Fix the inefficient evaluation of translated predicates
[maxima.git] / src / linnew.lisp
blobd2df04e79aba711279ac844649edd1bf9cbccaa8
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
12 (macsyma-module linnew)
14 ;; This is a matrix package which uses minors, basically.
15 ;; TMLINSOLVE(LIST-OF-EQUAIONS,LIST-OF-VARIABLES,LIST-OF-VARIABLES-TO-BE-OBTAINED)
16 ;; solves the linear equation. LIST-OF-VARIABLES-TO-BE-OBTAINED can be omitted,
17 ;; in which case all variables are obtained. TMNEWDET(MATRIX,DIMENSION)
18 ;; computes the determinant. DIMENSION can be omitted. The default is
19 ;; DIMENSION=(declared dimension of MATRIX). TMINVERSE(MATRIX) computes the
20 ;; inverse of matrix.
22 ;; The program uses hash arrays to remember the minors if N > threshold. If
23 ;; $WISE is set to T, the program knocks out unnecessary elements. But also it
24 ;; kills necessary ones in the case of zero elements! The $WISE flag should
25 ;; not be set to T for inverse. The default of $WISE is NIL.
27 ;; There seem to have been a number of bugs in this code. I changed
28 ;; the array referencing to value cell, and some of the stuff about
29 ;; cre form. It now seems tminverse and tmlinsolve, now seem to work. --wfs.
31 ;;these are arrays
32 (declare-top (special *tmarrays* *a2* *b* *aa* *row* *col* *rowinv* *colinv* *indx*))
34 (declare-top (special n nx ix))
36 (declare-top (special $linenum $dispflag $linechar $wise $fool))
38 (defvar *tmarrays* nil)
40 ;; If N < threshold declared array is used, otherwise hashed array.
42 (defparameter *threshold* 10)
44 (defun tminitialflag nil
45 (unless (boundp '$wise) (setq $wise nil))
46 (unless (boundp '$fool) (setq $fool nil)))
48 ;; TMDET returns the determinant of N*N matrix A2 which is in an globally
49 ;; declared array A2.
51 (defun tmdet (a4 n)
52 (prog (index ix)
53 (tminitialflag)
54 (setq ix 0 nx 0)
55 (do ((i 1 (1+ i)))
56 ((> i n))
57 (push i index))
58 (setq index (nreverse index))
59 (tminor a4 n 1 index 0)))
61 ;; TMLIN SOLVES M SETS OF LINEAR EQUATIONS WITH N UNKNOWN VARIABLES. IT SOLVES
62 ;; ONLY FOR THE FIRST NX UNKNOWNS OUT OF N. THE EQUATIONS ARE EXPRESSED IN
63 ;; MATRIX FORM WHICH IS IN N*(N+M) ARRAY A2. AS USUAL , THE LEFT HAND SIDE N*N
64 ;; OF A2 REPRESENTS THE COEFFICIENT MATRIX, AND NEXT N*M OF A2 IS THE RIGHT
65 ;; HAND SIDE OF THE M SETS OF EQUATIONS. SUPPOSE N=3, M=2, AND THE UNKKNOWNS
66 ;; ARE (X1 Y1 Z1) FOR THE FIRST SET AND (X2 Y2 Z2) FOR THE SECOND. THEN THE
67 ;; RESULT OF TMLIN IS ((DET) (U1 U2) (V1 V2) (W1 W2)) WHERE DET IS THE
68 ;; DETERMINANT OF THE COEFFICIENT MATRIX AND X1=U1/DET, X2=U2/DET, Y1=V1/DET,
69 ;; Y2=V2/DET ETC.
71 (defun tmlin (a4 n m nx)
72 (prog (index r)
73 (tmdefarray n)
74 (tminitialflag)
75 (do ((i 1 (1+ i)))
76 ((> i n))
77 (push i index))
78 (setq index (reverse index))
79 (setq r
80 (do ((ix 0 (1+ ix))
81 (result))
82 ((> ix nx) (reverse result))
83 (push (do ((i 1 (1+ i)) (res))
84 ((> i (if (= ix 0) 1 m))
85 (reverse res))
86 (unless $wise (tmkillarray ix))
87 (push (tminor a4 n 1 index i) res))
88 result)
89 (when (and (= ix 0) (equal (car result) '(0 . 1)))
90 (merror (intl:gettext "tmlin: coefficient matrix is singular.")))))
