Fix the inefficient evaluation of translated predicates
[maxima.git] / src / bessel.lisp
blob719ce8ade91a775a3464d6bfa4dd4a07e3f22f1a
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 (in-package :maxima)
11 (declare-top (special $hypergeometric_representation))
13 ;; When non-NIL, the Bessel functions of half-integral order are
14 ;; expanded in terms of elementary functions.
16 (defmvar $besselexpand nil)
18 ;; When T Bessel functions with an integer order are reduced to order 0 and 1
19 (defmvar $bessel_reduce nil)
21 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23 ;;; Helper functions for this file
25 ;; If E is a maxima ratio with a denominator of DEN, return the ratio
26 ;; as a Lisp rational. Otherwise NIL.
27 (defun max-numeric-ratio-p (e den)
28 (if (and (listp e)
29 (eq 'rat (caar e))
30 (= den (third e))
31 (integerp (second e)))
32 (/ (second e) (third e))
33 nil))
35 (defun bessel-numerical-eval-p (order arg)
36 ;; Return non-NIL if we should numerically evaluate a bessel
37 ;; function. Basically, both args have to be numbers. If both args
38 ;; are integers, we don't evaluate unless $numer is true.
39 (or (and (numberp order) (complex-number-p arg)
40 (or (floatp order)
41 (floatp ($realpart arg))
42 (floatp ($imagpart arg))))
43 (and $numer (numberp order)
44 (complex-number-p arg))))
46 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
47 ;;;
48 ;;; Implementation of the Bessel J function
49 ;;;
50 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
52 (defmfun $bessel_j (v z)
53 (simplify (list '(%bessel_j) v z)))
55 ;; Bessel J distributes over lists, matrices, and equations
57 (defprop %bessel_j (mlist $matrix mequal) distribute_over)
59 ;; Derivatives of the Bessel function.
60 (defprop %bessel_j
61 ((n x)
62 ;; Derivative wrt to order n. A&S 9.1.64. Do we really want to
63 ;; do this? It's quite messy.
65 ;; J[n](x)*log(x/2)
66 ;; - (x/2)^n*sum((-1)^k*psi(n+k+1)/gamma(n+k+1)*(x^2/4)^k/k!,k,0,inf)
67 ((mplus)
68 ((mtimes)
69 ((%bessel_j) n x)
70 ((%log) ((mtimes) ((rat) 1 2) x)))
71 ((mtimes) -1
72 ((mexpt) ((mtimes) x ((rat) 1 2)) n)
73 ((%sum)
74 ((mtimes) ((mexpt) -1 $%k)
75 ((mexpt) ((mfactorial) $%k) -1)
76 ((mqapply) (($psi array) 0) ((mplus) 1 $%k n))
77 ((mexpt) ((%gamma) ((mplus) 1 $%k n)) -1)
78 ((mexpt) ((mtimes) x x ((rat) 1 4)) $%k))
79 $%k 0 $inf)))
81 ;; Derivative wrt to arg x.
82 ;; A&S 9.1.27; changed from 9.1.30 so that taylor works on Bessel functions
83 ((mtimes)
84 ((mplus)
85 ((%bessel_j) ((mplus) -1 n) x)
86 ((mtimes) -1 ((%bessel_j) ((mplus) 1 n) x)))
87 ((rat) 1 2)))
88 grad)
90 ;; Integral of the Bessel function wrt z
91 (defun bessel-j-integral-2 (v z)
92 (case v
93 (0
94 ;; integrate(bessel_j(0,z),z)
95 ;; = (1/2)*z*(%pi*bessel_j(1,z)*struve_h(0,z)
96 ;; +bessel_j(0,z)*(2-%pi*struve_h(1,z)))
97 `((mtimes) ((rat) 1 2) ,z
98 ((mplus)
99 ((mtimes) $%pi
100 ((%bessel_j) 1 ,z)
101 ((%struve_h) 0 ,z))
102 ((mtimes)
103 ((%bessel_j) 0 ,z)
104 ((mplus) 2 ((mtimes) -1 $%pi ((%struve_h) 1 ,z)))))))
106 ;; integrate(bessel_j(1,z),z) = -bessel_j(0,z)
107 `((mtimes) -1 ((%bessel_j) 0 ,z)))
108 (otherwise
109 ;; http://functions.wolfram.com/03.01.21.0002.01
110 ;; integrate(bessel_j(v,z),z)
111 ;; = 2^(-v-1)*z^(v+1)*gamma(v/2+1/2)
112 ;; * hypergeometric_regularized([v/2+1/2],[v+1,v/2+3/2],-z^2/4)
113 ;; = 2^(-v)*z^(v+1)*hypergeometric([v/2+1/2],[v+1,v/2+3/2],-z^2/4)
114 ;; / gamma(v+2)
115 `((mtimes)
116 (($hypergeometric)
117 ((mlist)
118 ((mplus) ((rat) 1 2) ((mtimes) ((rat) 1 2) ,v)))
119 ((mlist)
120 ((mplus) ((rat) 3 2) ((mtimes) ((rat) 1 2) ,v))
121 ((mplus) 1 ,v))
122 ((mtimes) ((rat) -1 4) ((mexpt) ,z 2)))
123 ((mexpt) 2 ((mtimes) -1 ,v))
124 ((mexpt) ((%gamma) ((mplus) 2 ,v)) -1)
125 ((mexpt) z ((mplus) 1 ,v))))))
127 (putprop '%bessel_j `((v z) nil ,#'bessel-j-integral-2) 'integral)
129 ;; Support a simplim%bessel_j function to handle specific limits
131 (defprop %bessel_j simplim%bessel_j simplim%function)
133 (defun simplim%bessel_j (expr var val)
134 ;; Look for the limit of the arguments.
135 (let ((v (limit (cadr expr) var val 'think))
136 (z (limit (caddr expr) var val 'think)))
137 (cond
138 ;; Handle an argument 0 at this place.
139 ((or (zerop1 z)
140 (eq z '$zeroa)
141 (eq z '$zerob))
142 (let ((sgn ($sign ($realpart v))))
143 (cond ((and (eq sgn '$neg)
144 (not (maxima-integerp v)))
145 ;; bessel_j(v,0), Re(v)<0 and v not an integer
146 '$infinity)
147 ((and (eq sgn '$zero)
148 (not (zerop1 v)))
149 ;; bessel_j(v,0), Re(v)=0 and v #0
150 '$und)
151 ;; Call the simplifier of the function.
152 (t (simplify (list '(%bessel_j) v z))))))
153 ((or (eq z '$inf)
154 (eq z '$minf))
155 ;; bessel_j(v,inf) or bessel_j(v,minf)
158 ;; All other cases are handled by the simplifier of the function.
159 (simplify (list '(%bessel_j) v z))))))
161 (def-simplifier bessel_j (order arg)
162 (let ((rat-order nil))
163 (cond
164 ((zerop1 arg)
165 ;; We handle the different case for zero arg carefully.
166 (let ((sgn ($sign ($realpart order))))
167 (cond ((and (eq sgn '$zero)
168 (zerop1 ($imagpart order)))
169 ;; bessel_j(0,0) = 1
170 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 1))
171 ((or (floatp order) (floatp arg)) 1.0)
172 (t 1)))
173 ((or (eq sgn '$pos)
174 (maxima-integerp order))
175 ;; bessel_j(v,0) and Re(v)>0 or v an integer
176 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 0))
177 ((or (floatp order) (floatp arg)) 0.0)
178 (t 0)))
179 ((and (eq sgn '$neg)
180 (not (maxima-integerp order)))
181 ;; bessel_j(v,0) and Re(v)<0 and v not an integer
182 (simp-domain-error
183 (intl:gettext "bessel_j: bessel_j(~:M,~:M) is undefined.")
184 order arg))
185 ((and (eq sgn '$zero)
186 (not (zerop1 ($imagpart order))))
187 ;; bessel_j(v,0) and Re(v)=0 and v # 0
188 (simp-domain-error
189 (intl:gettext "bessel_j: bessel_j(~:M,~:M) is undefined.")
190 order arg))
192 ;; No information about the sign of the order
193 (give-up)))))
195 ((complex-float-numerical-eval-p order arg)
196 ;; We have numeric order and arg and $numer is true, or we have either
197 ;; the order or arg being floating-point, so let's evaluate it
198 ;; numerically.
199 ;; The numerical routine bessel-j returns a CL number, so we have
200 ;; to add the conversion to a Maxima-complex-number.
201 (cond ((= 0 ($imagpart order))
202 ;; order is real, arg is real or complex
203 (complexify (bessel-j ($float order)
204 (complex ($float ($realpart arg))
205 ($float ($imagpart arg))))))
207 ;; order is complex, arg is real or complex
208 (let (($numer t)
209 ($float t)
210 (order ($float order))
211 (arg ($float arg)))
212 ($float
213 ($rectform
214 (bessel-j-hypergeometric order arg)))))))
216 ((or (bigfloat-numerical-eval-p order arg)
217 (complex-bigfloat-numerical-eval-p order arg))
218 ;; We have the order or arg being a bigfloat, so evaluate it
219 ;; numerically using the hypergeometric representation
220 ;; bessel_j.
221 (destructuring-bind (re . im)
222 (risplit order)
223 (cond ((and (zerop1 im)
224 (zerop1 (sub re (take '($floor) re)))
225 (mminusp re))
226 ;; bessel_j(-n,z) = (-1)^n*bessel_j(n,z)
227 ($rectform
228 (mul (power -1 re)
229 ($bfloat (bessel-j-hypergeometric (mul -1 re) arg)))))
231 ($rectform
232 ($bfloat (bessel-j-hypergeometric order arg)))))))
234 ((and (integerp order) (minusp order))
235 ;; Some special cases when the order is an integer.
236 ;; A&S 9.1.5: J[-n](x) = (-1)^n*J[n](x)
237 (if (evenp order)
238 (take '(%bessel_j) (- order) arg)
239 (mul -1 (take '(%bessel_j) (- order) arg))))
241 ((and $besselexpand
242 (setq rat-order (max-numeric-ratio-p order 2)))
243 ;; When order is a fraction with a denominator of 2, we
244 ;; can express the result in terms of elementary functions.
245 (bessel-j-half-order rat-order arg))
247 ((and $bessel_reduce
248 (and (integerp order)
249 (plusp order)
250 (> order 1)))
251 ;; Reduce a bessel function of order > 2 to order 1 and 0.
252 ;; A&S 9.1.27: bessel_j(v,z) = 2*(v-1)/z*bessel_j(v-1,z)-bessel_j(v-2,z)
253 (sub (mul 2
254 (- order 1)
255 (inv arg)
256 (take '(%bessel_j) (- order 1) arg))
257 (take '(%bessel_j) (- order 2) arg)))
259 ((and $%iargs (multiplep arg '$%i))
260 ;; bessel_j(v, %i*x) = (%i*x)^v/(x^v) * bessel_i(v, x)
261 ;; (From http://functions.wolfram.com/03.01.27.0002.01)
262 (let ((x (coeff arg '$%i 1)))
263 (mul (power (mul '$%i x) order)
264 (inv (power x order))
265 (take '(%bessel_i) order x))))
267 ($hypergeometric_representation
268 (bessel-j-hypergeometric order arg))
271 (give-up)))))
273 ;; Returns the hypergeometric representation of bessel_j
274 (defun bessel-j-hypergeometric (order arg)
275 ;; A&S 9.1.69 / http://functions.wolfram.com/03.01.26.0002.01
276 ;; hypergeometric([],[v+1],-z^2/4)*(z/2)^v/gamma(v+1)
277 (mul (inv (take '(%gamma) (add order 1)))
278 (power (div arg 2) order)
279 (take '($hypergeometric)
280 (list '(mlist))
281 (list '(mlist) (add order 1))
282 (neg (div (mul arg arg) 4)))))
284 ;; Compute value of Bessel function of the first kind of order ORDER.
285 (defun bessel-j (order arg)
286 (cond
287 ((zerop (imagpart arg))
288 ;; We have numeric args and the arg is purely real.
289 ;; Call the real-valued Bessel function when possible.
