Fix the inefficient evaluation of translated predicates
[maxima.git] / src / mat.lisp
blob772509c0a957f4410675adf4cfe6c974691d8fe8
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module mat)
15 ;; this is the mat package
17 (declare-top (special *ech* *tri* $algebraic $multiplicities equations
18 mul* $dispflag $nolabels *det*
19 xm* xn* varlist ax *linelabel*))
21 ;;these are arrays.
22 (defvar *row*)
23 (defvar *col*)
24 (defvar *colinv*)
26 (defmvar $globalsolve nil)
27 (defmvar $sparse nil)
28 (defmvar $backsubst t)
30 (defmvar *rank* nil)
31 (defmvar *inv* nil)
33 (defun solcoef (m *c varl flag)
34 (prog (cc answer leftover)
35 (setq cc (cdr (ratrep* *c)))
36 (if (or (atom (car cc))
37 (not (equal (cdar cc) '(1 1)))
38 (not (equal 1 (cdr cc))))
39 ;; NOTE TO TRANSLATORS: NOT CLEAR WHAT IS "UNACCEPTABLE" HERE
40 (merror (intl:gettext "solve: unacceptable variable: ~M") *c))
41 (setq answer (ratreduce (prodcoef (car cc) (car m)) (cdr m)))
42 (if (not flag) (return answer))
43 (setq leftover
44 (rdis (ratplus m (rattimes (ratminus answer) cc t))))
45 (if (or (not (freeof *c leftover))
46 (dependsall (rdis answer) varl))
47 (rat-error "`non-linear'"))
48 (return answer)))
50 (defun formx (flag nam eql varl)
51 (prog (b ax x ix j)
52 (setq varlist varl)
53 (mapc #'newvar eql)
54 (and (not $algebraic)
55 (some #'algp varlist)
56 (setq $algebraic t))
57 (setf (symbol-value nam) (make-array (list (1+ (setq xn* (length eql)))
58 (1+ (setq xm* (1+ (length varl)))))))
59 (setq nam (get-array-pointer nam))
60 (setq ix 0)
61 loop1
62 (cond ((null eql) (return varlist)))
63 (setq ax (car eql))
64 (setq eql (cdr eql))
65 (incf ix)
66 (setf (aref nam ix xm*) (const ax varl))
67 (setq j 0)
68 (setq b varl) (setq ax (cdr (ratrep* ax)))
69 loop2
70 (setq x (car b))
71 (setq b (cdr b))
72 (incf j)
73 (setf (aref nam ix j) (solcoef ax x varl flag))
74 (cond (b (go loop2)))
75 (go loop1)))
77 (defun dependsall (exp l)
78 (cond ((null l) nil)
79 ((or (not (freeof (car l) exp)) (dependsall exp (cdr l))) t)
80 (t nil)))
82 (setq *det* nil *ech* nil *tri* nil)
84 (defun ptorat (ax m n)
85 (prog (i j)
86 (setq ax (get-array-pointer ax))
87 (setq i (1+ m))
88 (incf n)
89 loop1
90 (when (equal i 1) (return nil))
91 (decf i)
92 (setq j n)
93 loop2
94 (when (equal j 1) (go loop1))
95 (decf j)
96 (setf (aref ax i j) (cons (aref ax i j) 1))
97 (go loop2)))
99 (defun meqhk (z)
100 "If Z is of the form lhs = rhs, return the expression lhs - rhs.