91 (tmrearray n)
92 (return r)))
94 ;; TMINOR ACTUALLY COMPUTES THE MINOR DETERMINANT OF A SUBMATRIX OF A2, WHICH
95 ;; IS CONSTRUCTED BY EXTRACTING ROWS (K,K+1,K+2,...,N) AND COLUMNS SPECIFIED BY
96 ;; INDEX. N IS THE DIMENSION OF THE ORIGINAL MATRIX A2. WHEN TMINOR IS USED
97 ;; FOR LINEAR EQUATION PROGRAM, JRIGHT SPECIFIES A COLUMN OF THE CONSTANT
98 ;; MATRIX WHICH IS PLUGED INTO AN IX-TH COLUMN OF THE COEFFICIENT MATRIX FOR
99 ;; ABTAINING IX-TH UNKNOWN. IN OTHER WORDS, JRIGHT SPECIFIES JRIGHT-TH
100 ;; EQUATION.
102 (defun tminor (a4 n k index jright)
103 (prog (subindx l result name aorb)
104 (setq a4 (get-array-pointer a4))
105 (cond ((= k n)
106 (setq result
107 (if (= k ix)
108 (aref a4 (car index) (+ jright n))
109 (aref a4 (car index) k))))
112 ((j 1 (1+ j))
113 (sum '(0 . 1)))
114 ((> j (1+ (- n k))) (setq result sum))
115 (setq l (extract index j))
116 (setq subindx (cadr l))
117 (setq l (car l))
118 (setq aorb (if (= k ix)
119 (aref a4 l (+ jright n))
120 (aref a4 l k)))
121 (unless (equal aorb '(0 . 1))
122 (setq name (tmaccess subindx))
123 (setq sum
124 (funcall (if (oddp j) #'ratplus #'ratdifference)
126 (rattimes
127 aorb
128 (if $fool
129 (tminor a4 n (1+ k) subindx jright)
130 (cond ((not (null (tmeval name)))
131 (tmeval name))
132 ((tmnomoreuse j l k)
133 (tmstore name nil)
134 (tminor a4 n (1+ k) subindx jright))
136 (tmstore name (tminor a4 n (1+ k) subindx jright)))))
137 t))))
138 (when $wise
139 (when (tmnomoreuse j l k)
140 (tmkill subindx k))))))
141 (return result)))
143 (defun extract (index j)
144 (do ((ind index (cdr ind))
145 (count 1 (1+ count))
146 (subindx))
147 ((null ind))
148 (if (= count j)
149 (return (list (car ind) (nconc subindx (cdr ind))))
150 (setq subindx (nconc subindx (list (car ind)))))))
152 (declare-top (special vlist varlist genvar))
154 (defun tmratconv (bbb n m)
155 (prog (ccc)
156 (declare (special ccc)) ;Tell me this worked in Maclisp. --gsb
157 ;Actually, i suspect it didn't, at least ever since
158 ; (sstatus punt).
159 (setf (symbol-value 'ccc) bbb)
160 (do ((k 1 (1+ k)))
161 ((> k n))
162 (do ((j 1 (1+ j)))
163 ((> j m))
164 (newvar1 (setf (aref *a2* k j)
165 (maref ccc k j)
166 ;; (nth j (nth k *a2*))
167 ;; (MEVAL (LIST (LIST 'CCC 'array) K J)) ;;just the
168 ))))
170 (newvar (cons '(mtimes) vlist))
171 (do ((k 1 (1+ k)))
172 ((> k n))
173 (do ((j 1 (1+ j)))
174 ((> j m))
175 (setf (aref *a2* k j) (cdr (ratrep* (aref *a2* k j))))))))
177 (defmfun $tmnewdet (mat &optional (dim nil dim?))
178 (prog (*aa* r vlist n)
179 (cond (dim?