290 (let ((arg (realpart arg)))
291 (cond
292 ((= order 0)
293 (slatec:dbesj0 (float arg)))
294 ((= order 1)
295 (slatec:dbesj1 (float arg)))
296 ((minusp order)
297 (cond ((zerop (nth-value 1 (truncate order)))
298 ;; The order is a negative integer. We use A&S 9.1.5:
299 ;; J[-n](z) = (-1)^n*J[n](z)
300 ;; and not the Hankel functions.
301 (if (evenp (floor order))
302 (bessel-j (- order) arg)
303 (- (bessel-j (- order) arg))))
305 ;; Bessel function of negative order. We use the Hankel
306 ;; functions to compute this:
307 ;; J[v](z) = (H1[v](z) + H2[v](z)) / 2.
308 ;; This works for negative and positive arg and handles
309 ;; special cases correctly.
310 (let ((result (* 0.5 (+ (hankel-1 order arg) (hankel-2 order arg)))))
311 (cond ((= (nth-value 1 (floor order)) 1/2)
312 ;; ORDER is a half-integral-value or a float
313 ;; representation, thereof.
314 (if (minusp arg)
315 ;; arg is negative, the result is purely imaginary
316 (complex 0 (imagpart result))
317 ;; arg is positive, the result is purely real
318 (realpart result)))
319 ;; in all other cases general complex result
320 (t result))))))
322 ;; We have a real arg and order > 0 and order not 0 or 1
323 ;; for this case we can call the function dbesj
324 (multiple-value-bind (n alpha) (floor (float order))
325 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
326 (slatec:dbesj (abs (float arg)) alpha (1+ n) jvals 0)
327 (cond ((>= arg 0)
328 (aref jvals n))
330 ;; Use analytic continuation formula A&S 9.1.35:
331 ;; J[v](z*exp(m*%pi*%i)) = exp(m*%pi*%i*v)*J[v](z)
332 ;; for an integer m. In particular, for m = 1:
333 ;; J[v](-x) = exp(v*%pi*%i)*J[v](x)
334 ;; and handle special cases
335 (cond ((zerop (nth-value 1 (truncate order)))
336 ;; order is an integer
337 (if (evenp (floor order))
338 (aref jvals n)
339 (- (aref jvals n))))
340 ((= (nth-value 1 (floor order)) 1/2)
341 ;; Order is a half-integral-value and we know that
342 ;; arg < 0, so the result is purely imginary.
343 (if (evenp (floor order))
344 (complex 0 (aref jvals n))
345 (complex 0 (- (aref jvals n)))))
346 ;; In all other cases a general complex result
348 (* (cis (* order pi))
349 (aref jvals n))))))))))))
351 ;; The arg is complex. Use the complex-valued Bessel function.
352 (cond ((mminusp order)
353 ;; Bessel function of negative order. We use the Hankel function to
354 ;; compute this, because A&S 9.1.3 and 9.1.4 say
355 ;; H1[v](z) = J[v](z) + %i * Y[v](z)
356 ;; and
357 ;; H2[v](z) = J[v](z) - %i * Y[v](z).
358 ;; Thus
359 ;; J[v](z) = (H1[v](z) + H2[v](z)) / 2.
360 ;; Not the most efficient way, but perhaps good enough for maxima.
361 (* 0.5 (+ (hankel-1 order arg) (hankel-2 order arg))))
363 (multiple-value-bind (n alpha) (floor (float order))
364 (let ((cyr (make-array (1+ n) :element-type 'flonum))
365 (cyi (make-array (1+ n) :element-type 'flonum)))
366 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
367 v-cyr v-cyi v-nz v-ierr)
368 (slatec:zbesj (float (realpart arg))
369 (float (imagpart arg))
370 alpha 1 (1+ n) cyr cyi 0 0)
371 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
373 ;; Should check the return status in v-ierr of this routine.
374 (when (plusp v-ierr)
375 (format t "zbesj ierr = ~A~%" v-ierr))
376 (complex (aref cyr n) (aref cyi n))))))))))
378 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
380 ;;; Implementation of the Bessel Y function
382 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
384 (defmfun $bessel_y (v z)
385 (simplify (list '(%bessel_y) v z)))
387 ;; Bessel Y distributes over lists, matrices, and equations
389 (defprop %bessel_y (mlist $matrix mequal) distribute_over)
391 (defprop %bessel_y
392 ((n x)
393 ;; Derivative wrt order n. A&S 9.1.65.
395 ;; cot(n*%pi)*[diff(bessel_j(n,x),n)-%pi*bessel_y(n,x)]
396 ;; - csc(n*%pi)*diff(bessel_j(-n,x),n)-%pi*bessel_j(n,x)
397 ((mplus)
398 ((mtimes) -1 $%pi ((%bessel_j) n x))
399 ((mtimes)
401 ((%csc) ((mtimes) $%pi n))
402 ((%derivative) ((%bessel_j) ((mtimes) -1 n) x) n 1))
403 ((mtimes)
404 ((%cot) ((mtimes) $%pi n))
405 ((mplus)
406 ((mtimes) -1 $%pi ((%bessel_y) n x))
407 ((%derivative) ((%bessel_j) n x) n 1))))
409 ;; Derivative wrt to arg x. A&S 9.1.27; changed from A&S 9.1.30
410 ;; to be consistent with bessel_j.
411 ((mtimes)
412 ((mplus)
413 ((%bessel_y)((mplus) -1 n) x)
414 ((mtimes) -1 ((%bessel_y) ((mplus) 1 n) x)))
415 ((rat) 1 2)))
416 grad)
418 ;; Integral of the Bessel Y function wrt z
419 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/21/01/01/
420 (defun bessel-y-integral-2 (n z)
421 (cond
422 ((and ($integerp n) (<= 0 n))
423 (cond
424 (($oddp n)
425 ;; integrate(bessel_y(2*N+1,z),z) , N > 0
426 ;; = -bessel_y(0,z) - 2 * sum(bessel_y(2*k,z),k,1,N)
427 (let* ((k (gensym))
428 (answer `((mplus) ((mtimes) -1 ((%bessel_y) 0 ,z))
429 ((mtimes) -2
430 ((%sum) ((%bessel_y) ((mtimes) 2 ,k) ,z) ,k 1
431 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))))
432 ;; Expand out the sum if n < 10. Otherwise fix up the indices
433 (if (< n 10)
434 (meval `(($ev) ,answer $sum)) ; Is there a better way?
435 (simplify ($niceindices answer)))))
436 (($evenp n)
437 ;; integrate(bessel_y(2*N,z),z) , N > 0
438 ;; = (1/2)*%pi*z*(bessel_y(0,z)*struve_h(-1,z)
439 ;; +bessel_y(1,z)*struve_h(0,z))
440 ;; - 2 * sum(bessel_y(2*k+1,z),k,0,N-1)
441 (let*
442 ((k (gensym))
443 (answer `((mplus)
444 ((mtimes) -2
445 ((%sum)
446 ((%bessel_y) ((mplus) 1 ((mtimes) 2 ,k)) ,z)
447 ,k 0
448 ((mplus)
450 ((mtimes) ((rat) 1 2) ,n))))
451 ((mtimes) ((rat) 1 2) $%pi ,z
452 ((mplus)
453 ((mtimes)
454 ((%bessel_y) 0 ,z)
455 ((%struve_h) -1 ,z))
456 ((mtimes)
457 ((%bessel_y) 1 ,z)
458 ((%struve_h) 0 ,z)))))))
459 ;; Expand out the sum if n < 10. Otherwise fix up the indices
460 (if (< n 10)
461 (meval `(($ev) ,answer $sum)) ; Is there a better way?
462 (simplify ($niceindices answer)))))))
463 (t nil)))
465 (putprop '%bessel_y `((n z) nil ,#'bessel-y-integral-2) 'integral)
467 ;; Support a simplim%bessel_y function to handle specific limits
469 (defprop %bessel_y simplim%bessel_y simplim%function)
471 (defun simplim%bessel_y (expr var val)
472 ;; Look for the limit of the arguments.
473 (let ((v (limit (cadr expr) var val 'think))
474 (z (limit (caddr expr) var val 'think)))
475 (cond
476 ;; Handle an argument 0 at this place.
477 ((or (zerop1 z)
478 (eq z '$zeroa)
479 (eq z '$zerob))
480 (cond ((zerop1 v)
481 ;; bessel_y(0,0)
482 '$minf)
483 ((integerp v)
484 ;; bessel_y(n,0), n an integer
485 (cond ((evenp v) '$minf)
486 (t (cond ((eq z '$zeroa) '$minf)
487 ((eq z '$zerob) '$inf)
488 (t '$infinity)))))
489 ((not (zerop1 ($realpart v)))
490 ;; bessel_y(v,0), Re(v)#0
491 '$infinity)
492 ((and (zerop1 ($realpart v))
493 (not (zerop1 v)))
494 ;; bessel_y(v,0), Re(v)=0 and v#0
495 '$und)
496 ;; Call the simplifier of the function.
497 (t (simplify (list '(%bessel_y) v z)))))
498 ((or (eq z '$inf)
499 (eq z '$minf))
500 ;; bessel_y(v,inf) or bessel_y(v,minf)
503 ;; All other cases are handled by the simplifier of the function.
504 (simplify (list '(%bessel_y) v z))))))
506 (def-simplifier bessel_y (order arg)
507 (let ((rat-order nil))
508 (cond
509 ((zerop1 arg)
510 ;; Domain error for a zero argument.
511 (simp-domain-error
512 (intl:gettext "bessel_y: bessel_y(~:M,~:M) is undefined.") order arg))
514 ((complex-float-numerical-eval-p order arg)
515 ;; We have numeric order and arg and $numer is true, or
516 ;; we have either the order or arg being floating-point,
517 ;; so let's evaluate it numerically.
518 (cond ((= 0 ($imagpart order))
519 ;; order is real, arg is real or complex
520 (complexify (bessel-y ($float order)
521 (complex ($float ($realpart arg))
522 ($float ($imagpart arg))))))
524 ;; order is complex, arg is real or complex
525 (let (($numer t)
526 ($float t)
527 (order ($float order))
528 (arg ($float arg)))
529 ($float
530 ($rectform
531 (bessel-y-hypergeometric order arg)))))))
533 ((or (bigfloat-numerical-eval-p order arg)
534 (complex-bigfloat-numerical-eval-p order arg))
535 ;; When the order is not an integer, we can use the
536 ;; hypergeometric representation to evaluate it.
537 (destructuring-bind (re . im)
538 (risplit order)
539 (cond ((and (zerop1 im)
540 (not (zerop1 (sub re (take '($floor) re)))))
541 ($rectform
542 ($bfloat (bessel-y-hypergeometric re arg))))
544 (give-up)))))
546 ((and (integerp order) (minusp order))
547 ;; Special case when the order is an integer.
548 ;; A&S 9.1.5: Y[-n](x) = (-1)^n*Y[n](x)
549 (if (evenp order)
550 (take '(%bessel_y) (- order) arg)
551 (mul -1 (take '(%bessel_y) (- order) arg))))
553 ((and $besselexpand
554 (setq rat-order (max-numeric-ratio-p order 2)))
555 ;; When order is a fraction with a denominator of 2, we
556 ;; can express the result in terms of elementary functions.
557 ;; From A&S 10.1.1, 10.1.11-12 and 10.1.15:
559 ;; Y[1/2](z) = -J[-1/2](z) is a function of cos(z).
560 ;; Y[-1/2](z) = J[1/2](z) is a function of sin(z).
561 (bessel-y-half-order rat-order arg))
563 ((and $bessel_reduce
564 (and (integerp order)
565 (plusp order)
566 (> order 1)))
567 ;; Reduce a bessel function of order > 2 to order 1 and 0.
