Fix the inefficient evaluation of translated predicates
[maxima.git] / src / numerical / f2cl-lib.lisp
blobfc60c45877d7695c91143f2ae7bb69d5bf79d471
1 ;; macros.l - all the basic macros
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;;;;;;;Copyright (c) University of Waikato;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4 ;;;;;;;;Hamilton, New Zeland 1992-95 - all rights reserved;;;;;;;;;;;;;;;;
5 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
6 (in-package :f2cl-lib)
8 (defparameter *f2cl-macros-version*
9 "$Id: macros.l,v 3fe93de3be82 2012/05/06 02:17:14 toy $")
11 (eval-when
12 #+gcl (compile load eval)
13 #-gcl (:compile-toplevel :load-toplevel :execute)
14 (proclaim '(special *verbose*)))
15 ;;----------------------------------------------------------------------------
16 (defvar *check-array-bounds* nil
17 "If non-NIL, generated code checks for array bounds. If NIL, checking
18 is not included")
20 ;;------------------------------------------------------------------------------
22 ;; Define the equivalent types between Fortran and Lisp. This MUST
23 ;; match the types given in f2cl1.l so keep it in sync!
24 (deftype logical ()
25 `(member t nil))
27 ;; Decide what you want integer*4 to be. Good choices are fixnum or
28 ;; (signed-byte 32). The latter is good only if your compiler does a
29 ;; good job with this type. If you aren't sure, use fixnum. CMUCL
30 ;; does a good job with (signed-byte 32).
32 ;; If you change this, you may need to change some of the macros
33 ;; below, such as INT and AINT!
35 #+(or cmu scl sbcl ecl)
36 (deftype integer4 (&optional (low #x-80000000) (high #x7fffffff))
37 `(integer ,low ,high))
38 #-(or cmu scl sbcl ecl)
39 (deftype integer4 (&optional low high)
40 (declare (ignore low high))
41 'fixnum)
43 (deftype integer2 ()
44 `(signed-byte 16))
45 (deftype integer1 ()
46 `(signed-byte 8))
47 (deftype real8 ()
48 'double-float)
49 (deftype real4 ()
50 'single-float)
51 (deftype complex8 ()
52 `(complex single-float))
53 (deftype complex16 ()
54 `(complex double-float))
56 (deftype array-double-float ()
57 `(array double-float (*)))
58 (deftype array-integer4 ()
59 `(array integer4 (*)))
60 (deftype array-single-float ()
61 `(array single-float (*)))
62 (deftype array-strings ()
63 `(array string (*)))
65 (defconstant %false% nil)
66 (defconstant %true% t)
68 ;;------------------------------------------------------------------------------
70 ;;-----------------------------------------------------------------------------
72 ;; Array dimensions are (d1, d2, d3, ...)
74 ;; Then x(n1, n2, n3, ...) means index is
76 ;; n1 + d1*(n2 + d2*(n3 + d3*(n4 + d4*(n5))))
78 ;; Return an expression that computes the column major index given the
79 ;; indices and the bounds on each dimension. The bounds are a list of
80 ;; the upper and lower bounds for each dimension.
81 (defun col-major-index (indices dims)
82 (flet ((get-offset (n bound)
83 (let ((lo (first bound)))
84 (if (and (numberp lo) (zerop lo))
86 `(the fixnum (- (the fixnum ,n) (the fixnum ,lo))))))
87 (get-size (bound)
88 (destructuring-bind (lo hi)
89 bound
90 (cond ((numberp lo)
91 (cond ((numberp hi)
92 (1+ (- hi lo)))
93 ((= lo 1)
94 hi)
96 `(- ,hi ,(- lo 1)))))
98 `(the fixnum (- ,hi (the fixnum (- (the fixnum ,lo) 1)))))))))
99 (let* ((rev-idx (reverse indices))
100 (rev-dim (reverse dims))
101 (idx (get-offset (first rev-idx) (first rev-dim))))
102 (do ((d (rest rev-dim) (rest d))
103 (n (rest rev-idx) (rest n)))
104 ((endp d)
105 idx)
106 (setf idx `(the fixnum (+ ,(get-offset (first n) (first d))
107 (the fixnum (* ,(get-size (first d)) ,idx)))))))))
109 (defun check-array-bounds (indices bounds)
110 `(and ,@(mapcar #'(lambda (idx dim)
111 `(<= ,(first dim) ,idx ,(second dim)))
112 indices bounds)))
114 (defmacro fref (arr indices bounds &optional offset)
115 (if *check-array-bounds*
116 `(aref ,arr (if ,(check-array-bounds indices bounds)
117 (the fixnum (+ (the fixnum ,(or offset 0)) ,(col-major-index indices bounds)))
118 (error "Out of bounds index for array ~S"
119 ',arr)))
120 `(aref ,arr (the fixnum (+ (the fixnum ,(or offset 0)) ,(col-major-index indices bounds))))))
122 (defmacro fset (a b)
123 `(setf (fref ,(second a) ,@(cddr a)) ,b))
125 (defmacro fref-string (s range)
126 `(subseq ,s (1- ,(first range)) ,(second range)))
128 (defmacro fset-string (a b)
129 `(setf (fref-string ,(second a) ,(third a)) (string ,b)))
131 (defmacro f2cl-// (a b)
132 `(concatenate 'string ,a ,b))
134 ;; (with-array-data ((data-var offset-var array))
135 ;; ...
136 ;; )
138 (defun find-array-data (array)
139 (declare (type (array * (*)) array))
140 (let ((offset 0))
141 (declare (type fixnum offset)
142 (optimize (speed 3) (safety 0)))
143 (loop
144 (multiple-value-bind (displaced-to index-offset)
145 (array-displacement array)
146 (when (null displaced-to)
147 (return-from find-array-data (values array offset)))
148 (incf offset index-offset)
149 (setf array displaced-to)))))
151 (defmacro with-array-data ((data-var offset-var array) &rest body)
152 `(multiple-value-bind (,data-var ,offset-var)
153 (find-array-data ,array)
154 ,@body))
156 (defun multi-array-data-aux (array-info body)
157 (let ((results body))
158 (dolist (a (reverse array-info))
159 (destructuring-bind (array a-type var-name offset-var)
161 (let ((atype (if (subtypep a-type 'character)
162 `(simple-string)
163 `(simple-array ,a-type (*)))))
164 (setf results
165 `((multiple-value-bind (,var-name ,offset-var)
166 (find-array-data ,array)
167 (declare (ignorable ,offset-var ,var-name)
168 (type f2cl-lib:integer4 ,offset-var)
169 (type ,atype ,var-name))
170 ,@results))))))
171 (first results)))
173 (defmacro with-multi-array-data (array-info &rest body)
174 (multi-array-data-aux array-info body))
176 ;; Create an array slice for the array named VNAME whose elements are
177 ;; of type TYPE. The slice starts at the indices INDICES and the
178 ;; original array has dimensions given by BOUND.
180 ;; This is done by making a displaced array to VNAME with the
181 ;; appropriate offset.
182 (defmacro array-slice (vname type indices bounds &optional offset)
183 ;; To figure the size of the sliced array, use ARRAY-TOTAL-SIZE
184 ;; instead of the f2cl derived/declared BOUNDS, just in case we
185 ;; screwed up or in case we changed the size of the array in some
186 ;; other way. This isn't possible in a function, but the array
187 ;; might be in a common block and we could change the dimensions of
188 ;; the common block at runtime. (Some Fortran code like mpfun does
189 ;; this, although it's actually illegal. Neat hack to "dynamically"
190 ;; change the dimensions. Of course, for this to work in Fortran,
191 ;; the common block has to contain exactly that one array, or the
192 ;; array must be the last element of the common block.)
