Fix the inefficient evaluation of translated predicates
[maxima.git] / src / invert.lisp
blobc63e4142fb9b2e5a5739d4018d4e558b5f8072f0
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
3 (in-package :maxima)
5 (defmfun $adjoint (mat)
6 (let* ((n ($length mat))
7 (adj (simplify ($ident n))))
8 (unless (like n 1)
9 (do ((i 1 (1+ i)))
10 ((> i n))
11 (do ((j 1 (1+ j)))
12 ((> j n))
13 (maset (mul* (power -1 (+ i j))
14 (simplify ($determinant (simplify ($minor mat j i)))))
15 adj i j))))
16 adj))
18 (defmfun $invert_by_adjoint (mat)
19 (let*
20 ((adj (simplify ($adjoint mat)))
21 (det (let (($scalarmatrixp t))
22 (ncmul2 (simplify ($row mat 1))
23 (simplify ($col adj 1)))))
24 (mat1 (if (and $scalarmatrixp (= ($length mat) 1)) (maref adj 1 1) adj)))
25 (if $detout
26 `((mtimes) ((mexpt) ,det -1) ,mat1)
27 (div mat1 det))))
29 (defmvar $invert_method nil)
30 (defmvar $invert_by_adjoint_size_limit 8)
32 (defmfun $invert (&rest args)
33 (case $invert_method
34 (($lu) (apply #'invert-via-$invert_by_lu args))
35 (($gausselim) (apply #'$invert_by_gausselim args))
36 (($adjoint) (apply #'$invert_by_adjoint args))
37 ((nil)
38 ;; Select a method appropriate for the matrix.
39 ;; This could be more sophisticated.
40 (let*
41 ((my-matrix (first args))
42 (size (length (rest my-matrix))))
43 (if (<= size $invert_by_adjoint_size_limit)
44 (apply #'$invert_by_adjoint args)
45 (apply #'$invert_by_gausselim args))))
47 (mtell "invert: unrecognized invert_method=~M; assume default.~%" $invert_method)
48 (let (($invert_method nil))
49 (apply #'$invert args)))))
51 (defun invert-via-$invert_by_lu (m &optional (field-name (if $ratmx '$crering '$generalring)))
52 (declare (special $ratmx $detout))
53 ;; Call functions from package linearalgebra via MFUNCALL to autoload them if necessary.
54 (if $detout
55 (let*
56 ((field (mfuncall '$require_ring field-name "$second" "$invert"))
57 (d-i (funcall 'invert-by-lu-with-determinant m field-name))
58 (d (first d-i))
59 (i (second d-i))
60 (d-times-i (multiply-matrix-elements d (funcall 'mring-mult field) i))
61 (d^-1 (funcall (funcall 'mring-reciprocal field) d)))
62 (list '(mtimes) d^-1 d-times-i))
63 (mfuncall '$invert_by_lu m field-name)))
65 ;; I wonder if this function already exists somewhere. Oh well.
66 (defun multiply-matrix-elements (a multiply m)
67 (cons (car m) (mapcar #'(lambda (row) (cons (car row) (mapcar #'(lambda (x) (funcall multiply a x)) (cdr row)))) (cdr m))))