568 ;; A&S 9.1.27: bessel_y(v,z) = 2*(v-1)/z*bessel_y(v-1,z)-bessel_y(v-2,z)
569 (sub (mul 2
570 (- order 1)
571 (inv arg)
572 (take '(%bessel_y) (- order 1) arg))
573 (take '(%bessel_y) (- order 2) arg)))
575 ($hypergeometric_representation
576 (bessel-y-hypergeometric order arg))
579 (give-up)))))
581 ;; Returns the hypergeometric representation of bessel_y
582 (defun bessel-y-hypergeometric (order arg)
583 ;; http://functions.wolfram.com/03.03.26.0002.01
584 ;; -hypergeometric([],[1-v],-z^2/4)*(2/z)^v*gamma(v)/%pi
585 ;; - hypergeometric([],[v+1],-z^2/4)*gamma(-v)*cos(%pi*v)*(z/2)^v/%pi
586 (add (mul -1
587 (power 2 order)
588 (inv (power arg order))
589 (take '(%gamma) order)
590 (inv '$%pi)
591 (take '($hypergeometric)
592 (list '(mlist))
593 (list '(mlist) (sub 1 order))
594 (neg (div (mul arg arg) 4))))
595 (mul -1
596 (inv (power 2 order))
597 (power arg order)
598 (take '(%cos) (mul order '$%pi))
599 (take '(%gamma) (neg order))
600 (inv '$%pi)
601 (take '($hypergeometric)
602 (list '(mlist))
603 (list '(mlist) (add 1 order))
604 (neg (div (mul arg arg) 4))))))
606 ;; Bessel function of the second kind, Y[n](z), for real or complex z
607 (defun bessel-y (order arg)
608 (cond
609 ((zerop (imagpart arg))
610 ;; We have numeric args and the first arg is purely
611 ;; real. Call the real-valued Bessel function.
613 ;; For negative values, use the analytic continuation formula
614 ;; A&S 9.1.36:
616 ;; Y[v](z*exp(m*%pi*%i)) = exp(-v*m*%pi*%i) * Y[v](z)
617 ;; + 2*%i*sin(m*v*%pi)*cot(v*%pi)*J[v](z)
619 ;; In particular for m = 1:
620 ;; Y[v](-z) = exp(-v*%pi*%i) * Y[v](z) + 2*%i*cos(v*%pi)*J[v](z)
621 (let ((arg (realpart arg)))
622 (cond
623 ((zerop order)
624 (cond ((>= arg 0)
625 (slatec:dbesy0 (float arg)))
627 ;; For v = 0, this simplifies to
628 ;; Y[0](-z) = Y[0](z) + 2*%i*J[0](z)
629 ;; the return value has to be a CL number
630 (+ (slatec:dbesy0 (float (- arg)))
631 (complex 0 (* 2 (slatec:dbesj0 (float (- arg)))))))))
632 ((= order 1)
633 (cond ((>= arg 0)
634 (slatec:dbesy1 (float arg)))
636 ;; For v = 1, this simplifies to
637 ;; Y[1](-z) = -Y[1](z) - 2*%i*J[1](v)
638 ;; the return value has to be a CL number
639 (+ (- (slatec:dbesy1 (float (- arg))))
640 (complex 0 (* -2 (slatec:dbesj1 (float (- arg)))))))))
641 ((minusp order)
642 (cond ((zerop (nth-value 1 (truncate order)))
643 ;; Order is a negative integer or float representation.
644 ;; Use A&S 9.1.5: Y[-n](z) = (-1)^n*Y[n](z).
645 (if (evenp (floor order))
646 (bessel-y (- order) arg)
647 (- (bessel-y (- order) arg))))
649 ;; Bessel function of negative order. We use the Hankel
650 ;; functions to compute this:
651 ;; Y[v](z) = (H1[v](z) - H2[v](z)) / 2 / %i
652 (let ((result (/ (- (hankel-1 order arg)
653 (hankel-2 order arg))
654 (complex 0 2))))
655 (cond ((= (nth-value 1 (floor order)) 1/2)
656 ;; ORDER is half-integral-value or a float
657 ;; representation thereof.
658 (if (minusp arg)
659 ;; arg is negative, the result is purely imaginary
660 (complex 0 (imagpart result))
661 ;; arg is positive, the result is purely real
662 (realpart result)))
663 ;; in all other cases general complex result
664 (t result))))))
666 (multiple-value-bind (n alpha) (floor (float order))
667 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
668 ;; First we do the calculation for an positive argument.
669 (slatec:dbesy (abs (float arg)) alpha (1+ n) jvals)
671 ;; Now we look at the sign of the argument
672 (cond ((>= arg 0)
673 (aref jvals n))
675 (let* ((dpi (coerce pi 'flonum))
676 (s1 (cis (- (* order dpi))))
677 (s2 (* #c(0 2) (cos (* order dpi)))))
678 (let ((result (+ (* s1 (aref jvals n))
679 (* s2 (bessel-j order (- arg))))))
680 (cond ((zerop (nth-value 1 (truncate order)))
681 ;; ORDER is an integer or a float representation
682 ;; of an integer, and the arg is positive the
683 ;; result is general complex.
684 result)
685 ((= (nth-value 1 (floor order)) 1/2)
686 ;; ORDER is a half-integral-value or an float
687 ;; representation and we have arg < 0. The
688 ;; result is purely imaginary.
689 (complex 0 (imagpart result)))
690 ;; in all other cases general complex result
691 (t result))))))))))))
693 (cond ((minusp order)
694 ;; Bessel function of negative order. We use the Hankel function to
695 ;; compute this, because A&S 9.1.3 and 9.1.4 say
696 ;; H1[v](z) = J[v](z) + %i * Y[v](z)
697 ;; and
698 ;; H2[v](z) = J[v](z) - %i * Y[v](z).
699 ;; Thus
700 ;; Y[v](z) = (H1[v](z) - H2[v](z)) / 2 / %i
701 (/ (- (hankel-1 order arg) (hankel-2 order arg))
702 (complex 0 2)))
704 (multiple-value-bind (n alpha) (floor (float order))
705 (let ((cyr (make-array (1+ n) :element-type 'flonum))
706 (cyi (make-array (1+ n) :element-type 'flonum))
707 (cwrkr (make-array (1+ n) :element-type 'flonum))
708 (cwrki (make-array (1+ n) :element-type 'flonum)))
709 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi
710 v-nz v-cwrkr v-cwrki v-ierr)
711 (slatec::zbesy (float (realpart arg))
712 (float (imagpart arg))
713 alpha 1 (1+ n) cyr cyi 0 cwrkr cwrki 0)
714 (declare (ignore v-zr v-zi v-fnu v-kode v-n
715 v-cyr v-cyi v-cwrkr v-cwrki v-nz))
717 ;; We should check for errors based on the value of v-ierr.
718 (when (plusp v-ierr)
719 (format t "zbesy ierr = ~A~%" v-ierr))
721 (complex (aref cyr n) (aref cyi n))))))))))
723 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
725 ;;; Implementation of the Bessel I function
727 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
729 (defmfun $bessel_i (v z)
730 (simplify (list '(%bessel_i) v z)))
732 ;; Bessel I distributes over lists, matrices, and equations
734 (defprop %bessel_i (mlist $matrix mequal) distribute_over)
736 (defprop %bessel_i
737 ((n x)
738 ;; Derivative wrt order n. A&S 9.6.42.
740 ;; I[n](x)*log(x/2)
741 ;; - (x/2)^n*sum(psi(n+k+1)/gamma(n+k+1)*(x^2/4)^k/k!,k,0,inf)
742 ((mplus)
743 ((mtimes)
744 ((%bessel_i) n x)
745 ((%log) ((mtimes) ((rat) 1 2) x)))
746 ((mtimes) -1
747 ((mexpt) ((mtimes) x ((rat) 1 2)) n)
748 ((%sum)
749 ((mtimes)
750 ((mexpt) ((mfactorial) $%k) -1)
751 ((mqapply) (($psi array) 0) ((mplus) 1 $%k n))
752 ((mexpt) ((%gamma) ((mplus) 1 $%k n)) -1)
753 ((mexpt) ((mtimes) x x ((rat) 1 4)) $%k))
754 $%k 0 $inf)))
755 ;; Derivative wrt to x. A&S 9.6.29.
756 ((mtimes)
757 ((mplus) ((%bessel_i) ((mplus) -1 n) x)
758 ((%bessel_i) ((mplus) 1 n) x))
759 ((rat) 1 2)))
760 grad)
762 ;; Integral of the Bessel I function wrt z
763 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/21/01/01/
764 (defun bessel-i-integral-2 (v z)
765 (case v
767 ;; integrate(bessel_i(0,z),z)
768 ;; = (1/2)*z*(bessel_i(0,z)*(%pi*struve_l(1,z)+2)
769 ;; -%pi*bessel_i(1,z)*struve_l(0,z))
770 `((mtimes) ((rat) 1 2) ,z
771 ((mplus)
772 ((mtimes) -1 $%pi
773 ((%bessel_i) 1 ,z)
774 ((%struve_l) 0 ,z))
775 ((mtimes)
776 ((%bessel_i) 0 ,z)
777 ((mplus) 2
778 ((mtimes) $%pi ((%struve_l) 1 ,z)))))))
780 ;; integrate(bessel_i(1,z),z) = bessel_i(0,z)
781 `((%bessel_i) 0 ,z))
782 (otherwise
783 ;; http://functions.wolfram.com/03.02.21.0002.01
784 ;; integrate(bessel_i(v,z),z)
785 ;; = 2^(-v-1)*z^(v+1)*gamma(v/2+1/2)
786 ;; * hypergeometric_regularized([v/2+1/2],[v+1,v/2+3/2],z^2/4)
787 ;; = 2^(-v)*z^(v+1)*hypergeometric([v/2+1/2],[v+1,v/2+3/2],z^2/4)
788 ;; / gamma(v+2)
789 `((mtimes)
790 (($hypergeometric)
791 ((mlist)
792 ((mplus) ((rat) 1 2) ((mtimes) ((rat) 1 2) ,v)))
793 ((mlist)
794 ((mplus) ((rat) 3 2) ((mtimes) ((rat) 1 2) ,v))
795 ((mplus) 1 ,v))
796 ((mtimes) ((rat) 1 4) ((mexpt) ,z 2)))
797 ((mexpt) 2 ((mtimes) -1 ,v))
798 ((mexpt) ((%gamma) ((mplus) 2 ,v)) -1)
799 ((mexpt) z ((mplus) 1 ,v))))))
801 (putprop '%bessel_i `((v z) nil ,#'bessel-i-integral-2) 'integral)
803 ;; Support a simplim%bessel_i function to handle specific limits
805 (defprop %bessel_i simplim%bessel_i simplim%function)
807 (defun simplim%bessel_i (expr var val)
808 ;; Look for the limit of the arguments.
809 (let ((v (limit (cadr expr) var val 'think))
810 (z (limit (caddr expr) var val 'think)))
811 (cond
812 ;; Handle an argument 0 at this place.
813 ((or (zerop1 z)
814 (eq z '$zeroa)
815 (eq z '$zerob))
816 (let ((sgn ($sign ($realpart v))))
817 (cond ((and (eq sgn '$neg)
818 (not (maxima-integerp v)))
819 ;; bessel_i(v,0), Re(v)<0 and v not an integer
820 '$infinity)
821 ((and (eq sgn '$zero)
822 (not (zerop1 v)))
823 ;; bessel_i(v,0), Re(v)=0 and v #0
824 '$und)
825 ;; Call the simplifier of the function.
826 (t (simplify (list '(%bessel_i) v z))))))
827 ((eq z '$inf)
828 ;; bessel_i(v,inf)
829 '$inf)
830 ((eq z '$minf)
831 ;; bessel_i(v,minf)
832 '$infinity)
834 ;; All other cases are handled by the simplifier of the function.
835 (simplify (list '(%bessel_i) v z))))))
837 (def-simplifier bessel_i (order arg)
838 (let ((rat-order nil))
839 (cond
840 ((zerop1 arg)
841 ;; We handle the different case for zero arg carefully.