180 (unless (integerp dim)
181 (merror (intl:gettext "tmnewdet: second argument must be an integer; found: ~M") dim))
182 (setq n dim))
183 (($matrixp mat)
184 (setq n (length (cdr mat))))
186 (merror (intl:gettext "tmnewdet: first argument must be a matrix; found: ~M") mat)))
187 (setq *aa* mat)
188 (setq *a2* (make-array (list (1+ n) (1+ n)) :initial-element nil))
189 (tmdefarray n)
190 (tmratconv *aa* n n)
191 (setq r (cons (list 'mrat 'simp varlist genvar) (tmdet '*a2* n)))
192 (tmrearray n)
193 (return r)))
195 (defmfun $tmlinsolve (&rest arglist)
196 (prog (equations vars outvars result *aa*)
197 (setq equations (cdar arglist)
198 vars (cdadr arglist)
199 outvars (cond ((null (cddr arglist)) vars)
200 (t (cdaddr arglist))))
201 (setq vars (tmerge vars outvars))
202 (setq nx (length outvars))
203 (setq n (length vars))
204 (unless (= n (length equations))
205 (return (print 'too-few-or-much-equations)))
206 (setq *aa*
207 (cons '($matrix simp)
208 (mapcar #'(lambda (exp)
209 (append
210 '((mlist))
211 (mapcar #'(lambda (v)
212 (prog (r)
213 (setq exp ($bothcoef exp v)
214 r (cadr exp)
215 exp (meval (caddr exp)))
216 (return r)))
217 vars)
218 (list (list '(mminus) exp))))
219 (mapcar #'(lambda (e)
220 (meval (list '(mplus)
221 ($lhs e)
222 (list '(mminus) ($rhs e)))))
223 equations))))
224 (setq result (cdr ($tmlin *aa* n 1 nx)))
225 (return
226 (do ((vars (cons nil outvars) (cdr vars))
227 (labels)
228 (dlabel)
229 (name))
230 ((null vars)
231 (cons '(mlist) (cdr (reverse labels))))
232 (setq name (makelabel $linechar))
233 (incf $linenum)
234 (setf (symbol-value name)
235 (cond ((null (car vars))
236 (setq dlabel name)
237 (cadar result))
238 (t (list '(mequal)
239 (car vars)
240 (list '(mtimes simp)
241 (cadar result)
242 (list '(mexpt simp) dlabel -1))))))
243 (push name labels)
244 (setq result (cdr result))
245 (when $dispflag
246 (mtell-open "~M" (nconc (ncons '(mlabel))
247 (ncons name)
248 (ncons (eval name)))))))))
250 (defun tmerge (vars outvars)
251 (append outvars
252 (prog (l)
253 (mapcar #'(lambda (v)
254 (if (member v outvars) nil (push v l)))
255 vars)
256 (return (reverse l)))))
258 (defmfun $tmlin (*aa* n m nx)
259 (prog (r vlist)
260 (setq *a2* (make-array (list (1+ n) (+ 1 m n)) :initial-element nil))
261 (show *a2*)
262 (tmratconv *aa* n (+ m n))
263 (setq r
264 (cons '(mlist)
265 (mapcar
266 #'(lambda (res)
267 (cons '(mlist)
268 (mapcar #'(lambda (result)
269 (cons (list 'mrat 'simp varlist genvar) result))
270 res)))
271 (tmlin '*a2* n m nx))))
272 (show *a2*)
273 (return r)))
275 (defun tmkill (*indx* k)
276 (prog (name subindx j l)
277 (when (null *indx*) (return nil))
278 (setq name (tmaccess *indx*))
279 (cond ((not (null (tmeval name)))
280 (tmstore name nil))
282 (do ((ind *indx* (cdr ind))
283 (count 1 (1+ count)))
284 ((null ind))
285 (setq l (extract *indx* count)
286 j (car l)
287 subindx (cadr l))
288 (when (= j count)
289 (tmkill subindx (1+ k))))))))
291 (defun tmnomoreuse (j l k)
292 (if (and (= j l) (or (> k nx) (< k (1+ ix))))
294 nil))
296 (defun tmdefarray (n)
297 (prog (name)
298 (cond ((setq *tmarrays* (get-array-pointer *tmarrays*))
299 (tmrearray (1- (cond ((cadr (arraydims *tmarrays*)))
300 (t 1))))))
301 (setq *tmarrays* (make-array (1+ n) :initial-element nil))
302 (do ((i 1 (1+ i)))
303 ((> i n))
304 (setq name (if (= i 1) (make-symbol "M") (gensym)))
305 (cond ((< n *threshold*)
306 (setf (symbol-value name) (make-array (1+ (tmcombi n i)) :initial-element nil))
307 (setf (aref *tmarrays* i) (get-array-pointer name)))
309 (setf (aref *tmarrays* i) (list name 'simp 'array)))))
310 (gensym "G")))
312 ;; TMREARRAY kills the TMARRAYS which holds pointers to minors. If (TMARRAYS I)
313 ;; is an atom, it is declared array. Otherwise it is hashed array.
