAGE(vaddr) ((unsigned long) empty_zero_page)
178 /* number of bits that fit into a memory pointer */
179 #define BYTES_PER_PTR (sizeof(unsigned long))
180 #define BITS_PER_PTR (8*BYTES_PER_PTR)
182 /* to align the pointer to a pointer address */
183 #define PTR_MASK (~(sizeof(void*)-1))
185 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
186 #define SIZEOF_PTR_LOG2 2
188 /* to find an entry in a page-table */
189 #define PAGE_PTR(address) \
190 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
192 /* to set the page-dir */
193 #define SET_PAGE_DIR(tsk,pgdir) \
195 tsk->tss.memmap = (unsigned long)pgdir; \
196 processor.u.armv2._update_map(tsk); \
197 if ((tsk) == current) \
198 processor.u.armv2._remap_memc (current); \
201 extern unsigned long physical_start
;
202 extern unsigned long physical_end
;
204 #define pte_none(pte) (!pte_val(pte))
205 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
206 #define pte_clear(ptep) set_pte((ptep), __pte(0))
208 #define pmd_none(pmd) (!pmd_val(pmd))
209 #define pmd_bad(pmd) ((pmd_val(pmd) & 0xfc000002))
210 #define pmd_present(pmd) (pmd_val(pmd) & _PAGE_PRESENT)
211 #define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))
214 * The "pgd_xxx()" functions here are trivial for a folded two-level
215 * setup: the pgd is never bad, and a pmd always exists (as it's folded
216 * into the pgd entry)
218 #define pgd_none(pgd) (0)
219 #define pgd_bad(pgd) (0)
220 #define pgd_present(pgd) (1)
221 #define pgd_clear(pgdp)
224 * The following only work if pte_present() is true.
225 * Undefined behaviour if not..
227 extern inline int pte_read(pte_t pte
) { return !(pte_val(pte
) & _PAGE_NOT_USER
); }
228 extern inline int pte_write(pte_t pte
) { return !(pte_val(pte
) & _PAGE_READONLY
); }
229 extern inline int pte_exec(pte_t pte
) { return !(pte_val(pte
) & _PAGE_NOT_USER
); }
230 extern inline int pte_dirty(pte_t pte
) { return !(pte_val(pte
) & _PAGE_CLEAN
); }
231 extern inline int pte_young(pte_t pte
) { return !(pte_val(pte
) & _PAGE_OLD
); }
232 #define pte_cacheable(pte) 1
234 extern inline pte_t
pte_nocache(pte_t pte
) { return pte
; }
235 extern inline pte_t
pte_wrprotect(pte_t pte
) { pte_val(pte
) |= _PAGE_READONLY
; return pte
; }
236 extern inline pte_t
pte_rdprotect(pte_t pte
) { pte_val(pte
) |= _PAGE_NOT_USER
; return pte
; }
237 extern inline pte_t
pte_exprotect(pte_t pte
) { pte_val(pte
) |= _PAGE_NOT_USER
; return pte
; }
238 extern inline pte_t
pte_mkclean(pte_t pte
) { pte_val(pte
) |= _PAGE_CLEAN
; return pte
; }
239 extern inline pte_t
pte_mkold(pte_t pte
) { pte_val(pte
) |= _PAGE_OLD
; return pte
; }
241 extern inline pte_t
pte_mkwrite(pte_t pte
) { pte_val(pte
) &= ~_PAGE_READONLY
; return pte
; }
242 extern inline pte_t
pte_mkread(pte_t pte
) { pte_val(pte
) &= ~_PAGE_NOT_USER
; return pte
; }
243 extern inline pte_t
pte_mkexec(pte_t pte
) { pte_val(pte
) &= ~_PAGE_NOT_USER
; return pte
; }
244 extern inline pte_t
pte_mkdirty(pte_t pte
) { pte_val(pte
) &= ~_PAGE_CLEAN
; return pte
; }
245 extern inline pte_t
pte_mkyoung(pte_t pte
) { pte_val(pte
) &= ~_PAGE_OLD
; return pte
; }
248 * Conversion functions: convert a page and protection to a page entry,
249 * and a page entry and page directory to the page they refer to.
