* better
[mascara-docs.git] / i386 / linux-2.3.21 / net / sched / sch_sfq.c
blobc9a4bea68710c5e1026db28e90e0da719c4016da
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <asm/uaccess.h>
15 #include <asm/system.h>
16 #include <asm/bitops.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/socket.h>
23 #include <linux/sockios.h>
24 #include <linux/in.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/if_ether.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 #include <net/ip.h>
34 #include <linux/ipv6.h>
35 #include <net/route.h>
36 #include <linux/skbuff.h>
37 #include <net/sock.h>
38 #include <net/pkt_sched.h>
41 /* Stochastic Fairness Queuing algorithm.
42 =======================================
44 Source:
45 Paul E. McKenney "Stochastic Fairness Queuing",
46 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
48 Paul E. McKenney "Stochastic Fairness Queuing",
49 "Interworking: Research and Experience", v.2, 1991, p.113-131.
52 See also:
53 M. Shreedhar and George Varghese "Efficient Fair
54 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
57 This is not the thing that is usually called (W)FQ nowadays.
58 It does not use any timestamp mechanism, but instead
59 processes queues in round-robin order.
61 ADVANTAGE:
63 - It is very cheap. Both CPU and memory requirements are minimal.
65 DRAWBACKS:
67 - "Stochastic" -> It is not 100% fair.
68 When hash collisions occur, several flows are considered as one.
70 - "Round-robin" -> It introduces larger delays than virtual clock
71 based schemes, and should not be used for isolating interactive
72 traffic from non-interactive. It means, that this scheduler
73 should be used as leaf of CBQ or P3, which put interactive traffic
74 to higher priority band.
76 We still need true WFQ for top level CSZ, but using WFQ
77 for the best effort traffic is absolutely pointless:
78 SFQ is superior for this purpose.
80 IMPLEMENTATION:
81 This implementation limits maximal queue length to 128;
82 maximal mtu to 2^15-1; number of hash buckets to 1024.
83 The only goal of this restrictions was that all data
84 fit into one 4K page :-). Struct sfq_sched_data is
85 organized in anti-cache manner: all the data for a bucket
86 are scattered over different locations. This is not good,
87 but it allowed me to put it into 4K.
89 It is easy to increase these values, but not in flight. */
91 #define SFQ_DEPTH 128
92 #define SFQ_HASH_DIVISOR 1024
94 /* This type should contain at least SFQ_DEPTH*2 values */
95 typedef unsigned char sfq_index;
97 struct sfq_head
99 sfq_index next;
100 sfq_index prev;
103 struct sfq_sched_data
105 /* Parameters */
106 int perturb_period;
107 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
109 /* Variables */
110 struct timer_list perturb_timer;
111 int perturbation;
112 sfq_index tail; /* Index of current slot in round */
113 sfq_index max_depth; /* Maximal depth */
115 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
116 sfq_index next[SFQ_DEPTH]; /* Active slots link */
117 short allot[SFQ_DEPTH]; /* Current allotment per slot */
118 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
119 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
120 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
123 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
125 int pert = q->perturbation;
127 /* Have we any rotation primitives? If not, WHY? */
128 h ^= (h1<<pert) ^ (h1>>(0x1F - pert));
129 h ^= h>>10;
130 return h & 0x3FF;
133 #ifndef IPPROTO_ESP
134 #define IPPROTO_ESP 50
135 #endif
137 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
139 u32 h, h2;
141 switch (skb->protocol) {
142 case __constant_htons(ETH_P_IP):
144 struct iphdr *iph = skb->nh.iph;
145 h = iph->daddr;
146 h2 = iph->saddr^iph->protocol;
147 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