315 (defun tmrearray (n)
316 (prog nil
317 (do ((i 1 (1+ i)))
318 ((> i n))
319 (unless (atom (aref *tmarrays* i))
320 (tm$kill (car (aref *tmarrays* i)))))))
322 (defun tmaccess (index)
323 (prog (l)
324 (cond ($fool (return nil)))
325 (setq l (length index))
326 (return
327 (cond ((< n *threshold*)
328 (list 'aref (aref *tmarrays* l)
329 (do ((i 1 (1+ i))
330 (x 0 (car y))
331 (y index (cdr y))
332 (sum 0))
333 ((> i l) (1+ sum))
334 (do ((j (1+ x) (1+ j)))
335 ((= j (car y)))
336 (incf sum (tmcombi (- n j) (- l i)))))))
337 (t (cons 'aref (cons (aref *tmarrays* l) index)))))) )
339 (defun tmcombi (n i)
340 (if (> (- n i) i)
341 (/ (tmfactorial n (- n i)) (tmfactorial i 0))
342 (/ (tmfactorial n i) (tmfactorial (- n i) 0))))
344 (defun tmfactorial (i j)
345 (if (= i j)
347 (* i (tmfactorial (1- i) j))))
349 (defun tmstore (name x)
350 (cond ((< n *threshold*)
351 (eval `(setf ,name ',x)))
353 (mset name (list '(mquote simp) x))
354 x)))
356 ;; TMKILLARRAY kills all (N-IX+1)*(N-IX+1) minors which are not necessary for
357 ;; the computation of IX-TH variable in the linear equation. Otherwise, they
358 ;; will do harm.
360 (defun tmkillarray (ix)
361 (do ((i (1+ (- n ix)) (1+ i)))
362 ((> i n))
363 (if (< n *threshold*)
364 (fillarray (aref *tmarrays* i) '(nil))
365 (tm$kill (car (aref *tmarrays* i))))))
367 (defun tmeval (e)
368 (prog (result)
369 (return (cond ((< n *threshold*)
370 (eval e))
372 (setq result (meval e))
373 (if (equal result e) nil (cadr result)))))))
375 (defun tm$kill (e)
376 (kill1 e))
378 (defmfun $tminverse (*aa*)
379 (prog (r vlist n m nx)
380 (setq n (length (cdr *aa*)) m n nx n)
381 (setq *a2* (make-array (list (1+ n) (+ 1 m n)) :initial-element nil))
382 (tmratconv *aa* n n)
383 (do ((i 1 (1+ i)))
384 ((> i n))
385 (do ((j 1 (1+ j)))
386 ((> j m))
387 (setf (aref *a2* i (+ n j))
388 (if (= i j) '(1 . 1) '(0 . 1)))))
389 (setq r (mapcar #'(lambda (res)
390 (cons '(mlist)
391 (mapcar #'(lambda (result)
392 ($ratdisrep (cons (list 'mrat 'simp varlist genvar) result)))
393 res)))
394 (tmlin '*a2* n m nx)))
395 (setq r (list '(mtimes simp)
396 (list '(mexpt simp) (cadar r) -1)
397 (cons '($matrix simp) (cdr r))))
398 (return r)))
400 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
401 ;;THIS IS A UTILITY PACKAGE FOR SPARSE
402 ;;MATRIX INVERSION. A3 IS A N*N MATRIX.
403 ;;IT RETURNS A LIST OF LISTS, SUCH AS
404 ;;((I1 I2 ...) (J1 J2...) ...) WHERE (I1
405 ;;I2 ..) SHOWS THE ROWS WHICH BELONGS TO
406 ;;THE FIRST BLOCK, AND SO ON. THE ROWS
407 ;;SHOUD BE REORDERED IN THIS ORDER. THE
408 ;;COLUMNS ARE NOT CHANGED. IT RETURNS NIL
409 ;;IF A3 IS "OBVIOUSLY" SINGULAR.