251 extern __inline__ pte_t
mk_pte(unsigned long page
, pgprot_t pgprot
)
254 pte_val(pte
) = __virt_to_phys(page
) | pgprot_val(pgprot
);
258 /* This takes a physical page address that is used by the remapping functions */
259 extern __inline__ pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
262 pte_val(pte
) = physpage
+ pgprot_val(pgprot
);
266 extern __inline__ pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
268 pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
);
272 /* Certain architectures need to do special things when pte's
273 * within a page table are directly modified. Thus, the following
274 * hook is made available.
276 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
278 extern __inline__
unsigned long pte_page(pte_t pte
)
280 return __phys_to_virt(pte_val(pte
) & PAGE_MASK
);
283 extern __inline__ pmd_t
mk_pmd(pte_t
*ptep
)
286 pmd_val(pmd
) = __virt_to_phys((unsigned long)ptep
) | _PAGE_TABLE
;
290 /* these are aliases for the above function */
291 #define mk_user_pmd(ptep) mk_pmd(ptep)
292 #define mk_kernel_pmd(ptep) mk_pmd(ptep)
294 #define set_pmd(pmdp,pmd) ((*(pmdp)) = (pmd))
296 extern __inline__
unsigned long pmd_page(pmd_t pmd
)
298 return __phys_to_virt(pmd_val(pmd
) & ~_PAGE_TABLE
);
301 /* to find an entry in a kernel page-table-directory */
302 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
304 /* to find an entry in a page-table-directory */
305 extern __inline__ pgd_t
* pgd_offset(struct mm_struct
* mm
, unsigned long address
)
307 return mm
->pgd
+ (address
>> PGDIR_SHIFT
);
310 /* Find an entry in the second-level page table.. */
311 #define pmd_offset(dir, address) ((pmd_t *)(dir))
313 /* Find an entry in the third-level page table.. */
314 extern __inline__ pte_t
* pte_offset(pmd_t
*dir
, unsigned long address
)
316 return (pte_t
*)pmd_page(*dir
) + ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
320 * Allocate and free page tables. The xxx_kernel() versions are
321 * used to allocate a kernel page table - this turns on ASN bits
326 #ifndef CONFIG_NO_PGT_CACHE
327 extern struct pgtable_cache_struct
{
328 unsigned long *pgd_cache
;
329 unsigned long *pte_cache
;
330 unsigned long pgtable_cache_sz
;
333 #define pmd_quicklist ((unsigned long *)0)
334 #define pte_quicklist (quicklists.pte_cache)
335 #define pgd_quicklist (quicklists.pgd_cache)
336 #define pgtable_cache_size (quicklists.pgtable_cache_sz)
340 #error Pgtable caches have to be per-CPU, so that no locking is needed.