194 ;; Note: In some places in LAPACK, an array slice is taken where the
195 ;; slice exceeds the bounds of the array. However, the array is
196 ;; never accessed. What are we to do? We could modify the LAPACK
197 ;; routines (everywhere!) to check for this, or we can silently make
198 ;; array-slice make a 0-element array. If the array is then
199 ;; accessed, we should get an error at the point of access, not the
200 ;; point of creation.
202 ;; This seems somewhat reasonable, so let's do that for array
203 ;; slices.
204 `(make-array (max 0 (- (array-total-size ,vname)
205 (the fixnum
206 (+ ,(col-major-index indices bounds)
207 (or ,offset 0)))))
208 :element-type ',type
209 :displaced-to ,vname
210 :displaced-index-offset (min (array-total-size ,vname)
211 (the fixnum
212 (+ ,(col-major-index indices bounds)
213 (or ,offset 0))))))
215 ;; Compute an initializer for make-array given the data in the list
216 ;; DATA. The array has en element type of TYPE and has dimensions of
217 ;; DIMS.
218 (defmacro array-initialize (type dims data)
219 (let ((data-list (gensym))
220 (data-len (length data))
221 (total-length (gensym)))
222 `(let* ((,data-list (list ,@data))
223 (,total-length (reduce #'* (list ,@dims))))
224 (cond ((< ,data-len ,total-length)
225 ;; Need to append some data.
226 (append ,data-list (make-list (- ,total-length ,data-len)
227 :initial-element (coerce 0 ',type))))
228 ((> ,data-len ,total-length)
229 ;; Need to truncate some data
230 (subseq ,data-list 0 ,total-length))
232 ,data-list)))))
234 ;;----------------------------------------------------------------------------
236 #-aclpc (defmacro while (con &rest body)
237 `(loop (if (not ,con) (return t)) ,@body))
238 ;;------------------------------------------------------------------
240 (defmacro fortran_comment (&rest args)
241 (declare (ignore args)))
243 ;;----------------------------------------------------------------------------
244 ;; fdo has similar syntax as do except there will only be one do_vble
246 (defmacro fdo (do_vble_clause predicate_clause &rest body)
247 (let ((step (gensym (symbol-name '#:step-)))
248 (iteration_count (gensym (symbol-name '#:cnt-)))
249 (loop-var (first do_vble_clause)))
250 `(prog* ((,step ,(third (third do_vble_clause)))
251 (,iteration_count
252 (max 0 (the integer4
253 (truncate (the integer4
254 (+ (the integer4 (- ,(third (first predicate_clause))
255 ,(second do_vble_clause)))
256 ,step))
257 ,step))
259 (declare (type integer4 ,step ,iteration_count))
260 ;; initialise loop variable
261 (setq ,loop-var ,(second do_vble_clause))
262 loop
263 (return
264 (cond ; all iterations done
265 ((zerop ,iteration_count) nil)
266 ;; execute loop, in/de-crement loop vble and decrement cntr
267 ,(list 't
268 (append '(tagbody)
269 (append
270 (append body
271 `(continue
272 (setq ,loop-var (the integer4 ,(third do_vble_clause))
273 ,iteration_count (the integer4 (1- ,iteration_count)))))
274 '((go loop)))))))
275 exit)))
277 ;;----------------------------------------------------------------------------
278 ;; macro for division
280 (defmacro f2cl/ (x y)
281 (let ((top (gensym))
282 (bot (gensym)))
283 `(let ((,top ,x)
284 (,bot ,y))
285 (if (and (typep ,top 'integer)
286 (typep ,bot 'integer))
287 (values (the integer4 (truncate ,top ,bot)))
288 (/ ,top ,bot)))))
290 (defmacro int-add (arg &rest more-args)
291 (if (null more-args)
293 (if (> (length more-args) 1)
294 `(the integer4 (+ ,arg (int-add ,@more-args)))
295 `(the integer4 (+ ,arg ,@more-args)))))
297 (defun convert-int-sub (args)
298 (let ((nargs (length args)))
299 (case nargs
301 `(the integer4 (- ,(first args))))
303 `(the integer4 (- ,(first args) ,(second args))))
305 (let ((result `(the integer4 (- ,(first args) ,(second args)))))
306 (dolist (arg (rest (rest args)))
307 (setf result `(the integer4 (- ,result ,arg))))
308 result)))))
310 (defmacro int-sub (&rest args)
311 (convert-int-sub args))
313 (defmacro int-mul (arg &rest more-args)
314 (if (null more-args)
316 (if (> (length more-args) 1)
317 `(the integer4 (* ,arg (int-mul ,@more-args)))
318 `(the integer4 (* ,arg ,@more-args)))))
321 ;; macro for a lisp equivalent of Fortran arithmetic IFs
322 (defmacro arithmetic-if (pred s1 s2 s3)
323 (let ((tst (gensym)))
324 `(let ((,tst ,pred))
325 (cond ((< ,tst 0) ,s1)
326 ((= ,tst 0) ,s2)
327 (t ,s3)))))
329 ;; macro for a lisp equivalent of Fortran computed GOTOs
330 (defun computed-goto-aux (tags)
331 (let ((idx 0)
332 (result '()))
333 (dolist (tag tags (nreverse result))
334 (incf idx)
335 (push `(,idx (go ,tag)) result))))
337 (defmacro computed-goto (tag-lst i)
338 `(case ,i
339 ,@(computed-goto-aux tag-lst)))
341 ;; macro for a lisp equivalent of Fortran assigned GOTOs
342 (eval-when
343 #+gcl (compile load eval)
344 #-gcl (:load-toplevel :compile-toplevel :execute)
345 (defun make-label (n)
346 (read-from-string (concatenate 'string (symbol-name :label) (princ-to-string n))))
349 (defun assigned-goto-aux (tag-list)
350 (let ((cases nil))
351 (dolist (tag tag-list)
352 (push `(,tag (go ,(f2cl-lib::make-label tag)))
353 cases))
354 (push `(t (error "Unknown label for assigned goto")) cases)
355 (nreverse cases)))
359 ;; macro for a lisp equivalent of Fortran assigned GOTOs
360 (defmacro assigned-goto (var tag-list)
361 `(case ,var
362 ,@(assigned-goto-aux tag-list)))
364 ;;-----------------------------------------------------------------------------
366 ;; Define the intrinsic functions
368 ;; Reference: The Fortran 77 standard found at www.fortran.com. Section 15.10
370 ;; INT is the generic name as well as the integer version. IFIX is
371 ;; the same. IDINT is the double version.
373 (declaim (inline int ifix idfix))
375 #-(or cmu scl)
376 (defun int (x)
377 ;; We use fixnum here because f2cl thinks Fortran integers are
378 ;; fixnums. If this should change, we need to change the ranges
379 ;; here as well.