411 ;; (DEFUN TMISOLATE (A3 N)
412 ;; (PROG (NODELIST)
413 ;; (SETQ A3 (GET A3 'ARRAY))
414 ;; (setq B (*ARRAY nil 'T (1+ N) (1+ N)))
415 ;; (setq ROW (*ARRAY nil 'T (1+ N)))
416 ;; (setq COL (*ARRAY nil 'T (1+ N)))
417 ;; (DO ((I 1 (1+ I)))
418 ;; ((> I N))
419 ;; (STORE (ROW I) I)
420 ;; (STORE (COL I) I))
421 ;; (DO ((I 1 (1+ I)))
422 ;; ((> I N))
423 ;; (DO ((J 1 (1+ J)))
424 ;; ((> J N))
425 ;; (STORE (B I J)
426 ;; (NOT (EQUAL (AREF A3 I J)
427 ;; '(0 . 1))))))
428 ;; (COND ((NULL (TMPIVOT-ISOLATE 1))
429 ;; (SETQ NODELIST NIL)
430 ;; (GO EXIT)))
431 ;; (DO ((I 1 (1+ I)))
432 ;; ((> I N))
433 ;; (DO ((J 1 (1+ J)))
434 ;; ((> J I))
435 ;; (STORE (B (ROW J) (COL I))
436 ;; (OR (B (ROW I) (COL J))
437 ;; (B (ROW J) (COL I))))
438 ;; (STORE (B (ROW I) (COL J)) (B (ROW J) (COL I))))
439 ;; (STORE (B (ROW I) (COL I)) T))
440 ;; (DO ((I 1 (1+ I)))
441 ;; ((> I N))
442 ;; (COND ((EQ (B (ROW I) (COL I)) T)
443 ;; (SETQ NODELIST
444 ;; (CONS (TMPULL-OVER I N) NODELIST)))))
445 ;; EXIT
446 ;; (*TMREARRAY 'B)
447 ;; (*TMREARRAY 'ROW)
448 ;; (*TMREARRAY 'COL)
449 ;; (RETURN (REVERSE NODELIST)))))
451 ;; (DEFUN TMPULL-OVER (P N)
452 ;; (PROG (Q)
453 ;; (STORE (B (ROW P) (COL P)) NIL)
454 ;; (DO ((J 1 (1+ J)))
455 ;; ((> J N) (SETQ Q NIL))
456 ;; (COND ((EQ (B (ROW P) (COL J)) T)
457 ;; (RETURN (SETQ Q J)))))
458 ;; (COND ((NULL Q) (RETURN (LIST (ROW P))))
459 ;; (T (DO ((J 1 (1+ J)))
460 ;; ((> J N))
461 ;; (STORE (B (ROW Q) (COL J))
462 ;; (OR (B (ROW Q) (COL J))
463 ;; (B (ROW P) (COL J))))
464 ;; (STORE (B (ROW J) (COL Q))
465 ;; (B (ROW Q) (COL J))))
466 ;; (TMCRIP P)
467 ;; (RETURN (CONS (ROW P) (TMPULL-OVER Q N)))))))
469 ;; (DEFUN TMCRIP (P)
470 ;; (DO ((I 1 (1+ I)))
471 ;; ((> I N))
472 ;; (STORE (B (ROW P) (COL I)) NIL)
473 ;; (STORE (B (ROW I) (COL P)) NIL)))
475 ;;TMPIVOT-ISOLATE CARRIES OUT PIVOTTING
476 ;;SO THAT THE ALL DIAGONAL ELEMENTS ARE
477 ;;NONZERO. THIS GARANTIES WE HAVE MAXIMUM
478 ;;NUMBER OF BLOCKS ISOLATED.
480 (defun tmpivot-isolate (k)
481 (cond ((> k n) t)
482 (t (do ((i k (1+ i)))
483 ((> i n) nil)
484 (when (aref *b* (aref *row* i) (aref *col* k))
485 (tmexchange '*row* k i)
486 (if (tmpivot-isolate (1+ k))
487 (return t)
488 (tmexchange '*row* k i)))))))
490 (defun tmexchange (rowcol i j)
491 (prog (dummy)
492 (setq rowcol (get-array-pointer rowcol))
493 (setq dummy (aref rowcol i))
494 (setf (aref rowcol i) (aref rowcol j))
495 (setf (aref rowcol j) dummy)))
498 ;; PROGRAM TO PREDICT ZERO ELEMENTS IN
499 ;; THE SOLUTION OF INVERSE OR LINEAR
500 ;; EQUATION. A IS THE COEFFICIENT MATRIX.
501 ;; B IS THE RIGHT HAND SIDE MATRIX FOR
502 ;; LINEAR EQUATIONS. A3 IS N*N AND B IS
503 ;; M*M. X IS AN N*M MATRIX WHERE T -NIL
504 ;; PATTERN SHOWING THE ZERO ELEMENTS IN
505 ;; THE RESULT IS RETURNED. T CORRESPONDS TO
506 ;; NON-ZERO ELEMENT. IN THE CASE OF
507 ;; INVERSE, YOU CAN PUT ANYTHING (SAY,NIL)
508 ;; FOR B AND 0 FOR M. NORMALLY IT RETURNS
509 ;; T, BUT IN CASE OF SINGULAR MATRIX, IT
510 ;; RETURNS NIL.
