* added 0.99 linux version
[mascara-docs.git] / i386 / linux / linux-2.3.21 / arch / ppc / kernel / chrp_time.c
blob50c7417fb7c3dd645a79f186842537a66d161895
1 /*
2 * linux/arch/i386/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
6 * Adapted for PowerPC (PreP) by Gary Thomas
7 * Modified by Cort Dougan (cort@cs.nmt.edu)
8 * copied and modified from intel version
11 #include <linux/errno.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/param.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/timex.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/init.h>
23 #include <asm/segment.h>
24 #include <asm/io.h>
25 #include <asm/processor.h>
26 #include <asm/nvram.h>
27 #include <asm/prom.h>
28 #include "time.h"
30 static int nvram_as1 = NVRAM_AS1;
31 static int nvram_as0 = NVRAM_AS0;
32 static int nvram_data = NVRAM_DATA;
34 void __init chrp_time_init(void)
36 struct device_node *rtcs;
37 int base;
39 rtcs = find_compatible_devices("rtc", "pnpPNP,b00");
40 if (rtcs == NULL || rtcs->addrs == NULL)
41 return;
42 base = rtcs->addrs[0].address;
43 nvram_as1 = 0;
44 nvram_as0 = base;
45 nvram_data = base + 1;
48 int chrp_cmos_clock_read(int addr)
50 if (nvram_as1 != 0)
51 outb(addr>>8, nvram_as1);
52 outb(addr, nvram_as0);
53 return (inb(nvram_data));
56 void chrp_cmos_clock_write(unsigned long val, int addr)
58 if (nvram_as1 != 0)
59 outb(addr>>8, nvram_as1);
60 outb(addr, nvram_as0);
61 outb(val, nvram_data);
62 return;
66 * Set the hardware clock. -- Cort
68 int chrp_set_rtc_time(unsigned long nowtime)
70 unsigned char save_control, save_freq_select;
71 struct rtc_time tm;
73 to_tm(nowtime, &tm);
75 save_control = chrp_cmos_clock_read(RTC_CONTROL); /* tell the clock it's being set */
77 chrp_cmos_clock_write((save_control|RTC_SET), RTC_CONTROL);
79 save_freq_select = chrp_cmos_clock_read(RTC_FREQ_SELECT); /* stop and reset prescaler */
81 chrp_cmos_clock_write((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
83 tm.tm_year -= 1900;
84 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
85 BIN_TO_BCD(tm.tm_sec);
86 BIN_TO_BCD(tm.tm_min);
87 BIN_TO_BCD(tm.tm_hour);
88 BIN_TO_BCD(tm.tm_mon);
89 BIN_TO_BCD(tm.tm_mday);
90 BIN_TO_BCD(tm.tm_year);
92 chrp_cmos_clock_write(tm.tm_sec,RTC_SECONDS);
93 chrp_cmos_clock_write(tm.tm_min,RTC_MINUTES);
94 chrp_cmos_clock_write(tm.tm_hour,RTC_HOURS);
95 chrp_cmos_clock_write(tm.tm_mon,RTC_MONTH);
96 chrp_cmos_clock_write(tm.tm_mday,RTC_DAY_OF_MONTH);
97 chrp_cmos_clock_write(tm.tm_year,RTC_YEAR);
99 /* The following flags have to be released exactly in this order,
100 * otherwise the DS12887 (popular MC146818A clone with integrated
101 * battery and quartz) will not reset the oscillator and will not
102 * update precisely 500 ms later. You won't find this mentioned in
103 * the Dallas Semiconductor data sheets, but who believes data
104 * sheets anyway ... -- Markus Kuhn
106 chrp_cmos_clock_write(save_control, RTC_CONTROL);
107 chrp_cmos_clock_write(save_freq_select, RTC_FREQ_SELECT);
109 if ( (time_state == TIME_ERROR) || (time_state == TIME_BAD) )
110 time_state = TIME_OK;
111 return 0;
114 unsigned long chrp_get_rtc_time(void)
116 unsigned int year, mon, day, hour, min, sec;
117 int i;
119 /* The Linux interpretation of the CMOS clock register contents:
120 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
121 * RTC registers show the second which has precisely just started.
122 * Let's hope other operating systems interpret the RTC the same way.
124 /* read RTC exactly on falling edge of update flag */
125 for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
126 if (chrp_cmos_clock_read(RTC_FREQ_SELECT) & RTC_UIP)
127 break;
128 for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
129 if (!(chrp_cmos_clock_read(RTC_FREQ_SELECT) & RTC_UIP))
130 break;
131 do { /* Isn't this overkill ? UIP above should guarantee consistency */
132 sec = chrp_cmos_clock_read(RTC_SECONDS);
133 min = chrp_cmos_clock_read(RTC_MINUTES);
134 hour = chrp_cmos_clock_read(RTC_HOURS);
135 day = chrp_cmos_clock_read(RTC_DAY_OF_MONTH);
136 mon = chrp_cmos_clock_read(RTC_MONTH);
137 year = chrp_cmos_clock_read(RTC_YEAR);
138 } while (sec != chrp_cmos_clock_read(RTC_SECONDS));
139 if (!(chrp_cmos_clock_read(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
141 BCD_TO_BIN(sec);
142 BCD_TO_BIN(min);
143 BCD_TO_BIN(hour);
144 BCD_TO_BIN(day);
145 BCD_TO_BIN(mon);
146 BCD_TO_BIN(year);
148 if ((year += 1900) < 1970)
149 year += 100;
150 return mktime(year, mon, day, hour, min, sec);
154 void __init chrp_calibrate_decr(void)
156 struct device_node *cpu;
157 int *fp, divisor;
158 unsigned long freq;
160 if (via_calibrate_decr())
161 return;
164 * The cpu node should have a timebase-frequency property
165 * to tell us the rate at which the decrementer counts.
167 freq = 16666000; /* hardcoded default */
168 cpu = find_type_devices("cpu");
169 if (cpu != 0) {
170 fp = (int *) get_property(cpu, "timebase-frequency", NULL);
171 if (fp != 0)
172 freq = *fp;
174 freq *= 60; /* try to make freq/1e6 an integer */
175 divisor = 60;
176 printk("time_init: decrementer frequency = %lu/%d\n", freq, divisor);
177 decrementer_count = freq / HZ / divisor;
178 count_period_num = divisor;
179 count_period_den = freq / 1000000;