380 (etypecase x
381 (integer
382 (the integer4 x))
383 (single-float
384 (truncate (the (single-float #.(float most-negative-fixnum)
385 #.(float most-positive-fixnum))
386 x)))
387 (double-float
388 (truncate (the (double-float #.(float most-negative-fixnum 1d0)
389 #.(float most-positive-fixnum 1d0))
390 x)))
391 ((complex single-float)
392 (the integer4
393 (truncate (the (single-float #.(float (- (ash 1 31)))
394 #.(float (1- (ash 1 31))))
395 (realpart x)))))
396 ((complex double-float)
397 (the integer4
398 (truncate (the (double-float #.(float (- (ash 1 31)) 1d0)
399 #.(float (1- (ash 1 31)) 1d0))
400 (realpart x)))))))
402 #+(or cmu scl)
403 (defun int (x)
404 ;; For CMUCL, we support the full 32-bit integer range, so INT can
405 ;; return a full 32-bit integer. Tell CMUCL that this is true so we
406 ;; generate fast code. If this is not true, the original Fortran
407 ;; code was wrong.
408 (etypecase x
409 (integer
410 (the integer4 x))
411 (single-float
412 (the integer4
413 (truncate (the (single-float #.(float (- (ash 1 31)))
414 #.(float (1- (ash 1 31))))
415 x))))
416 (double-float
417 (the integer4
418 (truncate (the (double-float #.(float (- (ash 1 31)) 1d0)
419 #.(float (1- (ash 1 31)) 1d0))
420 x))))
421 ((complex single-float)
422 (the integer4
423 (truncate (the (single-float #.(float (- (ash 1 31)))
424 #.(float (1- (ash 1 31))))
425 (realpart x)))))
426 ((complex double-float)
427 (the integer4
428 (truncate (the (double-float #.(float (- (ash 1 31)) 1d0)
429 #.(float (1- (ash 1 31)) 1d0))
430 (realpart x)))))))
433 (defun ifix (x)
434 (int x))
435 (defun idfix (x)
436 (int x))
438 ;; AINT is the generic and specific function for real; DINT, for
439 ;; double. It truncates its arg towards zero and returns the integer
440 ;; as a floating-point number of the same type as its arg.
442 ;; ANINT is the generic and specific function for real; DNINT, for
443 ;; double. It rounds to the nearest integer and returns the result as
444 ;; a float of the same type.
446 ;; NINT is the generic and specific function for real; IDNINT, for
447 ;; double. Does the same as ANINT, but the result is an integer.
449 (declaim (inline aint dint anint dnint nint idnint))
451 ;; This is based on the algorithm given by Anton Ertl in
452 ;; comp.arch.arithmetic on Oct. 26, 2002:
454 ;; #define X 9007199254740992. /* 2^53 */
455 ;; double rint(double r)
456 ;; {
457 ;; if (r<0.0)
458 ;; return (r+X)-X;
459 ;; else
460 ;; return (r-X)+X;
461 ;; }
463 ;; This assumes that we in round-to-nearest mode (the default).
465 ;; These only work if you have IEEE FP arithmetic. There are 2
466 ;; versions given below. One is for non-x87, which assumes that
467 ;; single and double FP numbers are properly rounded after each
468 ;; operation. The version for x87 stores away a value to make sure
469 ;; the rounding happens correctly.
471 ;; Finally, the last version if for platforms where none of this
472 ;; holds and we call ftruncate.
474 ;; With CMUCL pre-18e on sparc, this definition of aint reduces the
475 ;; cost of MPNORM (from MPFUN) from 48.89 sec to 24.88 sec (a factor
476 ;; of 2!) when computing pi to 29593 digits or os.
478 (declaim (inline rint-s rint-d))
479 #+(and cmu (or :sse2 (not x86)))
480 (progn
481 (defun rint-s (x)
482 (declare (single-float x))
483 (let ((const (scale-float 1f0 24)))
484 (if (>= x 0)
485 (+ (- x const) const)
486 (- (+ x const) const))))
488 (defun rint-d (x)
489 (declare (double-float x))
490 (let ((const (scale-float 1d0 53)))
491 (if (>= x 0)
492 (+ (- x const) const)
493 (- (+ x const) const))))
496 #+(and cmu (and x86 x87))
497 (progn
498 (defun rint-s (x)
499 (declare (single-float x))
500 (let ((junks (make-array 1 :element-type 'single-float))
501 (const (scale-float 1f0 24)))
502 (if (>= x 0)
503 (progn
504 (setf (aref junks 0) (- x const))
505 (+ (aref junks 0) const))
506 (progn
507 (setf (aref junks 0) (+ x const))
508 (- (aref junks 0) const)))))
510 (defun rint-d (x)
511 (declare (double-float x))
512 (let ((junkd (make-array 1 :element-type 'double-float))
513 (const (scale-float 1d0 53)))
514 (if (>= x 0)
515 (progn
516 (setf (aref junkd 0) (- x const))
517 (+ (aref junkd 0) const))
518 (progn
519 (setf (aref junkd 0) (+ x const))
520 (- (aref junkd 0) const)))))
523 ;; Truncate x to an integer.
524 #+cmu
525 (defun aint (x)
526 ;; rint above is fast. We use it to round the number, and then
527 ;; adjust the result to truncate.
528 (etypecase x
529 (single-float
530 (let ((r (rint-s x)))
531 (if (> (abs r) (abs x))
532 (if (> r 0)
533 (- r 1)
534 (+ r 1))
535 r)))
536 (double-float
537 (let ((r (rint-d x)))
538 (if (> (abs r) (abs x))
539 (if (> r 0)
540 (- r 1)
541 (+ r 1))
542 r)))))
545 #-cmu
546 (defun aint (x)
547 ;; ftruncate is exactly what we want.
548 (etypecase x
549 (single-float
550 (locally
551 (declare (optimize (space 0) (speed 3)))
552 (values (ftruncate (the single-float x)))))
553 (double-float
554 (locally
555 (declare (optimize (space 0) (speed 3)))
556 (values (ftruncate (the double-float x)))))))
558 (defun dint (x)
559 (aint x))
561 (defun anint (x)
562 (values (fround x)))
563 (defun dnint (x)
564 (values (fround x)))
565 (defun nint (x)
566 (values (round x)))
567 (defun idnint (x)
568 (values (round x)))
570 ;; Type conversion
572 ;; FREAL is F2CL's version of the Fortran REAL which takes converts
573 ;; its arg to a real. SNGL is the same. DBLE returns a double. They
574 ;; also return the real part of a complex number. CMPLX takes one or
575 ;; two args and creates a complex number.
577 (declaim (inline freal sngl dble dfloat cmplx))
578 (defun freal (x)
579 (coerce (realpart x) 'single-float))
581 (defun sngl (x)
582 (coerce (realpart x) 'single-float))
584 (defun dble (x)
585 (coerce (realpart x) 'double-float))
587 (defun dfloat (x)
588 (coerce (realpart x) 'double-float))
590 (defun cmplx (x &optional y)
591 (complex x (if y y 0)))
593 (defun dcmplx (x &optional y)
594 (coerce (complex x (if y y 0)) '(complex double-float)))
596 (defun ichar (c)
597 (if (stringp c)
598 (char-int (aref c 0))
599 (char-int c)))
600 (defun fchar (i) ;intrinsic function char
601 (code-char i))
603 (declaim (inline iabs dabs cabs cdabs amod dmod))
604 #-aclpc
605 (defun iabs (x)
606 (declare (type integer4 x))
607 (abs x))
608 (defun dabs (x)
609 (declare (type double-float x))
610 (abs x))
611 (defun cabs (x)
612 (declare (type complex x))
613 (abs x))
614 (defun cdabs (x)
615 (declare (type (complex double-float) x))
616 (abs x))
618 (defun amod (x y)
619 (declare (type single-float x y))
620 (mod x y))
621 (defun dmod (x y)
622 (declare (type double-float x y))
623 (mod x y))
626 ;; Transfer of sign. SIGN is the generic and specific function for
627 ;; real. ISIGN is for integers; DSIGN for doubles. Basically
628 ;; computes sign(a2)*|a1|.