842 (let ((sgn ($sign ($realpart order))))
843 (cond ((and (eq sgn '$zero)
844 (zerop1 ($imagpart order)))
845 ;; bessel_i(0,0) = 1
846 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 1))
847 ((or (floatp order) (floatp arg)) 1.0)
848 (t 1)))
849 ((or (eq sgn '$pos)
850 (maxima-integerp order))
851 ;; bessel_i(v,0) and Re(v)>0 or v an integer
852 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 0))
853 ((or (floatp order) (floatp arg)) 0.0)
854 (t 0)))
855 ((and (eq sgn '$neg)
856 (not (maxima-integerp order)))
857 ;; bessel_i(v,0) and Re(v)<0 and v not an integer
858 (simp-domain-error
859 (intl:gettext "bessel_i: bessel_i(~:M,~:M) is undefined.")
860 order arg))
861 ((and (eq sgn '$zero)
862 (not (zerop1 ($imagpart order))))
863 ;; bessel_i(v,0) and Re(v)=0 and v # 0
864 (simp-domain-error
865 (intl:gettext "bessel_i: bessel_i(~:M,~:M) is undefined.")
866 order arg))
868 ;; No information about the sign of the order
869 (give-up)))))
871 ((complex-float-numerical-eval-p order arg)
872 (cond ((= 0 ($imagpart order))
873 ;; order is real, arg is real or complex
874 (complexify (bessel-i ($float order)
875 (complex ($float ($realpart arg))
876 ($float ($imagpart arg))))))
878 ;; order is complex, arg is real or complex
879 (let (($numer t)
880 ($float t)
881 (order ($float order))
882 (arg ($float arg)))
883 ($float
884 ($rectform
885 (bessel-i-hypergeometric order arg)))))))
887 ((or (bigfloat-numerical-eval-p order arg)
888 (complex-bigfloat-numerical-eval-p order arg))
889 ;; We have the order or arg being a bigfloat, so evaluate it
890 ;; numerically using the hypergeometric representation
891 ;; bessel_j.
893 ;; When the order is a negative integer, the hypergeometric
894 ;; representation is invalid. However,
895 ;; https://dlmf.nist.gov/10.27.E1 says bessel_i(-n,z) =
896 ;; bessel_i(n,z).
897 (destructuring-bind (re . im)
898 (risplit order)
899 (cond ((and (zerop im)
900 (zerop1 (sub re (take '($floor) re)))
901 (mminusp re))
902 ($rectform
903 ($bfloat (bessel-i-hypergeometric (mul -1 order) arg))))
905 ($rectform
906 ($bfloat (bessel-i-hypergeometric order arg)))))))
908 ((and (integerp order) (minusp order))
909 ;; Some special cases when the order is an integer
910 ;; A&S 9.6.6: I[-n](x) = I[n](x)
911 (take '(%bessel_i) (- order) arg))
913 ((and $besselexpand (setq rat-order (max-numeric-ratio-p order 2)))
914 ;; When order is a fraction with a denominator of 2, we
915 ;; can express the result in terms of elementary functions.
916 ;; From A&S 10.2.13 and 10.2.14:
918 ;; I[1/2](z) = sqrt(2/%pi/z)*sinh(z)
919 ;; I[-1/2](z) = sqrt(2/%pi/z)*cosh(z)
920 (bessel-i-half-order rat-order arg))
922 ((and $bessel_reduce
923 (and (integerp order)
924 (plusp order)
925 (> order 1)))
926 ;; Reduce a bessel function of order > 2 to order 1 and 0.
927 ;; A&S 9.6.26: bessel_i(v,z) = -2*(v-1)/z*bessel_i(v-1,z)+bessel_i(v-2,z)
928 (add (mul -2
929 (- order 1)
930 (inv arg)
931 (take '(%bessel_i) (- order 1) arg))
932 (take '(%bessel_i) (- order 2) arg)))
934 ((and $%iargs (multiplep arg '$%i))
935 ;; bessel_i(v, %i*x) = (%i*x)^v/(x^v) * bessel_j(v, x)
936 ;; (From http://functions.wolfram.com/03.02.27.0002.01)
937 (let ((x (coeff arg '$%i 1)))
938 (mul (power (mul '$%i x) order)
939 (inv (power x order))
940 (take '(%bessel_j) order x))))
942 ($hypergeometric_representation
943 (bessel-i-hypergeometric order arg))
946 (give-up)))))
948 ;; Returns the hypergeometric representation of bessel_i
949 (defun bessel-i-hypergeometric (order arg)
950 ;; A&S 9.6.47 / http://functions.wolfram.com/03.02.26.0002.01
951 ;; hypergeometric([],[v+1],z^2/4)*(z/2)^v/gamma(v+1)
952 (mul (inv (take '(%gamma) (add order 1)))
953 (power (div arg 2) order)
954 (take '($hypergeometric)
955 (list '(mlist))
956 (list '(mlist) (add order 1))
957 (div (mul arg arg) 4))))
959 ;; Compute value of Modified Bessel function of the first kind of order ORDER
960 (defun bessel-i (order arg)
961 (cond
962 ((zerop (imagpart arg))
963 ;; We have numeric args and the first arg is purely
964 ;; real. Call the real-valued Bessel function. Use special
965 ;; routines for order 0 and 1, when possible
966 (let ((arg (realpart arg)))
967 (cond
968 ((zerop order)
969 (slatec:dbesi0 (float arg)))
970 ((= order 1)
971 (slatec:dbesi1 (float arg)))
972 ((or (minusp order) (< arg 0))
973 (multiple-value-bind (order-int order-frac) (floor order)
974 (cond ((zerop order-frac)
975 ;; Order is an integer. From A&S 9.6.6 and 9.6.30 we have
976 ;; I[-n](z) = I[n](z)
977 ;; and
978 ;; I[n](-z) = (-1)^n*I[n](z)
979 (if (< arg 0)
980 (if (evenp order-int)
981 (bessel-i (abs order) (abs arg))
982 (- (bessel-i (abs order) (abs arg))))
983 (bessel-i (abs order) arg)))
985 ;; Order or arg is negative and order is not an integer, use
986 ;; the bessel-j function for calculation. We know from
987 ;; the definition I[v](x) = x^v/(%i*x)^v * J[v](%i*x).
988 (let* ((arg (float arg))
989 (result (* (expt arg order)
990 (expt (complex 0 arg) (- order))
991 (bessel-j order (complex 0 arg)))))
992 ;; Try to clean up result if we know the result is
993 ;; purely real or purely imaginary.
994 (cond ((>= arg 0)
995 ;; Result is purely real for arg >= 0
996 (realpart result))
997 ((zerop order-frac)
998 ;; Order is an integer or a float representation of
999 ;; an integer, the result is purely real.
1000 (realpart result))
1001 ((= order-frac 1/2)
1002 ;; Order is half-integral-value or a float
1003 ;; representation and arg < 0, the result
1004 ;; is purely imaginary.
1005 (complex 0 (imagpart result)))
1006 (t result)))))))
1008 ;; Now the case order > 0 and arg >= 0
1009 (multiple-value-bind (n alpha) (floor (float order))
1010 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
1011 (slatec:dbesi (float (realpart arg)) alpha 1 (1+ n) jvals 0)
1012 (aref jvals n)))))))
1014 ((and (zerop (realpart arg))
1015 (zerop (rem order 1)))
1016 ;; Handle the case for a pure imaginary arg and integer order.
1017 ;; In this case, the result is purely real or purely imaginary,
1018 ;; so we want to make sure that happens.
1020 ;; bessel_i(n, %i*x) = (%i*x)^n/x^n * bessel_j(n,x)
1021 ;; = %i^n * bessel_j(n,x)
1022 (let* ((n (floor order))
1023 (result (bessel-j (float n) (imagpart arg))))
1024 (cond ((evenp n)
1025 ;; %i^(2*m) = (-1)^m, where n=2*m
1026 (if (evenp (/ n 2))
1027 result
1028 (- result)))
1029 ((oddp n)
1030 ;; %i^(2*m+1) = %i*(-1)^m, where n = 2*m+1
1031 (if (evenp (floor n 2))
1032 (complex 0 result)
1033 (complex 0 (- result)))))))
1036 ;; The arg is complex. Use the complex-valued Bessel function.
1037 (multiple-value-bind (n alpha) (floor (abs (float order)))
1038 ;; Evaluate the function for positive order and fixup the result later.
1039 (let ((cyr (make-array (1+ n) :element-type 'flonum))
1040 (cyi (make-array (1+ n) :element-type 'flonum)))
1041 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
1042 v-cyr v-cyi v-nz v-ierr)
1043 (slatec::zbesi (float (realpart arg))
1044 (float (imagpart arg))
1045 alpha 1 (1+ n) cyr cyi 0 0)
1046 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
1047 ;; We should check for errors here based on the value of v-ierr.
1048 (when (plusp v-ierr)
1049 (format t "zbesi ierr = ~A~%" v-ierr))
1051 ;; We have evaluated I[|order|](arg), now we look at
1052 ;; the the sign of the order.
1053 (cond ((minusp order)
1054 ;; From A&S 9.6.2:
1055 ;; I[-a](z) = I[a](z) + (2/%pi)*sin(%pi*a)*K[a](z)
1056 (+ (complex (aref cyr n) (aref cyi n))
1057 (let ((dpi (coerce pi 'flonum)))
1058 (* (/ 2.0 dpi)
1059 (sin (* dpi (- order)))
1060 (bessel-k (- order) arg)))))
1062 (complex (aref cyr n) (aref cyi n))))))))))
1064 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1066 ;;; Implementation of the Bessel K function
1068 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1070 (defmfun $bessel_k (v z)
1071 (simplify (list '(%bessel_k) v z)))
1073 ;; Bessel K distributes over lists, matrices, and equations
1075 (defprop %bessel_k (mlist $matrix mequal) distribute_over)
1077 (defprop %bessel_k
1078 ((n x)
1079 ;; Derivativer wrt order n. A&S 9.6.43.
1081 ;; %pi/2*csc(n*%pi)*['diff(bessel_i(-n,x),n)-'diff(bessel_i(n,x),n)]
1082 ;; - %pi*cot(n*%pi)*bessel_k(n,x)
1083 ((mplus)
1084 ((mtimes) -1 $%pi
1085 ((%bessel_k) n x)
1086 ((%cot) ((mtimes) $%pi n)))
1087 ((mtimes)
1088 ((rat) 1 2)
1089 $%pi
1090 ((%csc) ((mtimes) $%pi n))
1091 ((mplus)
1092 ((%derivative) ((%bessel_i) ((mtimes) -1 n) x) n 1)
1093 ((mtimes) -1
1094 ((%derivative) ((%bessel_i) n x) n 1)))))
1095 ;; Derivative wrt to x. A&S 9.6.29.
1096 ((mtimes)
1098 ((mplus) ((%bessel_k) ((mplus) -1 n) x)
1099 ((%bessel_k) ((mplus) 1 n) x))
1100 ((rat) 1 2)))
1101 grad)
1103 ;; Integral of the Bessel K function wrt z
1104 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/21/01/01/
1105 (defun bessel-k-integral-2 (n z)
1106 (cond
1107 ((and ($integerp n) (<= 0 n))
1108 (cond
1109 (($oddp n)
1110 ;; integrate(bessel_k(2*N+1,z),z) , N > 0
1111 ;; = -(-1)^((n-1)/2)*bessel_k(0,z)
1112 ;; + 2*sum((-1)^(k+(n-1)/2-1)*bessel_k(2*k,z),k,1,(n-1)/2)
1113 (let* ((k (gensym))
1114 (answer `((mplus)
1115 ((mtimes) -1 ((%bessel_k) 0 ,z)
1116 ((mexpt) -1
1117 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n))))
1118 ((mtimes) 2
1119 ((%sum)
1120 ((mtimes) ((%bessel_k) ((mtimes) 2 ,k) ,z)
1121 ((mexpt) -1
1122 ((mplus) -1 ,k
1123 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))
1124 ,k 1 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))))
1125 ;; Expand out the sum if n < 10. Otherwise fix up the indices
1126 (if (< n 10)
1127 (meval `(($ev) ,answer $sum)) ; Is there a better way?