512 ;; (DEFUN TMPREDICT (A3 B X N M)
513 ;; (PROG (FLAGINV FLAG-NONSINGULAR)
514 ;; (SETQ A3 (GET A3 'ARRAY) B (GET B 'ARRAY) X (GET X 'ARRAY))
515 ;; (setq AA (*ARRAY nil 'T (1+ N) (1+ N)))
516 ;; (setq ROW (*ARRAY nil 'T (1+ N)))
517 ;; (SETQ FLAGINV (= M 0))
518 ;; (COND (FLAGINV (SETQ M N)))
519 ;; (DO ((I 1 (1+ I)))
520 ;; ((> I N))
521 ;; (DO ((J 1 (1+ J)))
522 ;; ((> J N))
523 ;; (STORE (AA I J)
524 ;; (NOT (EQUAL (AREF A3 I J) '(0 . 1))))))
525 ;; (DO ((I 1 (1+ I)))
526 ;; ((> I N))
527 ;; (DO ((J 1 (1+ J)))
528 ;; ((> J M))
529 ;; (STORE (AREF X I J)
530 ;; (COND (FLAGINV (EQ I J))
531 ;; (T (EQUAL (AREF B I J)
532 ;; '(0 . 1)))))))
533 ;; (DO ((I 1 (1+ I))) ((> I N)) (STORE (ROW I) I))
534 ;; ;FORWARD ELIMINATION.
535 ;; (DO ((I 1 (1+ I)))
536 ;; ((> I N))
537 ;; (SETQ FLAG-NONSINGULAR
538 ;; (DO ((II I (1+ II)))
539 ;; ((> II N) NIL)
540 ;; (COND ((AA (ROW II) I)
541 ;; (TMEXCHANGE 'ROW II I)
542 ;; (RETURN T)))))
543 ;; (COND ((NULL FLAG-NONSINGULAR) (RETURN NIL)))
544 ;; (DO ((II (1+ I) (1+ II)))
545 ;; ((> II N))
546 ;; (COND ((AA (ROW II) I)
547 ;; (DO ((JJ (1+ I) (1+ JJ)))
548 ;; ((> JJ N))
549 ;; (STORE (AA (ROW II) JJ)
550 ;; (OR (AA (ROW I) JJ)
551 ;; (AA (ROW II) JJ))))
552 ;; (DO ((JJ 1 (1+ JJ)))
553 ;; ((> JJ M))
554 ;; (STORE (AREF X (ROW II) JJ)
555 ;; (OR (AREF X (ROW I) JJ)
556 ;; (AREF X (ROW II) JJ))))))))
557 ;; (COND ((NULL FLAG-NONSINGULAR) (GO EXIT))) ;GET OUT BACKWARD SUBSTITUTION
558 ;; (DO ((I (1- N) (1- I)))
559 ;; ((< I 1))
560 ;; (DO ((L 1 (1+ L)))
561 ;; ((> L M))
562 ;; (STORE (AREF X (ROW I) L)
563 ;; (OR (AREF X (ROW I) L)
564 ;; (DO ((J (1+ I) (1+ J)) (SUM))
565 ;; ((> J N) SUM)
566 ;; (SETQ SUM
567 ;; (OR SUM
568 ;; (AND (AA (ROW I) J)
569 ;; (AREF
570 ;; X
571 ;; (ROW J)
572 ;; L)))))))))
573 ;; ;RECOVER THE ORDER.
574 ;; (TMPERMUTE 'X N M 0 0 'ROW N 'ROW)
575 ;; EXIT (*TMREARRAY 'ROW) (*TMREARRAY 'AA) (RETURN FLAG-NONSINGULAR)))
577 ;;TMPERMUTE PERMUTES THE ROWS OR COLUMNS
578 ;;OF THE N*M MATRIX AX ACCORDING TO THE
579 ;;SPECIFICATION OF INDEXLIST. THE FLAG
580 ;;MUST BE SET 'ROW IF ROW PERMUTATION IS
581 ;;DESIRED , OR 'COL OTHERWISE. THE RESULT
582 ;;IS IN AX. NM IS THE DIMENSION OF
583 ;;INDEXLIST.