630 (declaim (inline isign sign dsign))
632 (defun isign (x y)
633 (declare (type integer4 x y))
634 (if (>= y 0)
635 (the integer4 (abs x))
636 (the integer4 (- (the integer4 (abs x))))))
638 ;; Fortran 77 says SIGN is a generic!
639 (defun sign (x y)
640 (declare (type (or integer4 single-float double-float) x y))
641 (etypecase x
642 (integer4
643 (isign x y))
644 (single-float
645 (float-sign y x))
646 (double-float
647 (float-sign y x))))
649 (defun dsign (x y)
650 (declare (type double-float x y))
651 (float-sign y x))
653 ;; Positive difference. DIM is the generic and specific function for
654 ;; real. IDIM is for integers; DDIM, doubles.
656 ;; If a1 > a2, returns a1-a2, otherwise 0. Basically the same as
657 ;; max(0, a1-a2).
658 (declaim (inline idim dim ddim))
659 (defun idim (x y)
660 (declare (type integer4 x y))
661 (max 0 (- x y)))
663 (defun dim (x y)
664 (declare (type (or integer4 single-float double-float) x y))
665 (etypecase x
666 (integer4
667 (max 0 (- x y)))
668 (single-float
669 (max 0f0 (- x y)))
670 (double-float
671 (max 0d0 (- x y)))))
673 (defun ddim (x y)
674 (declare (type double-float x y))
675 (max 0d0 (- x y)))
677 ;; Double-precision product. How this is done isn't specified, but I
678 ;; suspect the real args are converted to doubles and then the product
679 ;; is computed.
680 (defun dprod (x y)
681 (declare (single-float x y))
682 (* (float x 1d0) (float y 1d0)))
684 ;; The max and min functions.
686 ;; MAX is the generic. MAX0, AMAX1, and DMAX1 returns the max of the
687 ;; args with the same type as the args.
689 ;; AMAX0 takes integer args and returns the max as a real. MAX1 takes
690 ;; real args and returns the max as a integer. (How the conversion is
691 ;; done isn't specified.)
693 ;; Should we make these macros that expand directly to the appropriate
694 ;; max?
695 (defun max0 (x y &rest z)
696 #-gcl(declare (integer x y))
697 (apply #'max x y z))
698 (defun amax1 (x y &rest z)
699 #-gcl(declare (single-float x y))
700 (apply #'max x y z))
701 (defun dmax1 (x y &rest z)
702 #-gcl(declare (double-float x y))
703 (apply #'max x y z))
704 (defun max1 (x y &rest z)
705 #-gcl(declare (single-float x y))
706 (int (apply #'max x y z)))
707 (defun amax0 (x y &rest z)
708 #-gcl(declare (type integer4 x y))
709 (float (apply #'max x y z) 1f0))
711 (defun min0 (x y &rest z)
712 (apply #'min x y z))
713 (defun amin1 (x y &rest z)
714 (apply #'min x y z))
715 (defun dmin1 (x y &rest z)
716 (apply #'min x y z))
718 (defun amin0 (x y &rest z)
719 (float (apply #'min x y z)))
720 (defun min1 (x y &rest z)
721 (nint (apply #'min x y z)))
723 ;; Define some compile macros for these max/min functions.
724 #+(or cmu scl)
725 (progn
726 (define-compiler-macro max0 (&rest args)
727 `(max ,@args))
728 (define-compiler-macro amax1 (&rest args)
729 `(max ,@args))
730 (define-compiler-macro dmax1 (&rest args)
731 `(max ,@args))
732 (define-compiler-macro min0 (&rest args)
733 `(min ,@args))
734 (define-compiler-macro amin1 (&rest args)
735 `(min ,@args))
736 (define-compiler-macro dmin1 (&rest args)
737 `(min ,@args))
738 (define-compiler-macro min1 (&rest args)
739 `(nint (min ,@args)))
741 (define-compiler-macro amax0 (&rest args)
742 `(float (max ,@args)))
743 (define-compiler-macro max1 (&rest args)
744 `(nint (max ,@args)))
746 (define-compiler-macro amin0 (&rest args)
747 `(float (min ,@args)))
748 (define-compiler-macro min1 (&rest args)
749 `(nint (min ,@args)))
750 ) ; end progn
752 (defun len (s)
753 (length s))
755 ;; From http://www.fortran.com/fortran/F77_std/rjcnf0001-sh-15.html#sh-15.10:
757 ;; INDEX(a1 ,a2) returns an integer value indicating the starting
758 ;; position within the character string a1 of a substring identical
759 ;; to string a2 . If a2 occurs more than once in a1 , the starting
760 ;; position of the first occurrence is returned.
762 ;; If a2 does not occur in a1 , the value zero is returned. Note
763 ;; that zero is returned if LEN(a1) < LEN(a2).
765 ;; Thus the arguments are in the opposite order for CL's SEARCH function.
766 (defun index (s1 s2)
767 (or (search s2 s1) 0))
769 ;; These string operations need some work!
770 (defun lge (s1 s2)
771 (string>= s1 s2))
772 (defun lgt (s1 s2)
773 (string> s1 s2))
774 (defun lle (s1 s2)
775 (string<= s1 s2))
776 (defun llt (s1 s2)
777 (string< s1 s2))
779 (defun fstring-/= (s1 s2)
780 (not (string= s1 s2)))
781 (defun fstring-= (s1 s2)
782 (string= s1 s2))
783 (defun fstring-> (s1 s2)
784 (string> s1 s2))
785 (defun fstring->= (s1 s2)
786 (string>= s1 s2))
787 (defun fstring-< (s1 s2)
788 (string< s1 s2))
789 (defun fstring-<= (s1 s2)
790 (string<= s1 s2))
793 ;; AIMAG: imaginary part of a complex number
794 ;; CONJG: conjugate of a complex number
795 (declaim (inline aimag conjg dconjg dimag))
796 (defun aimag (c)
797 (imagpart c))
798 (defun dimag (c)
799 (declare (type (complex double-float) c))
800 (imagpart c))
801 (defun conjg (c)
802 (conjugate c))
803 (defun dconjg (c)
804 (declare (type (complex double-float) c))
805 (conjugate c))
807 (declaim (inline fsqrt flog))
808 (defun fsqrt (x)
809 (typecase x
810 (single-float
811 (sqrt (the (or (single-float (0f0)) (member 0f0)) x)))
812 (double-float
813 (sqrt (the (or (double-float (0d0)) (member 0d0)) x)))
815 (sqrt x))))
817 (defun flog (x)
818 (typecase x
819 (single-float
820 (log (the (or (single-float (0f0)) (member 0f0)) x)))
821 (double-float
822 (log (the (or (double-float (0d0)) (member 0d0)) x)))
824 (log x))))
826 ;; Tell Lisp that the arguments always have the correct range. If
827 ;; this is not true, the original Fortran code was broken anyway, so
828 ;; GIGO (garbage in, garbage out).