148 (iph->protocol == IPPROTO_TCP ||
149 iph->protocol == IPPROTO_UDP ||
150 iph->protocol == IPPROTO_ESP))
151 h2 ^= *(((u32*)iph) + iph->ihl);
152 break;
154 case __constant_htons(ETH_P_IPV6):
156 struct ipv6hdr *iph = skb->nh.ipv6h;
157 h = iph->daddr.s6_addr32[3];
158 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr;
159 if (iph->nexthdr == IPPROTO_TCP ||
160 iph->nexthdr == IPPROTO_UDP ||
161 iph->nexthdr == IPPROTO_ESP)
162 h2 ^= *(u32*)&iph[1];
163 break;
165 default:
166 h = (u32)(unsigned long)skb->dst^skb->protocol;
167 h2 = (u32)(unsigned long)skb->sk;
169 return sfq_fold_hash(q, h, h2);
172 extern __inline__ void sfq_link(struct sfq_sched_data *q, sfq_index x)
174 sfq_index p, n;
175 int d = q->qs[x].qlen + SFQ_DEPTH;
177 p = d;
178 n = q->dep[d].next;
179 q->dep[x].next = n;
180 q->dep[x].prev = p;
181 q->dep[p].next = q->dep[n].prev = x;
184 extern __inline__ void sfq_dec(struct sfq_sched_data *q, sfq_index x)
186 sfq_index p, n;
188 n = q->dep[x].next;
189 p = q->dep[x].prev;
190 q->dep[p].next = n;
191 q->dep[n].prev = p;
193 if (n == p && q->max_depth == q->qs[x].qlen + 1)
194 q->max_depth--;
196 sfq_link(q, x);
199 extern __inline__ void sfq_inc(struct sfq_sched_data *q, sfq_index x)
201 sfq_index p, n;
202 int d;
204 n = q->dep[x].next;
205 p = q->dep[x].prev;
206 q->dep[p].next = n;
207 q->dep[n].prev = p;
208 d = q->qs[x].qlen;
209 if (q->max_depth < d)
210 q->max_depth = d;
212 sfq_link(q, x);
215 static int sfq_drop(struct Qdisc *sch)
217 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
218 sfq_index d = q->max_depth;
219 struct sk_buff *skb;
221 /* Queue is full! Find the longest slot and
222 drop a packet from it */
224 if (d > 1) {
225 sfq_index x = q->dep[d+SFQ_DEPTH].next;
226 skb = q->qs[x].prev;
227 __skb_unlink(skb, &q->qs[x]);
228 kfree_skb(skb);
229 sfq_dec(q, x);
230 sch->q.qlen--;
231 sch->stats.drops++;
232 return 1;
235 if (d == 1) {
236 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
237 d = q->next[q->tail];
238 q->next[q->tail] = q->next[d];
239 q->allot[q->next[d]] += q->quantum;
240 skb = q->qs[d].prev;
241 __skb_unlink(skb, &q->qs[d]);
242 kfree_skb(skb);
243 sfq_dec(q, d);
244 sch->q.qlen--;
245 q->ht[q->hash[d]] = SFQ_DEPTH;
246 sch->stats.drops++;
247 return 1;
250 return 0;
253 static int
254 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch)
256 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
257 unsigned hash = sfq_hash(q, skb);
258 sfq_index x;
260 x = q->ht[hash];
261 if (x == SFQ_DEPTH) {
262 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
263 q->hash[x] = hash;
265 __skb_queue_tail(&q->qs[x], skb);
266 sfq_inc(q, x);
267 if (q->qs[x].qlen == 1) { /* The flow is new */
268 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
269 q->tail = x;
270 q->next[x] = x;
271 q->allot[x] = q->quantum;
272 } else {
273 q->next[x] = q->next[q->tail];
274 q->next[q->tail] = x;
275 q->tail = x;
278 if (++sch->q.qlen < SFQ_DEPTH-1) {
279 sch->stats.bytes += skb->len;
280 sch->stats.packets++;
281 return 0;
284 sfq_drop(sch);
285 return NET_XMIT_CN;
288 static int
289 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch)
291 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
292 unsigned hash = sfq_hash(q, skb);
293 sfq_index x;
295 x = q->ht[hash];
296 if (x == SFQ_DEPTH) {
297 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
298 q->hash[x] = hash;
300 __skb_queue_head(&q->qs[x], skb);
301 sfq_inc(q, x);
302 if (q->qs[x].qlen == 1) { /* The flow is new */
303 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
304 q->tail = x;
305 q->next[x] = x;
306 q->allot[x] = q->quantum;
307 } else {
308 q->next[x] = q->next[q->tail];
309 q->next[q->tail] = x;
310 q->tail = x;
313 if (++sch->q.qlen < SFQ_DEPTH-1)
314 return 0;
316 sch->stats.drops++;
317 sfq_drop(sch);