101 Otherwise, return Z unchanged."
102 (if (and (not (atom z)) (eq (caar z) 'mequal))
103 (simplus (list '(mplus) (cadr z) (list '(mtimes) -1 (caddr z))) 1 nil)
106 (defun const (e varl)
107 (setq varl (mapcar #'(lambda(x) (caadr (ratrep* x))) varl))
108 (setq e (cdr (ratrep* e)))
109 (let ((zl (make-list (length varl) :initial-element 0)))
110 (ratreduce (pctimes -1 (pcsubsty zl varl (car e)))
111 (pcsubsty zl varl (cdr e)))))
113 (defvar *mosesflag nil)
115 (defmvar $%rnum 0)
117 (defun make-param ()
118 (let ((param (intern (format nil "~A~D" '$%r (incf $%rnum)))))
119 (tuchus $%rnum_list param)
120 param))
122 (defmvar $linsolve_params t "`linsolve' generates %Rnums")
124 (defun ith (x n)
125 (if (atom x) nil (nth (1- n) x)))
127 (defun polyize (ax r m mul)
128 (declare (fixnum m))
129 (do ((c 1 (1+ c)) (d))
130 ((> c m) nil)
131 (declare (fixnum c))
132 (setq d (aref ax r c))
133 (setq d (cond ((equal mul 1) (car d))
134 (t (ptimes (car d)
135 (pquotientchk mul (cdr d))))))
136 (setf (aref ax r c) (if $sparse (cons d 1) d))))
138 ;; TWO-STEP FRACTION-FREE GAUSSIAN ELIMINATION ROUTINE
140 (defun tfgeli (ax n m &aux ($sparse (and $sparse (or *det* *inv*))))
141 ;;$sparse is also controlling whether polyize stores polys or ratforms
142 (setq ax (get-array-pointer ax))
143 (setq mul* 1)
144 (do ((r 1 (1+ r)))
145 ((> r n) (cond ((and $sparse *det*)(sprdet ax n))
146 ((and *inv* $sparse)(newinv ax n m))
147 (t (tfgeli1 ax n m))))
148 (do ((c 1 (1+ c))
150 (mul 1))
151 ((> c m)
152 (and *det* (setq mul* (ptimes mul* mul)))
153 (polyize ax r m mul))
154 (cond ((equal 1 (setq d (cdr (aref ax r c)))) nil)
155 (t (setq mul (ptimes mul (pquotient d (pgcd mul d)))))))))
157 ;; The author of the following programs is Tadatoshi Minamikawa (TM).
158 ;; This program is one-step fraction-free Gaussian elimination with
159 ;; optimal pivotting. DRB claims the hair in this program is not
160 ;; necessary and that straightforward Gaussian elimination is sufficient,
161 ;; for sake of future implementors.
163 ;; To debug, delete the comments around PRINT and BREAK statements.
165 (declare-top (special permsign a rank delta nrow nvar n m variableorder
166 dependentrows inconsistentrows l k))
168 (defun tfgeli1 (ax n m)
169 (prog (k l delta variableorder inconsistentrows
170 dependentrows nrow nvar rank permsign result)
171 (setq ax (get-array-pointer ax))
172 (setq *col* (make-array (1+ m) :initial-element 0))
173 (setq *row* (make-array (1+ n) :initial-element 0))
174 (setq *colinv* (make-array (1+ m) :initial-element 0))
175 ;; (PRINT 'ONESTEP-LIPSON-WITH-PIVOTTING)
176 (setq nrow n)
177 (setq nvar (cond (*rank* m) (*det* m) (*inv* n) (*ech* m) (*tri* m) (t (1- m))))
178 (do ((i 1 (1+ i)))
179 ((> i n))
180 (setf (aref *row* i) i))
181 (do ((i 1 (1+ i)))
182 ((> i m))
183 (setf (aref *col* i) i) (setf (aref *colinv* i) i))
184 (setq result
185 (cond (*rank* (forward t) rank)
186 (*det* (forward t)
187 (cond ((= nrow n) (cond (permsign (pminus delta))
188 (t delta)))
189 (t 0)))
190 (*inv* (forward t) (backward) (recoverorder1))
191 (*ech* (forward nil) (recoverorder2))
192 (*tri* (forward nil) (recoverorder2))
193 (t (forward t) (cond ($backsubst (backward)))
194 (recoverorder2)
195 (list dependentrows inconsistentrows variableorder))))
196 (return result)))
198 ;;FORWARD ELIMINATION
199 ;;IF THE SWITCH *CPIVOT IS NIL, IT AVOIDS THE COLUMN PIVOTTING.