1128 (simplify ($niceindices answer)))))
1129 (($evenp n)
1130 ;; integrate(bessel_k(2*N,z),z) , N > 0
1131 ;; = (1/2)*(-1)^(n/2)*%pi*z*(bessel_k(0,z)*struve_l(-1,z)
1132 ;; +bessel_k(1,z)*struve_l(0,z))
1133 ;; + 2 * sum((-1)^(k+n/2)*bessel_k(2*k+1,z),k,0,n/2-1)
1134 (let*
1135 ((k (gensym))
1136 (answer `((mplus)
1137 ((mtimes) 2
1138 ((%sum)
1139 ((mtimes)
1140 ((%bessel_k) ((mplus) 1 ((mtimes) 2 ,k)) ,z)
1141 ((mexpt) -1
1142 ((mplus) ,k ((mtimes) ((rat) 1 2) ,n))))
1143 ,k 0 ((mplus) -1 ((mtimes) ((rat) 1 2) ,n))))
1144 ((mtimes)
1145 ((rat) 1 2)
1146 $%pi
1147 ((mexpt) -1 ((mtimes) ((rat) 1 2) ,n))
1149 ((mplus)
1150 ((mtimes)
1151 ((%bessel_k) 0 ,z)
1152 ((%struve_l) -1 ,z))
1153 ((mtimes)
1154 ((%bessel_k) 1 ,z)
1155 ((%struve_l) 0 ,z)))))))
1156 ;; expand out the sum if n < 10. Otherwise fix up the indices
1157 (if (< n 10)
1158 (meval `(($ev) ,answer $sum)) ; Is there a better way?
1159 (simplify ($niceindices answer)))))))
1160 (t nil)))
1162 (putprop '%bessel_k `((n z) nil ,#'bessel-k-integral-2) 'integral)
1164 ;; Support a simplim%bessel_k function to handle specific limits
1166 (defprop %bessel_k simplim%bessel_k simplim%function)
1168 (defun simplim%bessel_k (expr var val)
1169 ;; Look for the limit of the arguments.
1170 (let ((v (limit (cadr expr) var val 'think))
1171 (z (limit (caddr expr) var val 'think)))
1172 (cond
1173 ;; Handle an argument 0 at this place.
1174 ((or (zerop1 z)
1175 (eq z '$zeroa)
1176 (eq z '$zerob))
1177 (cond ((zerop1 v)
1178 ;; bessel_k(0,0)
1179 '$inf)
1180 ((integerp v)
1181 ;; bessel_k(n,0), n an integer
1182 (cond ((evenp v) '$inf)
1183 (t (cond ((eq z '$zeroa) '$inf)
1184 ((eq z '$zerob) '$minf)
1185 (t '$infinity)))))
1186 ((not (zerop1 ($realpart v)))
1187 ;; bessel_k(v,0), Re(v)#0
1188 '$infinity)
1189 ((and (zerop1 ($realpart v))
1190 (not (zerop1 v)))
1191 ;; bessel_k(v,0), Re(v)=0 and v#0
1192 '$und)
1193 ;; Call the simplifier of the function.
1194 (t (simplify (list '(%bessel_k) v z)))))
1195 ((eq z '$inf)
1196 ;; bessel_k(v,inf)
1198 ((eq z '$minf)
1199 ;; bessel_k(v,minf)
1200 '$infinity)
1202 ;; All other cases are handled by the simplifier of the function.
1203 (simplify (list '(%bessel_k) v z))))))
1205 (def-simplifier bessel_k (order arg)
1206 (let ((rat-order nil))
1207 (cond
1208 ((zerop1 arg)
1209 ;; Domain error for a zero argument.
1210 (simp-domain-error
1211 (intl:gettext "bessel_k: bessel_k(~:M,~:M) is undefined.") order arg))
1213 ((complex-float-numerical-eval-p order arg)
1214 (cond ((= 0 ($imagpart order))
1215 ;; order is real, arg is real or complex
1216 (complexify (bessel-k ($float order)
1217 (complex ($float ($realpart arg))
1218 ($float ($imagpart arg))))))
1220 ;; order is complex, arg is real or complex
1221 (let (($numer t)
1222 ($float t)
1223 (order ($float order))
1224 (arg ($float arg)))
1225 ($float
1226 ($rectform
1227 (bessel-k-hypergeometric order arg)))))))
1229 ((or (bigfloat-numerical-eval-p order arg)
1230 (complex-bigfloat-numerical-eval-p order arg))
1231 ;; When the order is not an integer, we can use the
1232 ;; hypergeometric representation to evaluate it.
1233 (destructuring-bind (re . im)
1234 (risplit order)
1235 (cond ((and (zerop1 im)
1236 (not (zerop1 (sub re (take '($floor) re)))))
1237 ($rectform
1238 ($bfloat (bessel-k-hypergeometric re arg))))
1240 (give-up)))))
1242 ((mminusp order)
1243 ;; A&S 9.6.6: K[-v](x) = K[v](x)
1244 (take '(%bessel_k) (mul -1 order) arg))
1246 ((and $besselexpand
1247 (setq rat-order (max-numeric-ratio-p order 2)))
1248 ;; When order is a fraction with a denominator of 2, we
1249 ;; can express the result in terms of elementary
1250 ;; functions. From A&S 10.2.16 and 10.2.17:
1252 ;; K[1/2](z) = sqrt(%pi/2/z)*exp(-z)
1253 ;; = K[-1/2](z)
1254 (bessel-k-half-order rat-order arg))
1256 ((and $bessel_reduce
1257 (and (integerp order)
1258 (plusp order)
1259 (> order 1)))
1260 ;; Reduce a bessel function of order > 2 to order 1 and 0.
1261 ;; A&S 9.6.26: bessel_k(v,z) = 2*(v-1)/z*bessel_k(v-1,z)+bessel_k(v-2,z)
1262 (add (mul 2
1263 (- order 1)
1264 (inv arg)
1265 (take '(%bessel_k) (- order 1) arg))
1266 (take '(%bessel_k) (- order 2) arg)))
1268 ($hypergeometric_representation
1269 (bessel-k-hypergeometric order arg))
1272 (give-up)))))
1274 ;; Returns the hypergeometric representation of bessel_k
1275 (defun bessel-k-hypergeometric (order arg)
1276 ;; http://functions.wolfram.com/03.04.26.0002.01
1277 ;; hypergeometric([],[1-v],z^2/4)*2^(v-1)*gamma(v)/z^v
1278 ;; + hypergeometric([],[v+1],z^2/4)*2^(-v-1)*gamma(-v)*z^v
1279 (add (mul (power 2 (sub order 1))
1280 (take '(%gamma) order)
1281 (inv (power arg order))
1282 (take '($hypergeometric)
1283 (list '(mlist))
1284 (list '(mlist) (sub 1 order))
1285 (div (mul arg arg) 4)))
1286 (mul (inv (power 2 (add order 1)))
1287 (power arg order)
1288 (take '(%gamma) (neg order))
1289 (take '($hypergeometric)
1290 (list '(mlist))
1291 (list '(mlist) (add order 1))
1292 (div (mul arg arg) 4)))))
1294 ;; Compute value of Modified Bessel function of the second kind of order ORDER
1295 (defun bessel-k (order arg)
1296 (cond
1297 ((zerop (imagpart arg))
1298 ;; We have numeric args and the first arg is purely real. Call the
1299 ;; real-valued Bessel function. Handle orders 0 and 1 specially, when
1300 ;; possible.
1301 (let ((arg (realpart arg)))
1302 (cond
1303 ((< arg 0)
1304 ;; This is the extension for negative arg.
1305 ;; We use A&S 9.6.6 and 9.6.31 for evaluation:
1306 ;; K[v](-z) = K[|v|](-z)
1307 ;; = exp(-%i*%pi*|v|)*K[|v|](z) - %i*%pi*I[|v|](z)
1308 (let* ((dpi (coerce pi 'flonum))
1309 (s1 (cis (* dpi (- (abs order)))))
1310 (s2 (* (complex 0 -1) dpi))
1311 (result (+ (* s1 (bessel-k (abs order) (- arg)))
1312 (* s2 (bessel-i (abs order) (- arg)))))
1313 (rem (nth-value 1 (floor order))))
1314 (cond ((zerop rem)
1315 ;; order is an integer or a float representation of an
1316 ;; integer, the result is a general complex
1317 result)
1318 ((= rem 1/2)
1319 ;; order is half-integral-value or an float representation
1320 ;; and arg < 0, the result is pure imaginary
1321 (complex 0 (imagpart result)))
1322 ;; in all other cases general complex result
1323 (t result))))
1324 ((= order 0)
1325 (slatec:dbesk0 (float arg)))
1326 ((= order 1)
1327 (slatec:dbesk1 (float arg)))
1329 ;; From A&S 9.6.6, K[-v](z) = K[v](z), so take the
1330 ;; absolute value of the order.
1331 (multiple-value-bind (n alpha) (floor (abs (float order)))
1332 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
1333 (slatec:dbesk (float arg) alpha 1 (1+ n) jvals 0)
1334 (aref jvals n)))))))
1336 ;; The arg is complex. Use the complex-valued Bessel function. From
1337 ;; A&S 9.6.6, K[-v](z) = K[v](z), so take the absolute value of the order.
1338 (multiple-value-bind (n alpha) (floor (abs (float order)))
1339 (let ((cyr (make-array (1+ n) :element-type 'flonum))
1340 (cyi (make-array (1+ n) :element-type 'flonum)))
1341 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
1342 v-cyr v-cyi v-nz v-ierr)
1343 (slatec::zbesk (float (realpart arg))
1344 (float (imagpart arg))
1345 alpha 1 (1+ n) cyr cyi 0 0)
1346 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
1348 ;; We should check for errors here based on the value of v-ierr.
1349 (when (plusp v-ierr)
1350 (format t "zbesk ierr = ~A~%" v-ierr))
1351 (complex (aref cyr n) (aref cyi n))))))))
1353 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1355 ;;; Expansion of Bessel J and Y functions of half-integral order.
1357 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1359 ;; From A&S 10.1.1, we have
1361 ;; J[n+1/2](z) = sqrt(2*z/%pi)*j[n](z)
1362 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*y[n](z)
1364 ;; where j[n](z) is the spherical bessel function of the first kind
1365 ;; and y[n](z) is the spherical bessel function of the second kind.
1367 ;; A&S 10.1.8 and 10.1.9 give
1369 ;; j[n](z) = 1/z*[P(n+1/2,z)*sin(z-n*%pi/2) + Q(n+1/2,z)*cos(z-n*%pi/2)]
1371 ;; y[n](z) = (-1)^(n+1)*1/z*[P(n+1/2,z)*cos(z+n*%pi/2) - Q(n+1/2,z)*sin(z+n*%pi/2)]
1374 ;; A&S 10.1.10
1376 ;; j[n](z) = f[n](z)*sin(z) + (-1)^(n+1)*f[-n-1](z)*cos(z)
1378 ;; f[0](z) = 1/z, f[1](z) = 1/z^2
1380 ;; f[n-1](z) + f[n+1](z) = (2*n+1)/z*f[n](z)
1382 (defun f-fun (n z)
1383 (cond ((= n 0)
1384 (div 1 z))
1385 ((= n 1)
1386 (div 1 (mul z z)))
1387 ((= n -1)
1389 ((>= n 2)
1390 ;; f[n+1](z) = (2*n+1)/z*f[n](z) - f[n-1](z) or
1391 ;; f[n](z) = (2*n-1)/z*f[n-1](z) - f[n-2](z)
1392 (sub (mul (div (+ n n -1) z)
1393 (f-fun (1- n) z))
1394 (f-fun (- n 2) z)))
1396 ;; Negative n
1398 ;; f[n-1](z) = (2*n+1)/z*f[n](z) - f[n+1](z) or
1399 ;; f[n](z) = (2*n+3)/z*f[n+1](z) - f[n+2](z)
1400 (sub (mul (div (+ n n 3) z)
1401 (f-fun (1+ n) z))
1402 (f-fun (+ n 2) z)))))
1404 ;; Compute sqrt(2*z/%pi)
1405 (defun root-2z/pi (z)
1406 (power (mul 2 z (inv '$%pi)) '((rat simp) 1 2)))
1408 (defun bessel-j-half-order (order arg)
1409 "Compute J[n+1/2](z)"
1410 (let* ((n (floor order))
1411 (sign (if (oddp n) -1 1))
1412 (jn (sub (mul ($expand (f-fun n arg))
1413 (take '(%sin) arg))
1414 (mul sign
1415 ($expand (f-fun (- (- n) 1) arg))
1416 (take '(%cos) arg)))))
1417 (mul (root-2z/pi arg)
1418 jn)))
1420 (defun bessel-y-half-order (order arg)
1421 "Compute Y[n+1/2](z)"
1422 ;; A&S 10.1.1:
1423 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*y[n](z)
1425 ;; A&S 10.1.15:
1426 ;; y[n](z) = (-1)^(n+1)*j[-n-1](z)
1428 ;; So
1429 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*(-1)^(n+1)*j[-n-1](z)
1430 ;; = (-1)^(n+1)*sqrt(2*z/%pi)*j[-n-1](z)
1431 ;; = (-1)^(n+1)*J[-n-1/2](z)
1432 (let* ((n (floor order))
1433 (jn (bessel-j-half-order (- (- order) 1/2) arg)))
1434 (if (evenp n)
1435 (mul -1 jn)
1436 jn)))
1438 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1440 ;;; Expansion of Bessel I and K functions of half-integral order.