830 (declaim (inline dsqrt csqrt zsqrt alog dlog clog alog10 dlog10))
831 (defun dsqrt (x)
832 (declare (type (double-float 0d0) x))
833 (sqrt x))
834 (defun csqrt (x)
835 (sqrt x))
836 (defun zsqrt (x)
837 (sqrt x))
838 (defun alog (x)
839 (declare (type (or (single-float (0f0)) (member 0f0)) x))
840 (log x))
841 (defun dlog (x)
842 (declare (type (or (double-float (0d0)) (member 0d0)) x))
843 (log x))
844 (defun clog (x)
845 (log x))
846 (defun alog10 (x)
847 (declare (type (or (single-float (0f0)) (member 0f0)) x))
848 (log x 10f0))
849 (defun dlog10 (x)
850 (declare (type (or (double-float (0d0)) (member 0d0)) x))
851 (log x 10.0d0))
853 (declaim (inline log10))
854 (defun log10 (x)
855 (typecase x
856 (single-float
857 (log (the (or (single-float (0.0f0)) (member 0f0)) x) 10f0))
858 (double-float
859 (log (the (or (double-float (0.0d0)) (member 0d0)) x) 10d0))
861 (/ (log x)
862 (typecase x
863 ((complex double-float)
864 10d0)
865 ((complex single-float)
866 10f0)
868 (coerce 10 (type-of (realpart x)))))))))
870 (declaim (inline dexp cexp))
871 (defun dexp (x)
872 (declare (type double-float x))
873 (exp x))
874 (defun cexp (x)
875 (declare (type complex x))
876 (exp x))
878 (declaim (inline dsin csin dcos ccos dtan ctan dasin dacos datan atan2 datan2 dsinh dcosh dtanh))
879 (defun dsin (x)
880 (declare (type double-float x))
881 (sin x))
882 (defun csin (x)
883 (declare (type complex x))
884 (sin x))
886 (defun dcos (x)
887 (declare (type double-float x))
888 (cos x))
889 (defun ccos (x)
890 (declare (type complex x))
891 (cos x))
893 (defun dtan (x)
894 (declare (type double-float x))
895 (tan x))
896 (defun ctan (x)
897 (declare (type complex x))
898 (tan x))
900 (defun dasin (x)
901 (declare (type double-float x))
902 (asin x))
903 (defun dacos (x)
904 (declare (type double-float x))
905 (acos x))
906 (defun datan (x)
907 (declare (type double-float x))
908 (atan x))
909 ;; atan2 is the Fortran77 generic name, so it can take any float arg.
910 (defun atan2 (y x)
911 (declare (type float y x))
912 (atan y x))
913 (defun datan2 (y x)
914 (declare (type double-float x y))
915 (atan y x))
917 (defun dsinh (x)
918 (declare (type double-float x))
919 (sinh x))
920 (defun dcosh (x)
921 (declare (type double-float x))
922 (cosh x))
923 (defun dtanh (x)
924 (declare (type double-float x))
925 (tanh x))
927 (declaim (inline ffloat))
928 (defun ffloat (x)
929 (coerce x 'single-float))
931 (defun process-implied-do (ido array-bnds var-types init)
932 (destructuring-bind (data-vars &rest looping)
934 (labels
935 ((convert-type (type)
936 (if (eq type 'integer4)
937 `(truncate (pop ,init))
938 `(coerce (pop ,init) ',type)))
939 (map-vars (v)
940 (mapcar #'(lambda (x b vt)
941 `(fset (fref ,(first x) ,(second x) ,b)
942 ,(convert-type vt)))
943 v array-bnds var-types)))
944 (let ((body (map-vars data-vars)))
945 (dolist (loopvar looping)
946 (destructuring-bind (index-var start end &optional step)
947 loopvar
948 (setf body `((do ((,index-var ,start (+ ,index-var ,(or step 1))))
949 ((> ,index-var ,end))
950 ,@body)))))
951 (car body)))))
954 ;; Process implied do loops for data statements
955 (defmacro data-implied-do (implied-do array-bnds var-types vals)
956 (let ((v (gensym)))
957 `(let ((,v (list ,@vals)))
958 ,(process-implied-do implied-do array-bnds var-types v))))
960 ;;-----------------------------------------------------------------------------
962 ;; Map Fortran logical unit numbers to Lisp streams
964 #-gcl
965 (defparameter *lun-hash*
966 (make-hash-table))
968 #+gcl
969 (defvar *lun-hash*
970 (make-hash-table))
972 (defun lun->stream (lun &optional readp)
973 (let ((stream (gethash lun *lun-hash*)))
974 (if stream
975 stream
976 (cond ((eql lun 5)
977 ;; Always standard input
978 (setf (gethash lun *lun-hash*) *standard-input*))
979 ((or (eql lun 6)
980 (eql lun t))
981 ;; Always standard output
982 (setf (gethash lun *lun-hash*) *standard-output*))
983 ((integerp lun)
984 ;; All other cases open a file fort<n>.dat
985 (setf (gethash lun *lun-hash*)
986 (open (format nil "fort~d.dat" lun)
987 :direction :io
988 :if-exists :rename)))
989 ((stringp lun)
990 (setf (gethash lun *lun-hash*)
991 (if readp
992 (make-string-input-stream lun)
993 (make-string-output-stream))))))))
995 (defun init-fortran-io ()
996 "Initialize the F2CL Fortran I/O subsystem to sensible defaults"
997 (clrhash *lun-hash*)
998 (setf (gethash 6 *lun-hash*) *standard-output*)
999 (setf (gethash 5 *lun-hash*) *standard-input*)
1000 (setf (gethash t *lun-hash*) *standard-output*))
1002 (defun close-fortran-io ()
1003 "Close all F2CL Fortran units (except for standard output and input)
1004 causing all pending operations to be flushed"
1005 (maphash #'(lambda (key val)
1006 (when (and (streamp val) (not (member key '(5 6 t))))
1007 (format t "Closing unit ~A: ~A~%" key val)
1008 (close val)))
1009 *lun-hash*))
1011 (defun %open-file (&key unit file status access form recl blank)
1012 (declare (ignore unit))
1013 ;; We should also check for values of form that we don't support.