200 (defun forward (*cpivot)
201 (setq delta 1) ;DELTA HOLDS THE CURRENT DETERMINANT
202 (do ((k 1 (1+ k))
203 (nvar nvar) ;PROTECTS AGAINST TEMPORARAY RESETS DONE IN PIVOT
204 (m m))
205 ((or (> k nrow) (> k nvar)))
206 (cond ((pivot ax k *cpivot) (return nil)))
207 ;; PIVOT IS T IF THERE IS NO MORE NON-ZERO ROW LEFT. THEN GET OUT OF THE LOOP
208 (do ((i (1+ k) (1+ i)))
209 ((> i nrow))
210 (do ((j (1+ k) (1+ j)))
211 ((> j m))
212 (setf (aref ax (aref *row* i) (aref *col* j))
213 (pquotient (pdifference (ptimes (aref ax (aref *row* k) (aref *col* k))
214 (aref ax (aref *row* i) (aref *col* j)))
215 (ptimes (aref ax (aref *row* i) (aref *col* k))
216 (aref ax (aref *row* k) (aref *col* j))))
217 delta))))
218 (do ((i (1+ k) (1+ i)))
219 ((> i nrow))
220 (setf (aref ax (aref *row* i) (aref *col* k)) 0))
221 (setq delta (aref ax (aref *row* k) (aref *col* k))))
222 ;; UNDOES COLUMN HACK IN PIVOT.
223 (or *cpivot (do ((i 1 (1+ i))) ((> i m)) (setf (aref *col* i) i)))
224 (setq rank (min nrow nvar)))
226 ;; BACKWARD SUBSTITUTION
227 (defun backward ()
228 (declare(special ax delta m rank))
229 (do ((i (1- rank) (1- i)))
230 ((< i 1))
231 (do ((l (1+ rank) (1+ l)))
232 ((> l m))
233 (setf (aref ax (aref *row* i) (aref *col* l))
234 (let ((mess1 (pdifference
235 (ptimes (aref ax (aref *row* i) (aref *col* l))
236 (aref ax (aref *row* rank) (aref *col* rank)))
237 (do ((j (1+ i) (1+ j)) (sum 0))
238 ((> j rank) sum)
239 (setq sum (pplus sum (ptimes (aref ax (aref *row* i) (aref *col* j))
240 (aref ax (aref *row* j) (aref *col* l))))))) )
241 (mess2 (aref ax (aref *row* i) (aref *col* i)) ))
242 (cond ((equal 0 mess1) 0)
243 ((equal 0 mess2) 0)
244 (t ;; (pquotient mess1 mess2) ; fixed by line below. RJF 1/12/2017
246 (car (ratreduce mess1 mess2))
248 ))))
249 (do ((l (1+ i) (1+ l)))
250 ((> l rank))
251 (setf (aref ax (aref *row* i) (aref *col* l)) 0)))
252 ;; PUT DELTA INTO THE DIAGONAL MATRIX
253 (setq delta (aref ax (aref *row* rank) (aref *col* rank)))
254 (do ((i 1 (1+ i)))
255 ((> i rank))
256 (setf (aref ax (aref *row* i) (aref *col* i)) delta)) )
258 ;;RECOVER THE ORDER OF ROWS AND COLUMNS.
260 (defun recoverorder1 ()
261 ;;(PRINT 'REARRANGE)
262 (do ((i nvar (1- i)))
263 ((= i 0))
264 (setq variableorder (cons i variableorder)))
265 (do ((i (1+ rank) (1+ i)))
266 ((> i n))
267 (cond ((equal (aref ax (aref *row* i) (aref *col* m)) 0)
268 (setq dependentrows (cons (aref *row* i) dependentrows)))
269 (t (setq inconsistentrows (cons (aref *row* i) inconsistentrows)))))
270 (do ((i 1 (1+ i)))
271 ((> i n))
272 (cond ((not (= (aref *row* (aref *colinv* i)) i))
273 (prog ()
274 (moverow ax n m i 0)
275 (setq l i)
276 loop
277 (setq k (aref *row* (aref *colinv* l)))
278 (setf (aref *row* (aref *colinv* l)) l)
279 (cond ((= k i) (moverow ax n m 0 l))
280 (t (moverow ax n m k l)
281 (setq l k)
282 (go loop))))))))
284 (defun recoverorder2 ()