1442 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1444 ;; See A&S 10.2.12
1446 ;; I[n+1/2](z) = sqrt(2*z/%pi)*[g[n](z)*sinh(z) + g[-n-1](z)*cosh(z)]
1448 ;; g[0](z) = 1/z, g[1](z) = -1/z^2
1450 ;; g[n-1](z) - g[n+1](z) = (2*n+1)/z*g[n](z)
1453 (defun g-fun (n z)
1454 (declare (type integer n))
1455 (cond ((= n 0)
1456 (div 1 z))
1457 ((= n 1)
1458 (div -1 (mul z z)))
1459 ((>= n 2)
1460 ;; g[n](z) = g[n-2](z) - (2*n-1)/z*g[n-1](z)
1461 (sub (g-fun (- n 2) z)
1462 (mul (div (+ n n -1) z)
1463 (g-fun (- n 1) z))))
1465 ;; n is negative
1467 ;; g[n](z) = (2*n+3)/z*g[n+1](z) + g[n+2](z)
1468 (add (mul (div (+ n n 3) z)
1469 (g-fun (+ n 1) z))
1470 (g-fun (+ n 2) z)))))
1472 ;; See A&S 10.2.12
1474 ;; I[n+1/2](z) = sqrt(2*z/%pi)*[g[n](z)*sinh(z) + g[-n-1](z)*cosh(z)]
1476 (defun bessel-i-half-order (order arg)
1477 (let ((order (floor order)))
1478 (mul (root-2z/pi arg)
1479 (add (mul ($expand (g-fun order arg))
1480 (take '(%sinh) arg))
1481 (mul ($expand (g-fun (- (+ order 1)) arg))
1482 (take '(%cosh) arg))))))
1484 ;; See A&S 10.2.15
1486 ;; sqrt(%pi/2/z)*K[n+1/2](z) = (%pi/2/z)*exp(-z)*sum((n+1/2,k)/(2*z)^k,k,0,n)
1488 ;; or
1490 ;; K[n+1/2](z) = sqrt(%pi/2)/sqrt(z)*exp(-z)*sum((n+1/2,k)/(2*z)^k,k,0,n)
1492 ;; where (A&S 10.1.9)
1494 ;; (n+1/2,k) = (n+k)!/k!/(n-k)!
1496 (defun k-fun (n z)
1497 (declare (type unsigned-byte n))
1498 ;; Computes the sum above
1499 (let ((sum 1)
1500 (term 1))
1501 (loop for k from 0 upto n do
1502 (setf term (mul term
1503 (div (div (* (- n k) (+ n k 1))
1504 (+ k 1))
1505 (mul 2 z))))
1506 (setf sum (add sum term)))
1507 sum))
1509 (defun bessel-k-half-order (order arg)
1510 (let ((order (truncate (abs order))))
1511 (mul (mul (power (div '$%pi 2) '((rat simp) 1 2))
1512 (power arg '((rat simp) -1 2))
1513 (power '$%e (neg arg)))
1514 (k-fun (abs order) arg))))
1516 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1518 ;;; Realpart und imagpart of Bessel functions
1520 ;;; We handle the special cases when we know that the Bessel function
1521 ;;; is pure real or pure imaginary. In all other cases Maxima generates
1522 ;;; a general noun form as result.
1524 ;;; To get the complex sign of the order an argument of the Bessel function
1525 ;;; the function $csign is used which calls $sign in a complex mode.
1527 ;;; This is an extension of of the algorithm of the function risplit in
1528 ;;; the file rpart.lisp. risplit looks for a risplit-function on the
1529 ;;; property list and call it if available.
1531 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1533 (defvar *debug-bessel* nil)
1535 ;;; Put the risplit-function for Bessel J and Bessel I on the property list
1537 (defprop %bessel_j risplit-bessel-j-or-i risplit-function)
1538 (defprop %bessel_i risplit-bessel-j-or-i risplit-function)
1540 ;;; realpart und imagpart for Bessel J and Bessel I function
1542 (defun risplit-bessel-j-or-i (expr)
1543 (when *debug-bessel*
1544 (format t "~&RISPLIT-BESSEL-J with ~A~%" expr))
1545 (let ((order (cadr expr))
1546 (arg (caddr expr))
1547 (sign-order ($csign (cadr expr)))
1548 (sign-arg ($csign (caddr expr))))
1550 (when *debug-bessel*
1551 (format t "~& : order = ~A~%" order)
1552 (format t "~& : arg = ~A~%" arg)
1553 (format t "~& : sign-order = ~A~%" sign-order)
1554 (format t "~& : sign-arg = ~A~%" sign-arg))
1556 (cond
1557 ((or (member sign-order '($complex $imaginary))
1558 (eq sign-arg '$complex))
1559 ;; order or arg are complex, return general noun-form
1560 (risplit-noun expr))
1561 ((eq sign-arg '$imaginary)
1562 ;; arg is pure imaginary
1563 (cond
1564 ((or ($oddp order)
1565 ($featurep order '$odd))
1566 ;; order is an odd integer, pure imaginary noun-form
1567 (cons 0 (mul -1 '$%i expr)))
1568 ((or ($evenp order)
1569 ($featurep order '$even))
1570 ;; order is an even integer, real noun-form
1571 (cons expr 0))
1573 ;; order is not an odd or even integer, or Maxima can not
1574 ;; determine it, return general noun-form
1575 (risplit-noun expr))))
1576 ;; At this point order and arg are real.
1577 ;; We have to look for some special cases involing a negative arg
1578 ((or (maxima-integerp order)
1579 (member sign-arg '($pos $pz)))
1580 ;; arg is positive or order an integer, real noun-form
1581 (cons expr 0))
1582 ;; At this point we know that arg is negative or the sign is not known
1583 ((zerop1 (sub ($truncate ($multthru 2 order)) ($multthru 2 order)))
1584 ;; order is half integral
1585 (cond
1586 ((eq sign-arg '$neg)
1587 ;; order is half integral and arg negative, imaginary noun-form
1588 (cons 0 (mul -1 '$%i expr)))
1590 ;; the sign of arg or order is not known
1591 (risplit-noun expr))))
1593 ;; the sign of arg or order is not known
1594 (risplit-noun expr)))))
1596 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1598 ;;; Put the risplit-function for Bessel K and Bessel Y on the property list
1600 (defprop %bessel_k risplit-bessel-k-or-y risplit-function)
1601 (defprop %bessel_y risplit-bessel-k-or-y risplit-function)
1603 ;;; realpart und imagpart for Bessel K and Bessel Y function
1605 (defun risplit-bessel-k-or-y (expr)
1606 (when *debug-bessel*
1607 (format t "~&RISPLIT-BESSEL-K with ~A~%" expr))
1608 (let ((order (cadr expr))
1609 (arg (caddr expr))
1610 (sign-order ($csign (cadr expr)))
1611 (sign-arg ($csign (caddr expr))))
1613 (when *debug-bessel*
1614 (format t "~& : order = ~A~%" order)
1615 (format t "~& : arg = ~A~%" arg)
1616 (format t "~& : sign-order = ~A~%" sign-order)
1617 (format t "~& : sign-arg = ~A~%" sign-arg))
1619 (cond
1620 ((or (member sign-order '($complex $imaginary))
1621 (member sign-arg '($complex '$imaginary)))
1622 (risplit-noun expr))
1623 ;; At this point order and arg are real valued.
1624 ;; We have to look for some special cases involing a negative arg
1625 ((member sign-arg '($pos $pz))
1626 ;; arg is positive
1627 (cons expr 0))
1628 ;; At this point we know that arg is negative or the sign is not known
1629 ((and (not (maxima-integerp order))
1630 (zerop1 (sub ($truncate ($multthru 2 order)) ($multthru 2 order))))
1631 ;; order is half integral
1632 (cond
1633 ((eq sign-arg '$neg)
1634 (cons 0 (mul -1 '$%i expr)))
1636 ;; the sign of arg is not known
1637 (risplit-noun expr))))
1639 ;; the sign of arg is not known
1640 (risplit-noun expr)))))
1642 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1644 ;;; Implementation of scaled Bessel I functions
1646 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1648 ;; FIXME: The following scaled functions need work. They should be
1649 ;; extended to match bessel_i, but still carefully compute the scaled
1650 ;; value.
1652 ;; I think g0(x) = exp(-x)*I[0](x), g1(x) = exp(-x)*I[1](x), and
1653 ;; gn(x,n) = exp(-x)*I[n](x), based on some simple numerical
1654 ;; evaluations.
1656 (defmfun $scaled_bessel_i0 ($x)
1657 (cond ((mnump $x)
1658 ;; XXX Should we return noun forms if $x is rational?
1659 (slatec:dbsi0e ($float $x)))
1661 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1662 `((%bessel_i) 0 ,$x)))))
1664 (defmfun $scaled_bessel_i1 ($x)
1665 (cond ((mnump $x)
1666 ;; XXX Should we return noun forms if $x is rational?
1667 (slatec:dbsi1e ($float $x)))
1669 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1670 `((%bessel_i) 1 ,$x)))))
1672 (defmfun $scaled_bessel_i ($n $x)
1673 (cond ((and (mnump $x) (mnump $n))
1674 ;; XXX Should we return noun forms if $n and $x are rational?
1675 (multiple-value-bind (n alpha) (floor ($float $n))
1676 (let ((iarray (make-array (1+ n) :element-type 'flonum)))
1677 (slatec:dbesi ($float $x) alpha 2 (1+ n) iarray 0)
1678 (aref iarray n))))
1680 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1681 ($bessel_i $n $x)))))
1683 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1685 ;;; Implementation of the Hankel 1 function
1687 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1689 (defmfun $hankel_1 (v z)
1690 (simplify (list '(%hankel_1) v z)))
1692 ;; hankel_1 distributes over lists, matrices, and equations
1694 (defprop %hankel_1 (mlist $matrix mequal) distribute_over)
1696 #+nil
1697 (defprop %hankel_1 simp-hankel-1 operators)
1699 ; Derivatives of the Hankel 1 function
1700 (defprop %hankel_1
1701 ((n x)
1704 ;; Derivative wrt arg x. A&S 9.1.27.
1705 ((mtimes)
1706 ((mplus)
1707 ((%hankel_1) ((mplus) -1 n) x)
1708 ((mtimes) -1 ((%hankel_1) ((mplus) 1 n) x)))
1709 ((rat) 1 2)))
1710 grad)
1712 (def-simplifier hankel_1 (order arg)
1713 (let (rat-order)
1714 (cond
1715 ((zerop1 arg)
1716 (simp-domain-error
1717 (intl:gettext "hankel_1: hankel_1(~:M,~:M) is undefined.")