318 return NET_XMIT_CN;
324 static struct sk_buff *
325 sfq_dequeue(struct Qdisc* sch)
327 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
328 struct sk_buff *skb;
329 sfq_index a, old_a;
331 /* No active slots */
332 if (q->tail == SFQ_DEPTH)
333 return NULL;
335 a = old_a = q->next[q->tail];
337 /* Grab packet */
338 skb = __skb_dequeue(&q->qs[a]);
339 sfq_dec(q, a);
340 sch->q.qlen--;
342 /* Is the slot empty? */
343 if (q->qs[a].qlen == 0) {
344 a = q->next[a];
345 if (a == old_a) {
346 q->tail = SFQ_DEPTH;
347 return skb;
349 q->next[q->tail] = a;
350 q->allot[a] += q->quantum;
351 } else if ((q->allot[a] -= skb->len) <= 0) {
352 q->tail = a;
353 a = q->next[a];
354 q->allot[a] += q->quantum;
356 return skb;
359 static void
360 sfq_reset(struct Qdisc* sch)
362 struct sk_buff *skb;
364 while ((skb = sfq_dequeue(sch)) != NULL)
365 kfree_skb(skb);
368 static void sfq_perturbation(unsigned long arg)
370 struct Qdisc *sch = (struct Qdisc*)arg;
371 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
373 q->perturbation = net_random()&0x1F;
374 q->perturb_timer.expires = jiffies + q->perturb_period;
376 if (q->perturb_period) {
377 q->perturb_timer.expires = jiffies + q->perturb_period;
378 add_timer(&q->perturb_timer);
382 static int sfq_change(struct Qdisc *sch, struct rtattr *opt)
384 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
385 struct tc_sfq_qopt *ctl = RTA_DATA(opt);
387 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))
388 return -EINVAL;
390 sch_tree_lock(sch);
391 q->quantum = ctl->quantum ? : psched_mtu(sch->dev);
392 q->perturb_period = ctl->perturb_period*HZ;
394 del_timer(&q->perturb_timer);
395 if (q->perturb_period) {
396 q->perturb_timer.expires = jiffies + q->perturb_period;
397 add_timer(&q->perturb_timer);
399 sch_tree_unlock(sch);
400 return 0;
403 static int sfq_init(struct Qdisc *sch, struct rtattr *opt)
405 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
406 int i;
408 q->perturb_timer.data = (unsigned long)sch;
409 q->perturb_timer.function = sfq_perturbation;
410 init_timer(&q->perturb_timer);
412 for (i=0; i<SFQ_HASH_DIVISOR; i++)
413 q->ht[i] = SFQ_DEPTH;
414 for (i=0; i<SFQ_DEPTH; i++) {
415 skb_queue_head_init(&q->qs[i]);
416 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH;
417 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH;
419 q->max_depth = 0;
420 q->tail = SFQ_DEPTH;
421 if (opt == NULL) {
422 q->quantum = psched_mtu(sch->dev);
423 q->perturb_period = 0;
424 } else {
425 int err = sfq_change(sch, opt);
426 if (err)
427 return err;
429 for (i=0; i<SFQ_DEPTH; i++)
430 sfq_link(q, i);
431 MOD_INC_USE_COUNT;
432 return 0;
435 static void sfq_destroy(struct Qdisc *sch)
437 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
438 del_timer(&q->perturb_timer);
439 MOD_DEC_USE_COUNT;
442 #ifdef CONFIG_RTNETLINK
443 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
445 struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
446 unsigned char *b = skb->tail;
447 struct tc_sfq_qopt opt;
449 opt.quantum = q->quantum;
450 opt.perturb_period = q->perturb_period/HZ;
452 opt.limit = SFQ_DEPTH;
453 opt.divisor = SFQ_HASH_DIVISOR;
454 opt.flows = SFQ_DEPTH;
456 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
458 return skb->len;
460 rtattr_failure:
461 skb_trim(skb, b - skb->data);
462 return -1;
464 #endif
466 struct Qdisc_ops sfq_qdisc_ops =
468 NULL,
469 NULL,
470 "sfq",
471 sizeof(struct sfq_sched_data),
473 sfq_enqueue,
474 sfq_dequeue,
475 sfq_requeue,
476 sfq_drop,
478 sfq_init,
479 sfq_reset,
480 sfq_destroy,
481 NULL, /* sfq_change */
483 #ifdef CONFIG_RTNETLINK
484 sfq_dump,
485 #endif
488 #ifdef MODULE
489 int init_module(void)
491 return register_qdisc(&sfq_qdisc_ops);
494 void cleanup_module(void)
496 unregister_qdisc(&sfq_qdisc_ops);
498 #endif