585 (defun tmpermute (ax n m rbias cbias indexlist nm flag)
586 (prog (k l)
587 ;; (SETQ AX (GET AX 'array)
588 ;; INDEXLIST (GET INDEXLIST 'array))
589 (setq ax (get-array-pointer ax))
590 (setq indexlist (get-array-pointer indexlist))
591 (setf (symbol-array *indx*) (make-array (1+ nm) :initial-element nil))
592 (do ((i 1 (1+ i)))
593 ((> i nm))
594 (setf (aref *indx* i) (aref indexlist i)))
595 (do ((i 1 (1+ i)))
596 ((> i nm))
597 (cond ((not (= (aref *indx* i) i))
598 (prog nil
599 (tmmove ax n m rbias cbias i 0 flag)
600 (setq l i)
601 loop (setq k (aref *indx* l))
602 (setf (aref *indx* l) l)
603 (cond ((= k i)
604 (tmmove ax n m rbias cbias 0 l flag))
605 (t (tmmove ax n m rbias cbias k l flag)
606 (setq l k)
607 (go loop)))))))))
609 (defun tmmove (ax n m rbias cbias i j flag)
610 (prog (ll)
611 (setq ax (get-array-pointer ax))
612 (setq ll (if (eq flag '*row*)
613 (- m cbias)
614 (- n rbias)))
615 (do ((k 1 (1+ k)))
616 ((> k ll))
617 (cond ((eq flag '*row*)
618 (setf (aref ax (+ rbias j) (+ cbias k))
619 (aref ax (+ rbias i) (+ cbias k))))
620 (t (setf (aref ax (+ rbias k) (+ cbias j))
621 (aref ax (+ rbias k) (+ cbias i))))))))
623 ;;TMSYMETRICP CHECKS THE SYMMETRY OF THE MATRIX.
625 (defun tmsymetricp (a3 n)
626 (setq a3 (get-array-pointer a3))
627 (do ((i 1 (1+ i)))
628 ((> i n) t)
629 (cond ((null (do ((j (1+ i) (1+ j)))
630 ((> j n) t)
631 (unless (equal (aref a3 i j) (aref a3 j i))
632 (return nil))))
633 (return nil)))))
635 ;;TMLATTICE CHECKS THE "LATTICE"
636 ;;STRUCTURE OF THE MATRIX A. IT RETURNS
637 ;;NIL IF THE MATRIX IS "OBVIOUSLY"
638 ;;SINGULAR. OTHERWISE IT RETURNS A LIST
639 ;;(L1 L2 ... LM) WHERE M IS THE NUMBER OF
640 ;;BLOCKS (STRONGLY CONNECTED SUBGRAPHS),
641 ;;AND L1 L2 ... ARE LIST OF ROW AND
642 ;;COLUMN NUBERS WHICH BELONG TO EACH
643 ;;BLOCKS. THE LIST LOOKS LIKE ((R1 C1)
644 ;;(R2 C2) ...) WHERE R R'S ARE ROWS AND
645 ;;C'S ARE COLUMMS.
647 (defun tmlattice (a3 xrow xcol n)
648 (setq a3 (get-array-pointer a3))
649 (setq xrow (get-array-pointer xrow))
650 (setq xcol (get-array-pointer xcol))
651 (setq *b* (make-array (list (1+ n) (1+ n)) :initial-element nil))
652 (setq *row* (make-array (1+ n) :initial-element nil))
653 (setq *col* (make-array (1+ n) :initial-element nil))
654 (do ((i 1 (1+ i)))
655 ((> i n))
656 (do ((j 1 (1+ j)))
657 ((> j n))
658 (setf (aref *b* i j)
659 (not (equal (aref a3 i j) '(0 . 1))))))
660 (do ((i 0 (1+ i)))
661 ((> i n))
662 (setf (aref *row* i) i)
663 (setf (aref *col* i) i))
664 (when (null (tmpivot-isolate 1))
665 (return-from tmlattice nil))
666 (do ((i 1 (1+ i)))
667 ((> i n))
668 (setf (aref *b* (aref *row* i) (aref *col* i)) i)
669 (setf (aref *b* (aref *row* i) (aref *col* 0)) t))
670 (tmlattice1 1)
671 (tmsort-lattice xrow xcol))
673 (defun tmlattice1 (k)
674 (cond ((= k n)
675 nil)
677 (tmlattice1 (1+ k))
678 (do ((looppath))
679 (nil)
680 (if (setq looppath (tmpathp k k))
681 (tmunify-loop k (cdr looppath))
682 (return nil))))))
684 (defun tmpathp (j k)
685 (cond ((equal (aref *b* (aref *row* j) (aref *col* k)) t)
686 (list j k))
688 (do ((jj k (1+ jj)) (path))
689 ((> jj n))
690 (when (and (equal (aref *b* (aref *row* j) (aref *col* jj)) t)
691 (setq path (tmpathp jj k)))
692 (return (cons j path)))))))
694 (defun tmunify-loop (k chain)
695 (prog (l dummyk dummyl)
696 (setq l (car chain))