285 (do ((i nvar (1- i)))
286 ((= i 0))
287 (setq variableorder (cons (aref *col* i) variableorder)))
288 (do ((i (1+ rank) (1+ i)))
289 ((> i n))
290 (cond ((equal (aref ax (aref *row* i) (aref *col* m)) 0)
291 (setq dependentrows (cons (aref *row* i) dependentrows)))
292 (t (setq inconsistentrows (cons (aref *row* i) inconsistentrows)))))
293 (do ((i 1 (1+ i)))
294 ((> i n))
295 (cond ((not (= (aref *row* i) i))
296 (prog ()
297 (moverow ax n m i 0)
298 (setq l i)
299 loop
300 (setq k (aref *row* l))
301 (setf (aref *row* l) l)
302 (cond ((= k i) (moverow ax n m 0 l))
303 (t (moverow ax n m k l)
304 (setq l k)
305 (go loop)))))))
306 (do ((i 1 (1+ i)))
307 ((> i nvar))
308 (cond ((not (= (aref *col* i) i))
309 (prog ()
310 (movecol ax n m i 0)
311 (setq l i)
312 loop2
313 (setq k (aref *col* l))
314 (setf (aref *col* l) l)
315 (cond ((= k i) (movecol ax n m 0 l))
316 (t (movecol ax n m k l)
317 (setq l k)
318 (go loop2))))))))
320 ;;THIS PROGRAM IS USED IN REARRANGEMENT
321 (defun moverow (ax n m i j)
322 (do ((k 1 (1+ k))) ((> k m))
323 (setf (aref ax j k) (aref ax i k))))
325 (defun movecol (ax n m i j)
326 (do ((k 1 (1+ k))) ((> k n))
327 (setf (aref ax k j) (aref ax k i))))
329 ;;COMPLEXITY IS DEFINED AS FOLLOWS
330 ;; COMPLEXITY(0)=0
331 ;; COMPLEXITY(CONSTANT)=1
332 ;; COMPLEXITY(POLYNOMIAL)=1+SUM(COMPLEXITY(C(N))+COMPLEXITY(E(N)), FOR N=0,1 ...M)
333 ;; WHERE POLYNOMIAL IS OF THE FORM
334 ;; SUM(C(N)*X^E(N), FOR N=0,1 ... M) X IS THE VARIABLE
336 (defun complexity (exp)
337 (cond ((null exp) 0)
338 ((equal exp 0) 0)
339 ((atom exp) 1)
340 (t (+ (complexity (car exp)) (complexity (cdr exp))))))
342 (defun complexity/row (ax i j1 j2)
343 (do ((j j1 (1+ j)) (sum 0))
344 ((> j j2) sum)
345 (incf sum (complexity (aref ax (aref *row* i) (aref *col* j))))))
347 (defun complexity/col (ax j i1 i2)
348 (do ((i i1 (1+ i)) (sum 0))
349 ((> i i2) sum)
350 (incf sum (complexity (aref ax (aref *row* i) (aref *col* j))))))
352 (defun zerop/row (ax i j1 j2)
353 (do ((j j1 (1+ j)))
354 ((> j j2) t)
355 (cond ((not (equal (aref ax (aref *row* i) (aref *col* j)) 0)) (return nil)))))
357 ;;PIVOTTING ALGORITHM
358 (defun pivot (ax k *cpivot)
359 (prog (row/optimal col/optimal complexity/i/min complexity/j/min
360 complexity/i complexity/j complexity/det complexity/det/min dummy)
361 (setq row/optimal k complexity/i/min 1000000. complexity/j/min 1000000.)
362 ;;TEST THE SINGULARITY
363 (cond ((do ((i k (1+ i)) (isallzero t))
364 ((> i nrow) isallzero)
365 loop (cond ((zerop/row ax i k nvar)
366 (cond (*inv* (merror (intl:gettext "solve: singular matrix.")))
367 (t (exchangerow i nrow)
368 (decf nrow)))
369 (unless (> i nrow) (go loop)))
370 (t (setq isallzero nil))))
371 (return t)))
373 ;; FIND AN OPTIMAL ROW
374 ;; IF *CPIVOT IS NIL, (AX I K) WHICH IS TO BE THE PIVOT MUST BE NONZERO.
375 ;; BUT IF *CPIVOT IS T, IT IS UNNECESSARY BECAUSE WE CAN DO THE COLUMN PIVOT.