1014 (when recl
1015 (error "F2CL-LIB does not support record lengths"))
1016 (when blank
1017 (error "F2CL-LIB does not support any BLANK mode for files"))
1018 (when (and access (not (string-equal "sequential"
1019 (string-right-trim " " access))))
1020 (error "F2CL-LIB does not support ACCESS mode ~S" access))
1021 (when (and form (not (string-equal "unformatted"
1022 (string-right-trim " " form))))
1023 (error "F2CL-LIB does not support FORM ~S" form))
1024 (let ((s (and status (string-right-trim " " status))))
1025 (finish-output)
1026 (cond ((or (null s) (string-equal s "unknown"))
1027 (open file :direction :io :if-exists :supersede
1028 :if-does-not-exist :create))
1029 ((string-equal s "old")
1030 (open file :direction :io :if-does-not-exist nil :if-exists :overwrite))
1031 ((string-equal s "new")
1032 (open file :direction :io :if-exists nil))
1034 (error "F2CL-LIB does not support this mode for OPEN: ~S~%"
1035 s)))))
1037 (defmacro open-file (&key unit iostat err file status access form recl blank)
1038 (let ((result (gensym)))
1039 `(prog ((,result (%open-file :unit ,unit :file ,file :status ,status
1040 :access ,access :form ,form :recl ,recl :blank ,blank)))
1041 (when ,result
1042 (setf (gethash ,unit *lun-hash*) ,result))
1043 ,(if err `(unless ,result (go ,(f2cl-lib::make-label err))))
1044 ,(if iostat `(setf ,iostat (if ,result 0 1))))))
1046 (defun %rewind (unit)
1047 (file-position (lun->stream unit) :start))
1049 (defmacro rewind (&key unit iostat err)
1050 (let ((result (gensym)))
1051 `(prog ((,result (%rewind ,unit)))
1052 (declare (ignorable ,result))
1053 ,(if err `(unless ,result (go ,(f2cl-lib::make-label err))))
1054 ,(if iostat `(setf ,iostat (if ,result 0 1))))))
1057 (defun %close (&key unit status)
1058 (when status
1059 (error "F2CL-LIB does not support STATUS"))
1060 (cl:close (lun->stream unit)))
1062 (defmacro close$ (&key unit iostat err status)
1063 (let ((result (gensym)))
1064 `(prog ((,result (%close :unit ,unit :status ,status)))
1065 (declare (ignorable ,result))
1066 ,(if err `(unless ,result (go ,(f2cl-lib::make-label err))))
1067 ,(if iostat `(setf ,iostat (if ,result 0 1))))))
1069 #-gcl
1070 (declaim (ftype (function (t) stream) lun->stream))
1072 (defmacro fformat (dest-lun format-cilist &rest args)
1073 (let ((stream (gensym)))
1074 `(let ((,stream (lun->stream ,dest-lun)))
1075 (execute-format-main ,stream ',format-cilist ,@args)
1076 ,@(unless (or (eq t dest-lun) (numberp dest-lun))
1077 `((when (stringp ,dest-lun)
1078 (replace ,dest-lun (get-output-stream-string ,stream))))))))
1080 (defun execute-format (top stream format arg-list)
1081 (do ((formats format (if (and top (null formats))
1082 format
1083 (rest formats))))
1084 ((or (null arg-list)
1085 (and (not top)
1086 (null formats)))
1087 #+nil
1088 (progn
1089 (format t "~&end formats = ~S~%" formats)
1090 (format t "~&end arg-list = ~S~%" arg-list))
1091 (do ((more formats (rest more)))
1092 ((not (stringp (first more))))
1093 (format stream (first more)))
1094 arg-list)
1096 (when (null formats)
1097 ;; We're out of formats but not arguments. I think Fortran says
1098 ;; we should start over at the last repeat spec. So we look
1099 ;; over all the formats until we find the first number. That
1100 ;; means it's a repeat spec.
1102 ;; This is probably wrong for complicated format statements.
1103 (do ((f format (cdr f))
1104 (last-rep nil))
1105 ((null f)
1106 (setf formats last-rep))
1107 (when (or (eq (car f) t)
1108 (numberp (car f)))
1109 (setf last-rep f)))
1111 (when (null formats)
1112 ;; Now what? We couldn't find a repeat spec, so should we
1113 ;; just start over?
1114 (setf formats format)))
1115 #+nil
1116 (let ((*print-circle* t))
1117 (format t "~&arg-list = ~S~%" arg-list)
1118 (format t "~&formats = ~S~%" formats))
1119 (cond ((listp (first formats))
1120 (format stream (caar formats) (pop arg-list)))
1121 ((eq (first formats) #\:)
1122 ;; Terminate control if there are no more items
1123 (when (null arg-list)
1124 (return-from execute-format)))
1125 ((numberp (first formats))
1126 ;; Repeat a group some fixed number of times
1127 (dotimes (k (first formats))
1128 ;;(format t "k = ~A, format = ~S~%" k (second formats))
1129 (setf arg-list
1130 (execute-format nil stream (second formats) arg-list))
1131 ;; Gotta exit if we're out of arguments to print!
1132 (unless arg-list
1133 (return)))
1134 (setf formats (rest formats))
1135 ;; Output a newline after the repeat (I think Fortran says this)
1136 ;;(format stream "~&")
1137 ;;(format t " cont with format = ~S~%" formats)
1139 ((eq (first formats) t)
1140 ;; Repeat "forever" (until we run out of data)
1141 (loop while arg-list do
1142 (setf arg-list
1143 (execute-format nil stream (second formats) arg-list))
1144 ;; Output a newline after the repeat (I think Fortran says this)
1145 (format stream "~%")))
1147 (format stream (car formats))))))
1149 (defun flatten-list (x)
1150 (labels ((flatten-helper (x r);; 'r' is the stuff to the 'right'.
1151 (cond ((null x) r)
1152 ((atom x)
1153 (cons x r))
1154 (t (flatten-helper (car x)
1155 (flatten-helper (cdr x) r))))))
1156 (flatten-helper x nil)))
1158 ;; Fortran G format, roughly. We use ~F for numbers "near" 1, and use
1159 ;; ~E otherwise.
1161 ;; Note that g77 seems to use an exponent marker of E for single and
1162 ;; double floats, but Sun Fortran uses E and D. I think I like E and
1163 ;; D to distinguish between them. Also note that g77 uses just enough
1164 ;; digits for the numbers, but Sun Fortran seems to specify the number
1165 ;; of printed digits to be 16 or so. Thus 1.0 is "1.0" with g77, but
1166 ;; "1.0000000000000" with Sun Fortran. I like g77's style better.
1167 (defun fortran-format-g (stream arg colon-p at-p &rest args)
1168 (declare (ignore colon-p at-p args))
1169 (let* ((marker (typecase arg
1170 (single-float "E")
1171 (double-float "D")))
1172 (a (abs arg))
1173 ;; g77 uses limits 1d-4 and 1d9. Sun Fortran uses 1 and
1174 ;; 1d15.
1175 (format-string (if (or (zerop a)
1176 (and (>= a 1d-4)
1177 (< a 1d9)))
1178 "~F"
1179 (concatenate 'string "~,,2,,,,'"
1180 marker
1181 "E"))))
1182 (format stream format-string arg)))
1184 ;; Output objects in Fortran style, roughly. This basically means
1185 ;; complex numbers are printed as "(<re>, <im>)", floats use
1186 ;; FORTRAN-FORMAT-G, integers use ~D, strings are printed as is, and
1187 ;; T/NIL become "T" or "F".
1188 (defun fortran-format (stream arg colon-p at-p &rest args)
1189 (declare (ignore colon-p at-p args))
1190 (etypecase arg
1191 (complex
1192 #-gcl
1193 (format stream "(~/f2cl-lib::fortran-format-g/, ~/f2cl-lib::fortran-format-g/)"
1194 (realpart arg) (imagpart arg))
1195 #+gcl
1196 (progn
1197 (fortran-format-g stream (realpart arg) nil nil)
1198 (fortran-format-g stream (imagpart arg) nil nil)))
1199 (float
1200 #-gcl
1201 (format stream " ~/f2cl-lib::fortran-format-g/" arg)
1202 #+gcl
1203 (fortran-format-g stream arg nil nil))
1204 (integer
1205 (format stream " ~D" arg))
1206 (string
1207 (format stream "~A" arg))
1208 ((member t nil)
1209 (format stream (if arg "T " "F ")))))
1211 (defun execute-format-main (stream format &rest args)
1212 (cond
1213 ((eq format :list-directed)
1214 ;; This prints out the args separated by spaces and puts a line
1215 ;; break after about 80 columns.