343 extern pgd_t
*get_pgd_slow(void);
344 extern void free_table(void *table
);
346 #ifndef CONFIG_NO_PGT_CACHE
347 extern __inline__ pgd_t
*get_pgd_fast(void)
351 if((ret
= pgd_quicklist
) != NULL
) {
352 pgd_quicklist
= (unsigned long *)(*ret
);
354 pgtable_cache_size
--;
356 ret
= (unsigned long *)get_pgd_slow();
360 extern __inline__
void free_pgd_fast(pgd_t
*pgd
)
362 *(unsigned long *)pgd
= (unsigned long) pgd_quicklist
;
363 pgd_quicklist
= (unsigned long *) pgd
;
364 pgtable_cache_size
++;
368 /* keep this as an inline so we get type checking */
369 extern __inline__
void free_pgd_slow(pgd_t
*pgd
)
371 free_table((void *)pgd
);
374 extern pte_t
*get_pte_slow(pmd_t
*pmd
, unsigned long address_preadjusted
);
376 #ifndef CONFIG_NO_PGT_CACHE
377 extern __inline__ pte_t
*get_pte_fast(void)
381 if((ret
= (unsigned long *)pte_quicklist
) != NULL
) {
382 pte_quicklist
= (unsigned long *)(*ret
);
384 pgtable_cache_size
--;
389 extern __inline__
void free_pte_fast(pte_t
*pte
)
391 *(unsigned long *)pte
= (unsigned long) pte_quicklist
;
392 pte_quicklist
= (unsigned long *) pte
;
393 pgtable_cache_size
++;
397 /* keep this as an inline so we get type checking */
398 extern __inline__
void free_pte_slow(pte_t
*pte
)
400 free_table((void *)pte
);
403 /* We don't use pmd cache, so this is a dummy routine */
404 extern __inline__ pmd_t
*get_pmd_fast(void)
409 extern __inline__
void free_pmd_fast(pmd_t
*pmd
)
413 extern __inline__
void free_pmd_slow(pmd_t
*pmd
)
417 extern void __bad_pmd(pmd_t
*pmd
);
418 extern void __bad_pmd_kernel(pmd_t
*pmd
);
420 #ifdef CONFIG_NO_PGT_CACHE
421 #define pte_free_kernel(pte) free_pte_slow(pte)
422 #define pte_free(pte) free_pte_slow(pte)
423 #define pgd_free(pgd) free_pgd_slow(pgd)
424 #define pgd_alloc() get_pgd_slow()
426 extern __inline__ pte_t
*pte_alloc(pmd_t
* pmd
, unsigned long address
)
428 address
= (address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
430 if (pmd_none (*pmd
)) {
431 return get_pte_slow(pmd
, address
);
433 if (pmd_bad (*pmd
)) {
437 return (pte_t
*) pmd_page(*pmd
) + address
;
440 #define pte_free_kernel(pte) free_pte_fast(pte)
441 #define pte_free(pte) free_pte_fast(pte)
442 #define pgd_free(pgd) free_pgd_fast(pgd)
443 #define pgd_alloc() get_pgd_fast()
445 extern __inline__ pte_t
*pte_alloc(pmd_t
* pmd
, unsigned long address
)
447 address
= (address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
449 if (pmd_none (*pmd
)) {
450 pte_t
*page
= (pte_t
*) get_pte_fast();
453 return get_pte_slow(pmd
, address
);
454 set_pmd(pmd
, mk_pmd(page
));
455 return page
+ address
;
457 if (pmd_bad (*pmd
)) {
461 return (pte_t
*) pmd_page(*pmd
) + address
;
466 * allocating and freeing a pmd is trivial: the 1-entry pmd is
467 * inside the pgd, so has no extra memory associated with it.
469 extern __inline__
void pmd_free(pmd_t
*pmd
)
473 extern __inline__ pmd_t
*pmd_alloc(pgd_t
*pgd
, unsigned long address
)
475 return (pmd_t
*) pgd
;
478 #define pmd_free_kernel pmd_free
479 #define pmd_alloc_kernel pmd_alloc
480 #define pte_alloc_kernel pte_alloc
482 extern __inline__
void set_pgdir(unsigned long address
, pgd_t entry
)
484 struct task_struct
* p
;
486 read_lock(&tasklist_lock
);
490 *pgd_offset(p
->mm
,address
) = entry
;
492 read_unlock(&tasklist_lock
);
493 #ifndef CONFIG_NO_PGT_CACHE
496 for (pgd
= (pgd_t
*)pgd_quicklist
; pgd
;
497 pgd
= (pgd_t
*)*(unsigned long *)pgd
)
498 pgd
[address
>> PGDIR_SHIFT
] = entry
;
503 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
505 #define update_mmu_cache(vma,address,pte)
507 #define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
508 #define SWP_OFFSET(entry) ((entry) >> 8)
509 #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
511 #endif /* __ASM_PROC_PAGE_H */