1718 order arg))
1719 ((complex-float-numerical-eval-p order arg)
1720 (cond ((= 0 ($imagpart order))
1721 ;; order is real, arg is real or complex
1722 (complexify (hankel-1 ($float order)
1723 (complex ($float ($realpart arg))
1724 ($float ($imagpart arg))))))
1726 ;; The order is complex. Use
1727 ;; hankel_1(v,z) = bessel_j(v,z) + %i*bessel_y(v,z)
1728 ;; and evaluate using the hypergeometric function
1729 (let (($numer t)
1730 ($float t)
1731 (order ($float order))
1732 (arg ($float arg)))
1733 ($float
1734 ($rectform
1735 (add (bessel-j-hypergeometric order arg)
1736 (mul '$%i
1737 (bessel-y-hypergeometric order arg)))))))))
1738 ((and $besselexpand
1739 (setq rat-order (max-numeric-ratio-p order 2)))
1740 ;; When order is a fraction with a denominator of 2, we can express
1741 ;; the result in terms of elementary functions.
1742 ;; Use the definition hankel_1(v,z) = bessel_j(v,z)+%i*bessel_y(v,z)
1743 (sratsimp
1744 (add (bessel-j-half-order rat-order arg)
1745 (mul '$%i
1746 (bessel-y-half-order rat-order arg)))))
1747 (t (give-up)))))
1749 ;; Numerically compute H1[v](z).
1751 ;; A&S 9.1.3 says H1[v](z) = J[v](z) + %i * Y[v](z)
1753 (defun hankel-1 (v z)
1754 (let ((v (float v))
1755 (z (coerce z '(complex flonum))))
1756 (cond ((minusp v)
1757 ;; A&S 9.1.6:
1759 ;; H1[-v](z) = exp(v*%pi*%i)*H1[v](z)
1761 ;; or
1763 ;; H1[v](z) = exp(-v*%pi*%i)*H1[-v](z)
1765 (* (cis (* (float pi) (- v))) (hankel-1 (- v) z)))
1767 (multiple-value-bind (n fnu) (floor v)
1768 (let ((zr (realpart z))
1769 (zi (imagpart z))
1770 (cyr (make-array (1+ n) :element-type 'flonum))
1771 (cyi (make-array (1+ n) :element-type 'flonum)))
1772 (multiple-value-bind (dzr dzi df dk dm dn dcyr dcyi nz ierr)
1773 (slatec::zbesh zr zi fnu 1 1 (1+ n) cyr cyi 0 0)
1774 (declare (ignore dzr dzi df dk dm dn dcyr dcyi nz ierr))
1775 (complex (aref cyr n) (aref cyi n)))))))))
1777 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1779 ;;; Implementation of the Hankel 2 function
1781 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1783 (defmfun $hankel_2 (v z)
1784 (simplify (list '(%hankel_2) v z)))
1786 ;; hankel_2 distributes over lists, matrices, and equations
1788 (defprop %hankel_2 (mlist $matrix mequal) distribute_over)
1790 #+nil
1791 (defprop %hankel_2 simp-hankel-2 operators)
1793 ; Derivatives of the Hankel 2 function
1794 (defprop %hankel_2
1795 ((n x)
1798 ;; Derivative wrt arg x. A&S 9.1.27.
1799 ((mtimes)
1800 ((mplus)
1801 ((%hankel_2) ((mplus) -1 n) x)
1802 ((mtimes) -1 ((%hankel_2) ((mplus) 1 n) x)))
1803 ((rat) 1 2)))
1804 grad)
1806 (def-simplifier hankel_2 (order arg)
1807 (let (rat-order)
1808 (cond
1809 ((zerop1 arg)
1810 (simp-domain-error
1811 (intl:gettext "hankel_2: hankel_2(~:M,~:M) is undefined.")
1812 order arg))
1813 ((complex-float-numerical-eval-p order arg)
1814 (cond ((= 0 ($imagpart order))
1815 ;; order is real, arg is real or complex
1816 (complexify (hankel-2 ($float order)
1817 (complex ($float ($realpart arg))
1818 ($float ($imagpart arg))))))
1820 ;; The order is complex. Use
1821 ;; hankel_2(v,z) = bessel_j(v,z) - %i*bessel_y(v,z)
1822 ;; and evaluate using the hypergeometric function
1823 (let (($numer t)
1824 ($float t)
1825 (order ($float order))
1826 (arg ($float arg)))
1827 ($float
1828 ($rectform
1829 (sub (bessel-j-hypergeometric order arg)
1830 (mul '$%i
1831 (bessel-y-hypergeometric order arg)))))))))
1832 ((and $besselexpand
1833 (setq rat-order (max-numeric-ratio-p order 2)))
1834 ;; When order is a fraction with a denominator of 2, we can express
1835 ;; the result in terms of elementary functions.
1836 ;; Use the definition hankel_2(v,z) = bessel_j(v,z)-%i*bessel_y(v,z)
1837 (sratsimp
1838 (sub (bessel-j-half-order rat-order arg)
1839 (mul '$%i
1840 (bessel-y-half-order rat-order arg)))))
1841 (t (give-up)))))
1843 ;; Numerically compute H2[v](z).
1845 ;; A&S 9.1.4 says H2[v](z) = J[v](z) - %i * Y[v](z)
1847 (defun hankel-2 (v z)
1848 (let ((v (float v))
1849 (z (coerce z '(complex flonum))))
1850 (cond ((minusp v)
1851 ;; A&S 9.1.6:
1853 ;; H2[-v](z) = exp(-v*%pi*%i)*H2[v](z)
1855 ;; or
1857 ;; H2[v](z) = exp(v*%pi*%i)*H2[-v](z)
1859 (* (cis (* (float pi) v)) (hankel-2 (- v) z)))
1861 (multiple-value-bind (n fnu) (floor v)
1862 (let ((zr (realpart z))
1863 (zi (imagpart z))
1864 (cyr (make-array (1+ n) :element-type 'flonum))
1865 (cyi (make-array (1+ n) :element-type 'flonum)))
1866 (multiple-value-bind (dzr dzi df dk dm dn dcyr dcyi nz ierr)
1867 (slatec::zbesh zr zi fnu 1 2 (1+ n) cyr cyi 0 0)
1868 (declare (ignore dzr dzi df dk dm dn dcyr dcyi nz ierr))
1869 (complex (aref cyr n) (aref cyi n)))))))))
1871 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1873 ;;; Implementation of Struve H function
1875 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1877 (defmfun $struve_h (v z)
1878 (simplify (list '(%struve_h) v z)))
1880 ;; struve_h distributes over lists, matrices, and equations
1882 (defprop %struve_h (mlist $matrix mequal) distribute_over)
1884 #+nil
1885 (defprop %struve_h simp-struve-h operators)
1887 ; Derivatives of the Struve H function
1888 (defprop %struve_h
1889 ((v z)
1892 ;; Derivative wrt arg z. A&S 12.1.10.
1893 ((mtimes)
1894 ((rat) 1 2)
1895 ((mplus)
1896 ((%struve_h) ((mplus) -1 v) z)
1897 ((mtimes) -1 ((%struve_h) ((mplus) 1 v) z))
1898 ((mtimes)
1899 ((mexpt) $%pi ((rat) -1 2))
1900 ((mexpt) 2 ((mtimes) -1 v))
1901 ((mexpt) ((%gamma) ((mplus) ((rat) 3 2) v)) -1)
1902 ((mexpt) z v)))))
1903 grad)
1905 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1907 (def-simplifier struve_h (order arg)
1908 (cond
1910 ;; Check for special values
1912 ((zerop1 arg)
1913 (cond ((eq ($csign (add order 1)) '$zero)
1914 ; http://functions.wolfram.com/03.09.03.0018.01
1915 (cond ((or ($bfloatp order)
1916 ($bfloatp arg))
1917 ($bfloat (div 2 '$%pi)))
1918 ((or (floatp order)
1919 (floatp arg))
1920 ($float (div 2 '$%pi)))
1922 (div 2 '$%pi))))
1923 ((eq ($sign (add ($realpart order) 1)) '$pos)
1924 ; http://functions.wolfram.com/03.09.03.0001.01
1925 arg)
1926 ((member ($sign (add ($realpart order) 1)) '($zero $neg $nz))
1927 (simp-domain-error
1928 (intl:gettext "struve_h: struve_h(~:M,~:M) is undefined.")
1929 order arg))
1931 (give-up))))
1933 ;; Check for numerical evaluation
1935 ((complex-float-numerical-eval-p order arg)
1936 ; A&S 12.1.21
1937 (let (($numer t) ($float t))
1938 ($rectform
1939 ($float
1940 (mul
1941 ($rectform (power arg (add order 1.0)))
1942 ($rectform (inv (power 2.0 order)))
1943 (inv (power ($float '$%pi) 0.5))
1944 (inv (simplify (list '(%gamma) (add order 1.5))))
1945 (simplify (list '($hypergeometric)
1946 (list '(mlist) 1)
1947 (list '(mlist) '((rat simp) 3 2)
1948 (add order '((rat simp) 3 2)))
1949 (div (mul arg arg) -4.0))))))))
1951 ((complex-bigfloat-numerical-eval-p order arg)
1952 ; A&S 12.1.21
1953 (let (($ratprint nil)
1954 (arg ($bfloat arg))
1955 (order ($bfloat order)))
1956 ($rectform
1957 ($bfloat
1958 (mul
1959 ($rectform (power arg (add order 1)))
1960 ($rectform (inv (power 2 order)))
1961 (inv (power ($bfloat '$%pi) ($bfloat '((rat simp) 1 2))))
1962 (inv (simplify (list '(%gamma)
1963 (add order ($bfloat '((rat simp) 3 2))))))
1964 (simplify (list '($hypergeometric)
1965 (list '(mlist) 1)
1966 (list '(mlist) '((rat simp) 3 2)
1967 (add order '((rat simp) 3 2)))
1968 (div (mul arg arg) ($bfloat -4)))))))))
1970 ;; Transformations and argument simplifications
1972 ((and $besselexpand
1973 (ratnump order)
1974 (integerp (mul 2 order)))
1975 (cond
1976 ((eq ($sign order) '$pos)
1977 ;; Expansion of Struve H for a positive half integral order.
1978 (sratsimp
1979 (add
1980 (mul
1981 (inv (simplify (list '(mfactorial) (sub order
1982 '((rat simp) 1 2)))))
1983 (inv (power '$%pi '((rat simp) 1 2 )))
1984 (power (div arg 2) (add order -1))
1985 (let ((index (gensumindex)))
1986 (dosum
1987 (mul
1988 (simplify (list '($pochhammer) '((rat simp) 1 2) index))
1989 (simplify (list '($pochhammer)
1990 (sub '((rat simp) 1 2) order)
1991 index))
1992 (power (mul -1 arg arg (inv 4)) (mul -1 index)))
1993 index 0 (sub order '((rat simp) 1 2)) t)))
1994 (mul
1995 (power (div 2 '$%pi) '((rat simp) 1 2))
1996 (power -1 (add order '((rat simp) 1 2)))
1997 (inv (power arg '((rat simp) 1 2)))
1998 (add
1999 (mul
2000 (simplify
2001 (list '(%sin)
2002 (add (mul '((rat simp) 1 2)
2003 '$%pi
2004 (add order '((rat simp) 1 2)))
2005 arg)))
2006 (let ((index (gensumindex)))
2007 (dosum
2008 (mul
2009 (power -1 index)
2010 (simplify (list '(mfactorial)
2011 (add (mul 2 index)
2012 order
2013 '((rat simp) -1 2))))
2014 (inv (simplify (list '(mfactorial) (mul 2 index))))
2015 (inv (simplify (list '(mfactorial)
2016 (add (mul -2 index)
2017 order
2018 '((rat simp) -1 2)))))
2019 (inv (power (mul 2 arg) (mul 2 index))))
2020 index 0
2021 (simplify (list '($floor)
2022 (div (sub (mul 2 order) 1) 4)))
2023 t)))
2024 (mul
2025 (simplify (list '(%cos)
2026 (add (mul '((rat simp) 1 2)
2027 '$%pi
2028 (add order '((rat simp) 1 2)))
2029 arg)))
2030 (let ((index (gensumindex)))
2031 (dosum
2032 (mul
2033 (power -1 index)
2034 (simplify (list '(mfactorial)
2035 (add (mul 2 index)
2036 order
2037 '((rat simp) 1 2))))
2038 (power (mul 2 arg) (mul -1 (add (mul 2 index) 1)))
2039 (inv (simplify (list '(mfactorial)
2040 (add (mul 2 index) 1))))
2041 (inv (simplify (list '(mfactorial)
2042 (add (mul -2 index)
2043 order
2044 '((rat simp) -3 2))))))
2045 index 0
2046 (simplify (list '($floor)
2047 (div (sub (mul 2 order) 3) 4)))
2048 t))))))))
2050 ((eq ($sign order) '$neg)
2051 ;; Expansion of Struve H for a negative half integral order.