1216 (format stream "~& ~{~<~%~1,81:;~?~>~^~}~%"
1217 (let (pars)
1218 (dolist (v args)
1219 ;; Some special cases. Let FORTRAN-FORMAT handle
1220 ;; most cases, except strings, which we just print
1221 ;; out ourselves. Lists (from implied-do loops) and
1222 ;; arrays use FORTRAN-FORMAT for each element.
1223 (typecase v
1224 (string
1225 (push "~A" pars)
1226 (push (list v) pars))
1227 (cons
1228 (dolist (item v)
1229 #-gcl
1230 (progn
1231 (push "~/f2cl-lib::fortran-format/" pars)
1232 (push (list item) pars))
1233 (progn
1234 (push "~A" pars)
1235 (push (fortran-format nil item nil nil) pars))))
1236 (array
1237 (dotimes (k (length v))
1238 #-gcl
1239 (progn
1240 (push "~/f2cl-lib::fortran-format/" pars)
1241 (push (list (aref v k)) pars))
1242 #+gcl
1243 (progn
1244 (push "~A" pars)
1245 (push (fortran-format nil (list (aref v k)) nil nil)
1246 pars))))
1248 #-gcl
1249 (progn
1250 (push "~/f2cl-lib::fortran-format/" pars)
1251 (push (list v) pars))
1252 #+gcl
1253 (progn
1254 (push "~A" pars)
1255 (push (fortran-format nil (list v) nil nil) pars)))))
1256 ;;(format t "~S~%" (reverse pars))
1257 (nreverse pars))))
1259 (let ((format-list (copy-tree format))
1260 (arg-list
1261 (apply #'append
1262 (map 'list #'(lambda (x)
1263 (cond ((bigfloat:numberp x)
1264 (list x))
1265 ((stringp x)
1266 (list x))
1267 ((member x '(t nil))
1268 ;; Convert T and NIL to :T
1269 ;; and :F so we print out T
1270 ;; and F, respectively.
1271 (case x
1272 ((t)
1273 (list :t))
1274 ((nil)
1275 (list :f))
1277 (list x))))
1279 (coerce x 'list))))
1280 args))))
1281 (execute-format t stream format-list arg-list)))))
1284 ;; Initialize a multi-dimensional array of character strings. I think
1285 ;; we need to do it this way to appease some picky compilers (like
1286 ;; CMUCL). The initial-element is needed to get rid of a warning
1287 ;; about the default initial element not being a simple
1288 ;; string. However, this initializes all elements of the array to
1289 ;; exactly the same string, so we loop over the entire array contents
1290 ;; and initialize each element with a string of the appropriate
1291 ;; length. The string is initialized with #\Space because it seems
1292 ;; that's what Fortran initializes it to.
1293 (defmacro f2cl-init-string (dims len &optional inits)
1294 (let ((init (gensym (symbol-name '#:array-)))
1295 (k (gensym (symbol-name '#:idx-))))
1296 `(let ((,init (make-array (* ,@dims)
1297 :element-type `(simple-array character (,',@len))
1298 :initial-element (make-string ,@len))))
1299 (dotimes (,k (array-total-size ,init))
1300 (setf (aref ,init ,k)
1301 (make-string ,@len :initial-element #\Space)))
1302 ,@(when inits
1303 (let ((k 0)
1304 (forms nil))
1305 (dolist (val inits)
1306 (push `(replace (aref ,init ,k) ,val) forms)
1307 (incf k))
1308 (nreverse forms)))
1310 ,init)))
1312 ;; This macro is supposed to set LHS to the RHS assuming that the LHS
1313 ;; is a Fortran CHARACTER type of length LEN.
1315 ;; Currently, converts the RHS to the appropriate length string and
1316 ;; assigns it to the LHS. However, this can generate quite a bit of
1317 ;; garbage. We might want to be a bit smarter and use loops to
1318 ;; replace the individual characters of the LHS with the appropriate
1319 ;; characters from the RHS.
1320 (defmacro f2cl-set-string (lhs rhs (string len))
1321 (declare (ignore string))
1322 (etypecase lhs
1323 (symbol
1324 ;; Assignment to a simple string.
1325 `(setf ,lhs (f2cl-string ,rhs ,len)))
1326 (list
1327 ;; Assignment to an array
1328 `(fset ,lhs (f2cl-string ,rhs ,len)))))
1330 (defun f2cl-string (string len)
1331 ;; Create a string of the desired length by either appending spaces
1332 ;; or truncating the string.
1333 (let ((slen (length string)))
1334 (cond ((= slen len)
1335 ;; Need to make a copy of the string, so we don't have
1336 ;; duplicated structure.
1337 (copy-seq string))
1338 ((> slen len)
1339 ;; Truncate the string
1340 (subseq string 0 len))
1342 ;; String is too short, so append some spaces
1343 (concatenate 'string string (make-string (- len slen) :initial-element #\Space))))))
1346 ;;; Strictly speaking, this is not part of Fortran, but so many
1347 ;;; Fortran packages use these routines, we're going to add them here.
1348 ;;; They're much easier to implement in Lisp than in Fortran!
1351 ;; DOUBLE-PRECISION MACHINE CONSTANTS
1352 ;; D1MACH( 1) = B**(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE.
1353 ;; D1MACH( 2) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.
1354 ;; D1MACH( 3) = B**(-T), THE SMALLEST RELATIVE SPACING.
1355 ;; D1MACH( 4) = B**(1-T), THE LARGEST RELATIVE SPACING.
1356 ;; D1MACH( 5) = LOG10(B)
1359 (defun d1mach (i)
1360 (ecase i
1361 (1 least-positive-normalized-double-float)
1362 (2 most-positive-double-float)
1363 (3 #-(or gcl ecl) double-float-epsilon
1364 #+(or gcl ecl) (scale-float (float #X10000000000001 1d0) -105))
1365 (4 (scale-float #-(or gcl ecl) double-float-epsilon
1366 #+(or gcl ecl) (scale-float (float #X10000000000001 1d0) -105)
1368 (5 (log (float (float-radix 1d0) 1d0) 10d0))))
1370 (defun r1mach (i)
1371 (ecase i
1372 (1 least-positive-normalized-single-float)
1373 (2 most-positive-single-float)
1374 (3 single-float-epsilon)
1375 (4 (scale-float single-float-epsilon 1))
1376 (5 (log (float (float-radix 1f0)) 10f0))))
1379 ;; This is the CMLIB version of I1MACH, the integer machine
1380 ;; constants subroutine originally developed for the PORT library.
1382 ;; I1MACH can be used to obtain machine-dependent parameters
1383 ;; for the local machine environment. It is a function
1384 ;; subroutine with one (input) argument, and can be called
1385 ;; as follows, for example
1387 ;; K = I1MACH(I)
1389 ;; where I=1,...,16. The (output) value of K above is
1390 ;; determined by the (input) value of I. The results for
1391 ;; various values of I are discussed below.
1393 ;; I/O unit numbers.
1394 ;; I1MACH( 1) = the standard input unit.
1395 ;; I1MACH( 2) = the standard output unit.
1396 ;; I1MACH( 3) = the standard punch unit.
1397 ;; I1MACH( 4) = the standard error message unit.
1399 ;; Words.
1400 ;; I1MACH( 5) = the number of bits per integer storage unit.
1401 ;; I1MACH( 6) = the number of characters per integer storage unit.
1403 ;; Integers.
1404 ;; assume integers are represented in the S-digit, base-A form
1406 ;; sign ( X(S-1)*A**(S-1) + ... + X(1)*A + X(0) )
1408 ;; where 0 .LE. X(I) .LT. A for I=0,...,S-1.