376 findrow
377 (do ((i k (1+ i)))
378 ((> i nrow))
379 (cond ((or *cpivot (not (equal (aref ax (aref *row* i) (aref *col* k)) 0)))
380 (cond ((> complexity/i/min
381 (setq complexity/i (complexity/row ax i k m)))
382 (setq row/optimal i complexity/i/min complexity/i))))))
383 ;; EXCHANGE THE ROWS K AND ROW/OPTIMAL
384 (exchangerow k row/optimal)
386 ;; IF THE FLAG *CPIVOT IS NIL, THE FOLLOWING STEPS ARE NOT EXECUTED.
387 ;; THIS TREATMENT WAS DONE FOR THE LSA AND ECHELONTHINGS WHICH ARE NOT
388 ;; HAPPY WITH THE COLUMN OPERATIONS.
389 (cond ((null *cpivot)
390 (cond ((not (equal (aref ax (aref *row* k) (aref *col* k)) 0))
391 (return nil))
392 (t (do ((i k (1+ i))) ((= i nvar))
393 (setf (aref *col* i) (aref *col* (1+ i))))
394 (setq nvar (1- nvar) m (1- m))
395 (go findrow)))))
397 ;;STEP3 ... FIND THE OPTIMAL COLUMN
398 (setq col/optimal 0
399 complexity/det/min 1000000.
400 complexity/j/min 1000000.)
402 (do ((j k (1+ j)))
403 ((> j nvar))
404 (cond ((not (equal (aref ax (aref *row* k) (aref *col* j)) 0))
405 (cond ((> complexity/det/min
406 (setq complexity/det
407 (complexity (aref ax (aref *row* k) (aref *col* j)))))
408 (setq col/optimal j
409 complexity/det/min complexity/det
410 complexity/j/min (complexity/col ax j (1+ k) n)))
411 ((equal complexity/det/min complexity/det)
412 (cond ((> complexity/j/min
413 (setq complexity/j
414 (complexity/col ax j (1+ k) n)))
415 (setq col/optimal j
416 complexity/det/min complexity/det
417 complexity/j/min complexity/j))))))))
419 ;; EXCHANGE THE COLUMNS K AND COL/OPTIMAL
420 (exchangecol k col/optimal)
421 (setq dummy (aref *colinv* (aref *col* k)))
422 (setf (aref *colinv* (aref *col* k)) (aref *colinv* (aref *col* col/optimal)))
423 (setf (aref *colinv* (aref *col* col/optimal)) dummy)
424 (return nil)))
426 (defun exchangerow (i j)
427 (prog (dummy)
428 (setq dummy (aref *row* i))
429 (setf (aref *row* i) (aref *row* j))
430 (setf (aref *row* j) dummy)
431 (cond ((= i j) (return nil))
432 (t (setq permsign (not permsign))))))
434 (defun exchangecol (i j)
435 (prog (dummy)
436 (setq dummy (aref *col* i))
437 (setf (aref *col* i) (aref *col* j))
438 (setf (aref *col* j) dummy)
439 (cond ((= i j) (return nil))
440 (t (setq permsign (not permsign))))))
442 ;; Displays list of solutions.
444 (defun solve2 (llist)
445 (setq $multiplicities nil)
446 (map2c #'(lambda (equatn multipl)
447 (setq equations
448 (nconc equations (list (displine equatn))))
449 (push multipl $multiplicities)
450 (if (and (> multipl 1) $dispflag)
451 (mtell (intl:gettext "solve: multiplicity ~A~%") multipl)))
452 llist)
453 (setq $multiplicities (cons '(mlist simp) (nreverse $multiplicities))))
455 ;; Displays an expression and returns its linelabel.
457 (defun displine (exp)
458 (let ($nolabels (tim 0))
459 (elabel exp)
460 (cond ($dispflag (remprop *linelabel* 'nodisp)
461 (setq tim (get-internal-run-time))
462 (mterpri)
463 (displa (list '(mlabel) *linelabel* exp))
464 (timeorg tim))
465 (t (putprop *linelabel* t 'nodisp)))
466 *linelabel*))
468 (declare-top (unspecial permsign a rank delta nrow nvar n m variableorder
469 dependentrows inconsistentrows l k))