2052 (sratsimp
2053 (add
2054 (mul
2055 (power (div 2 '$%pi) '((rat simp) 1 2))
2056 (power -1 (add order '((rat simp) 1 2)))
2057 (inv (power arg '((rat simp) 1 2)))
2058 (add
2059 (mul
2060 (simplify (list '(%sin)
2061 (add
2062 (mul
2063 '((rat simp) 1 2)
2064 '$%pi
2065 (add order '((rat simp) 1 2)))
2066 arg)))
2067 (let ((index (gensumindex)))
2068 (dosum
2069 (mul
2070 (power -1 index)
2071 (simplify (list '(mfactorial)
2072 (add (mul 2 index)
2073 (neg order)
2074 '((rat simp) -1 2))))
2075 (inv (simplify (list '(mfactorial) (mul 2 index))))
2076 (inv (simplify (list '(mfactorial)
2077 (add (mul -2 index)
2078 (neg order)
2079 '((rat simp) -1 2)))))
2080 (inv (power (mul 2 arg) (mul 2 index))))
2081 index 0
2082 (simplify (list '($floor)
2083 (div (add (mul 2 order) 1) -4)))
2084 t)))
2085 (mul
2086 (simplify (list '(%cos)
2087 (add
2088 (mul
2089 '((rat simp) 1 2)
2090 '$%pi
2091 (add order '((rat simp) 1 2)))
2092 arg)))
2093 (let ((index (gensumindex)))
2094 (dosum
2095 (mul
2096 (power -1 index)
2097 (simplify (list '(mfactorial)
2098 (add (mul 2 index)
2099 (neg order)
2100 '((rat simp) 1 2))))
2101 (power (mul 2 arg) (mul -1 (add (mul 2 index) 1)))
2102 (inv (simplify (list '(mfactorial)
2103 (add (mul 2 index) 1))))
2104 (inv (simplify (list '(mfactorial)
2105 (add (mul -2 index)
2106 (neg order)
2107 '((rat simp) -3 2))))))
2108 index 0
2109 (simplify (list '($floor)
2110 (div (add (mul 2 order) 3) -4)))
2111 t))))))))))
2113 (give-up))))
2115 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2117 ;;; Implementation of Struve L function
2119 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2121 (defmfun $struve_l (v z)
2122 (simplify (list '(%struve_l) v z)))
2124 ;; struve_l distributes over lists, matrices, and equations
2126 (defprop %struve_l (mlist $matrix mequal) distribute_over)
2128 ; Derivatives of the Struve L function
2129 (defprop %struve_l
2130 ((v z)
2133 ;; Derivative wrt arg z. A&S 12.2.5.
2134 ((mtimes)
2135 ((rat) 1 2)
2136 ((mplus)
2137 ((%struve_l) ((mplus) -1 v) z)
2138 ((%struve_l) ((mplus) 1 v) z)
2139 ((mtimes)
2140 ((mexpt) $%pi ((rat) -1 2))
2141 ((mexpt) 2 ((mtimes) -1 v))
2142 ((mexpt) ((%gamma) ((mplus) ((rat) 3 2) v)) -1)
2143 ((mexpt) z v)))))
2144 grad)
2146 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2148 (def-simplifier struve_l (order arg)
2149 (cond
2151 ;; Check for special values
2153 ((zerop1 arg)
2154 (cond ((eq ($csign (add order 1)) '$zero)
2155 ; http://functions.wolfram.com/03.10.03.0018.01
2156 (cond ((or ($bfloatp order)
2157 ($bfloatp arg))
2158 ($bfloat (div 2 '$%pi)))
2159 ((or (floatp order)
2160 (floatp arg))
2161 ($float (div 2 '$%pi)))
2163 (div 2 '$%pi))))
2164 ((eq ($sign (add ($realpart order) 1)) '$pos)
2165 ; http://functions.wolfram.com/03.10.03.0001.01
2166 arg)
2167 ((member ($sign (add ($realpart order) 1)) '($zero $neg $nz))
2168 (simp-domain-error
2169 (intl:gettext "struve_l: struve_l(~:M,~:M) is undefined.")
2170 order arg))
2172 (give-up))))
2174 ;; Check for numerical evaluation
2176 ((complex-float-numerical-eval-p order arg)
2177 ; http://functions.wolfram.com/03.10.26.0002.01
2178 (let (($numer t) ($float t))
2179 ($rectform
2180 ($float
2181 (mul
2182 ($rectform (power arg (add order 1.0)))
2183 ($rectform (inv (power 2.0 order)))
2184 (inv (power ($float '$%pi) 0.5))
2185 (inv (simplify (list '(%gamma) (add order 1.5))))
2186 (simplify (list '($hypergeometric)
2187 (list '(mlist) 1)
2188 (list '(mlist) '((rat simp) 3 2)
2189 (add order '((rat simp) 3 2)))
2190 (div (mul arg arg) 4.0))))))))
2192 ((complex-bigfloat-numerical-eval-p order arg)
2193 ; http://functions.wolfram.com/03.10.26.0002.01
2194 (let (($ratprint nil))
2195 ($rectform
2196 ($bfloat
2197 (mul
2198 ($rectform (power arg (add order 1)))
2199 ($rectform (inv (power 2 order)))
2200 (inv (power ($bfloat '$%pi) ($bfloat '((rat simp) 1 2))))
2201 (inv (simplify (list '(%gamma) (add order '((rat simp) 3 2)))))
2202 (simplify (list '($hypergeometric)
2203 (list '(mlist) 1)
2204 (list '(mlist) '((rat simp) 3 2)
2205 (add order '((rat simp) 3 2)))
2206 (div (mul arg arg) 4))))))))
2208 ;; Transformations and argument simplifications
2210 ((and $besselexpand
2211 (ratnump order)
2212 (integerp (mul 2 order)))
2213 (cond
2214 ((eq ($sign order) '$pos)
2215 ;; Expansion of Struve L for a positive half integral order.
2216 (sratsimp
2217 (add
2218 (mul -1
2219 (power 2 (sub 1 order))
2220 (power arg (sub order 1))
2221 (inv (power '$%pi '((rat simp) 1 2)))
2222 (inv (simplify (list '(mfactorial) (sub order
2223 '((rat simp) 1 2)))))
2224 (let ((index (gensumindex)))
2225 (dosum
2226 (mul
2227 (simplify (list '($pochhammer) '((rat simp) 1 2) index))
2228 (simplify (list '($pochhammer)
2229 (sub '((rat simp) 1 2) order)
2230 index))
2231 (power (mul arg arg (inv 4)) (mul -1 index)))
2232 index 0 (sub order '((rat simp) 1 2)) t)))
2233 (mul -1
2234 (power (div 2 '$%pi) '((rat simp) 1 2))
2235 (inv (power arg '((rat simp) 1 2)))
2236 ($exp (div (mul '$%pi '$%i (add order '((rat simp) 1 2))) 2))
2237 (add
2238 (mul
2239 (let (($trigexpand t))
2240 (simplify (list '(%sinh)
2241 (sub (mul '((rat simp) 1 2)
2242 '$%pi
2243 '$%i
2244 (add order '((rat simp) 1 2)))
2245 arg))))
2246 (let ((index (gensumindex)))
2247 (dosum
2248 (mul
2249 (simplify (list '(mfactorial)
2250 (add (mul 2 index)
2251 (simplify (list '(mabs) order))
2252 '((rat simp) -1 2))))
2253 (inv (simplify (list '(mfactorial) (mul 2 index))))
2254 (inv (simplify (list '(mfactorial)
2255 (add (simplify (list '(mabs)
2256 order))
2257 (mul -2 index)
2258 '((rat simp) -1 2)))))
2259 (inv (power (mul 2 arg) (mul 2 index))))
2260 index 0
2261 (simplify (list '($floor)
2262 (div (sub (mul 2
2263 (simplify (list '(mabs)
2264 order)))
2266 4)))
2267 t)))
2268 (mul
2269 (let (($trigexpand t))
2270 (simplify (list '(%cosh)
2271 (sub (mul '((rat simp) 1 2)
2272 '$%pi
2273 '$%i
2274 (add order '((rat simp) 1 2)))
2275 arg))))
2276 (let ((index (gensumindex)))
2277 (dosum
2278 (mul
2279 (simplify (list '(mfactorial)
2280 (add (mul 2 index)
2281 (simplify (list '(mabs) order))
2282 '((rat simp) 1 2))))
2283 (power (mul 2 arg) (neg (add (mul 2 index) 1)))
2284 (inv (simplify (list '(mfactorial)
2285 (add (mul 2 index) 1))))
2286 (inv (simplify (list '(mfactorial)
2287 (add (simplify (list '(mabs)
2288 order))
2289 (mul -2 index)
2290 '((rat simp) -3 2))))))
2291 index 0
2292 (simplify (list '($floor)
2293 (div (sub (mul 2
2294 (simplify (list '(mabs)
2295 order)))
2297 4)))
2298 t))))))))
2299 ((eq ($sign order) '$neg)
2300 ;; Expansion of Struve L for a negative half integral order.
2301 (sratsimp
2302 (add
2303 (mul -1
2304 (power (div 2 '$%pi) '((rat simp) 1 2))
2305 (inv (power arg '((rat simp) 1 2)))
2306 ($exp (div (mul '$%pi '$%i (add order '((rat simp) 1 2))) 2))
2307 (add
2308 (mul
2309 (let (($trigexpand t))
2310 (simplify (list '(%sinh)
2311 (sub (mul '((rat simp) 1 2)
2312 '$%pi
2313 '$%i
2314 (add order '((rat simp) 1 2)))
2315 arg))))
2316 (let ((index (gensumindex)))
2317 (dosum
2318 (mul
2319 (simplify (list '(mfactorial)
2320 (add (mul 2 index)
2321 (neg order)
2322 '((rat simp) -1 2))))
2323 (inv (simplify (list '(mfactorial) (mul 2 index))))
2324 (inv (simplify (list '(mfactorial)
2325 (add (neg order)
2326 (mul -2 index)
2327 '((rat simp) -1 2)))))
2328 (inv (power (mul 2 arg) (mul 2 index))))
2329 index 0
2330 (simplify (list '($floor)
2331 (div (add (mul 2 order) 1) -4)))
2332 t)))
2333 (mul
2334 (let (($trigexpand t))
2335 (simplify (list '(%cosh)
2336 (sub (mul '((rat simp) 1 2)
2337 '$%pi
2338 '$%i
2339 (add order '((rat simp) 1 2)))
2340 arg))))
2341 (let ((index (gensumindex)))
2342 (dosum
2343 (mul
2344 (simplify (list '(mfactorial)
2345 (add (mul 2 index)
2346 (neg order)
2347 '((rat simp) 1 2))))
2348 (power (mul 2 arg) (neg (add (mul 2 index) 1)))
2349 (inv (simplify (list '(mfactorial)
2350 (add (mul 2 index) 1))))
2351 (inv (simplify (list '(mfactorial)
2352 (add (neg order)
2353 (mul -2 index)
2354 '((rat simp) -3 2))))))
2355 index 0
2356 (simplify (list '($floor)
2357 (div (add (mul 2 order) 3) -4)))
2358 t))))))))))
2360 (give-up))))
2362 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2364 (defmspec $gauss (form)
2365 (format t
2366 "NOTE: The gauss function is superseded by random_normal in the `distrib' package.
2367 Perhaps you meant to enter `~a'.~%"
2368 (print-invert-case (implode (mstring `(($random_normal) ,@ (cdr form))))))
2369 '$done)