697 (cond ((= l k) (return nil)))
698 (setq dummyk (aref *b* (aref *row* k) (aref *col* k)))
699 (setq dummyl (aref *b* (aref *row* l) (aref *col* l)))
700 (setf (aref *b* (aref *row* k) (aref *col* k)) nil)
701 (setf (aref *b* (aref *row* l) (aref *col* l)) nil)
702 (do ((i 1 (1+ i)))
703 ((> i n))
704 (setf (aref *b* (aref *row* k) (aref *col* i))
705 (or (aref *b* (aref *row* k) (aref *col* i)) (aref *b* (aref *row* l) (aref *col* i))))
706 (setf (aref *b* (aref *row* i) (aref *col* k))
707 (or (aref *b* (aref *row* i) (aref *col* k)) (aref *b* (aref *row* i) (aref *col* l))))
708 (setf (aref *b* (aref *row* l) (aref *col* i)) nil)
709 (setf (aref *b* (aref *row* i) (aref *col* l)) nil))
710 (setf (aref *b* (aref *row* k) (aref *col* k)) dummyl)
711 (setf (aref *b* (aref *row* l) (aref *col* l)) dummyk)
712 (setf (aref *b* (aref *row* k) (aref *col* 0)) t)
713 (setf (aref *b* (aref *row* l) (aref *col* 0)) nil)
714 (tmunify-loop k (cdr chain))))
716 (defun tmsort-lattice (xrow xcol)
717 (prog (nodelist result)
718 (setq nodelist (tmsort1))
719 (setq result
720 (do ((x nodelist (cdr x)) (result))
721 ((null x) result)
722 (setq result
723 (cons (do ((next (aref *b* (aref *row* (car x)) (aref *col* (car x)))
724 (aref *b* (aref *row* next) (aref *col* next)))
725 (res))
726 ((= next (car x))
727 (cons (list (aref *row* next) (aref *col* next)) res))
728 (push (list (aref *row* next) (aref *col* next)) res))
729 result))))
730 (do ((list1 result (cdr list1))
731 (i 1))
732 ((null list1))
733 (do ((list2 (car list1) (cdr list2)))
734 ((null list2))
735 (setf (aref xrow i) (caar list2))
736 (setf (aref xcol i) (cadar list2))
737 (incf i)))
738 (return result)))
740 ;; (DEFUN TMLESS (I J) (B (ROW I) (COL J)))
742 (defun tmsort1 nil
743 (do ((i 1 (1+ i))
744 (result))
745 ((> i n) result)
746 (cond ((and (aref *b* (aref *row* i) (aref *col* 0)) (tmmaxp i))
747 (do ((j 1 (1+ j)))
748 ((> j n))
749 (unless (= j i)
750 (setf (aref *b* (aref *row* i) (aref *col* j)) nil)))
751 (setf (aref *b* (aref *row* i) (aref *col* 0)) nil)
752 (push i result)
753 (setq i 0)))))
755 (defun tmmaxp (i)
756 (do ((j 1 (1+ j)))
757 ((> j n) t)
758 (when (and (not (= i j)) (aref *b* (aref *row* j) (aref *col* i)))
759 (return nil))))
761 ;;UNPIVOT IS USED IN PAUL WANG'S PROGRAM
762 ;;TO RECOVER THE PIVOTTING. TO GET THE
763 ;;INVERSE OF A, PAUL'S PROGRAM COMPUTES
764 ;;THE INVERSE OF U*A*V BECAUSE OF
765 ;;BLOCKING. LET THE INVERSE Y. THEN
766 ;;A^^-1=V*Y*U. WHERE U AND V ARE
767 ;;FUNDAMENTAL TRANSFORMATION
768 ;;(PERMUTATION). UNPIVOT DOES THIS,
769 ;;NAMELY, GIVEN A MATRIX A3, INDEX ROW
770 ;;AND COL ,WHICH CORRESPONDS TO THE Y , U
771 ;; AND V, RESPECTIVELY, IT COMPUTES V*Y*U
772 ;;AND RETURNS IT TO THE SAME ARGUMENT A.
774 (defun tmunpivot (a3 *row* *col* n m)
775 (prog nil
776 (setq *col* (get-array-pointer *col*))
777 (setq *row* (get-array-pointer *row*))
778 (setq *rowinv* (make-array (1+ n) :initial-element nil))
779 (setq *colinv* (make-array (1+ n) :initial-element nil))
780 (do ((i 1 (1+ i)))
781 ((> i n))
782 (setf (aref *rowinv* (aref *row* i)) i))
783 (do ((i 1 (1+ i)))
784 ((> i n))
785 (setf (aref *colinv* (aref *col* i)) i))
786 (tmpermute a3 n m 0 n '*colinv* n '*row*)
787 (tmpermute a3 n m 0 n '*rowinv* n '*col*)))
789 (declare-top (unspecial n vlist nx ix))