1409 ;; I1MACH( 7) = A, the base.
1410 ;; I1MACH( 8) = S, the number of base-A digits.
1411 ;; I1MACH( 9) = A**S - 1, the largest magnitude.
1413 ;; Floating-Point Numbers.
1414 ;; Assume floating-point numbers are represented in the T-digit,
1415 ;; base-B form
1416 ;; sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
1418 ;; where 0 .LE. X(I) .LT. B for I=1,...,T,
1419 ;; 0 .LT. X(1), and EMIN .LE. E .LE. EMAX.
1420 ;; I1MACH(10) = B, the base.
1422 ;; Single-Precision
1423 ;; I1MACH(11) = T, the number of base-B digits.
1424 ;; I1MACH(12) = EMIN, the smallest exponent E.
1425 ;; I1MACH(13) = EMAX, the largest exponent E.
1427 ;; Double-Precision
1428 ;; I1MACH(14) = T, the number of base-B digits.
1429 ;; I1MACH(15) = EMIN, the smallest exponent E.
1430 ;; I1MACH(16) = EMAX, the largest exponent E.
1431 (defun i1mach (i)
1432 (ecase i
1433 ;; What does the unit numbers really mean in Lisp? What do we
1434 ;; really want?
1436 ;; The standard input unit
1437 (1 5)
1438 ;; The standard output unit
1439 (2 6)
1440 ;; The standard punch unit
1441 (3 6)
1442 ;; The standard error message unit
1443 (4 6)
1445 ;; The number of bits per integer storage unit. What does this
1446 ;; mean in Lisp?
1448 (integer-length most-positive-fixnum))
1449 ;; The number of characters per integer storage unit. What does
1450 ;; this mean in Lisp?
1451 (6 4)
1453 ;; The base of integers. Assume 2's complement
1454 (7 2)
1455 ;; The number of base-2 digits. Assume fixnum size?
1456 (8 (integer-length most-positive-fixnum))
1457 ;; The largest magnitude
1458 (9 most-positive-fixnum)
1460 ;; Base of floating-poing representation
1461 (10 (float-radix 1f0))
1462 ;; Number of digits in representation
1463 (11 (float-digits 1f0))
1464 ;; Smallest exponent
1465 (12 (multiple-value-bind (frac exp sign)
1466 (decode-float least-positive-normalized-single-float)
1467 (declare (ignore frac sign))
1468 (+ exp 1)))
1469 ;; Largest exponent
1470 (13 (multiple-value-bind (frac exp sign)
1471 (decode-float most-positive-single-float)
1472 (declare (ignore frac sign))
1473 (- exp 1)))
1474 ;; Same for double-precision
1475 (14 (float-digits 1d0))
1476 (15 (multiple-value-bind (frac exp sign)
1477 (decode-float least-positive-normalized-double-float)
1478 (declare (ignore frac sign))
1479 (+ exp 1)))
1480 (16 (multiple-value-bind (frac exp sign)
1481 (decode-float most-positive-double-float)
1482 (declare (ignore frac sign))
1483 (- exp 1)))
1486 ;; F2cl cannot tell if a STOP statement is an error condition or just
1487 ;; the end of the program. So, by default, we signal a continuable
1488 ;; error. However, we give the user the option of silently returning
1489 ;; or not.
1490 (defvar *stop-signals-error-p* nil
1491 "When non-NIL, STOP will signal an continuable error. Otherwise, STOP just returns")
1493 (defun stop (&optional arg)
1494 (when arg
1495 (format cl::*error-output* "~A~%" arg))
1496 (when *stop-signals-error-p*
1497 (cerror "Continue anyway" "STOP reached")))
1499 (defmacro f2cl-copy-seq (dst src dst-type src-type)
1500 (flet ((copy-error ()
1501 (error "F2CL cannot copy arrays of element type ~A to ~A~%"
1502 src-type dst-type)))
1503 (cond ((subtypep dst-type 'float)
1504 ;; Copy to float array
1505 (cond ((subtypep src-type 'float)
1506 `(replace ,dst ,src))
1507 ((subtypep src-type 'complex)
1508 ;; Copy complex to float by putting each real and
1509 ;; imaginary part into the float array, in order.
1510 (let ((idx (gensym "IDX-"))
1511 (el (gensym "EL-")))
1512 `(loop for ,idx of-type fixnum from 0 by 2 below (length ,dst)
1513 for ,el of-type ,src-type across ,src
1515 (progn
1516 (setf (aref ,dst ,idx) (realpart ,el))
1517 (setf (aref ,dst (1+ ,idx)) (imagpart ,el))))))
1519 (copy-error))))
1520 ((subtypep dst-type 'complex)
1521 ;; Copy to complex array
1522 (cond ((subtypep src-type 'float)
1523 (let ((idx (gensym "IDX-"))
1524 (dst-idx (gensym "DST-IDX-")))
1525 `(loop for ,idx of-type fixnum from 0 by 2 below (length ,src)
1526 for ,dst-idx of-type fixnum from 0 below (length ,dst)
1528 (setf (aref ,dst ,dst-idx) (complex (aref ,src ,idx)
1529 (aref ,src (1+ ,idx)))))))
1530 ((subtypep src-type 'complex)
1531 `(replace ,dst ,src))
1533 (copy-error))))
1535 (copy-error)))))
1537 (defmacro make-compatible-seq (type array array-type)
1538 (let ((element-type (second type))
1539 (array-type (second array-type)))
1540 (cond ((subtypep element-type 'float)
1541 (cond ((subtypep array-type 'complex)
1542 `(make-array (* 2 (length ,array)) :element-type ',element-type))
1544 `(make-array (length ,array) :element-type ',element-type))))
1545 ((subtypep element-type 'complex)
1546 (cond ((subtypep array-type 'complex)
1547 `(make-array (length ,array) :element-type ',element-type))
1549 `(make-array (ceiling (length ,array) 2) :element-type ',element-type))))
1551 (error "Don't know how to make an array with element-type ~A~%" element-type)))))
1554 ;;;-------------------------------------------------------------------------
1555 ;;; end of macros.l
1557 ;;; $Id: macros.l,v 3fe93de3be82 2012/05/06 02:17:14 toy $
1558 ;;; $Log$
1559 ;;; Revision 1.117 2011/02/28 22:21:07 rtoy
1560 ;;; When opening an old file, we should set :if-exists to :overwrite to
1561 ;;; overwrite the file if written too.
1563 ;;; Revision 1.116 2011/02/20 20:51:04 rtoy
1564 ;;; Oops. STOP should signal an error if *STOP-SIGNALS-ERROR-P* is
1565 ;;; non-NIL.
1567 ;;; Revision 1.115 2010/12/28 00:06:52 rtoy
1568 ;;; Assert the type of the arg to fsqrt to be non-negative, excluding
1569 ;;; negative zero.
1571 ;;; Revision 1.114 2010/05/17 01:42:14 rtoy
1572 ;;; src/f2cl1.l:
1573 ;;; o Need to know the actual type when making a compatible sequence.
1574 ;;; o Convert plain integer type to integer4 types, which is what Fortran
1575 ;;; would do. We don't want general Lisp integer type.
1577 ;;; src/macros.l:
1578 ;;; o Change MAKE-COMPATIBLE-SEQ to be a macro.
1579 ;;; o Need to know the actual array type to create the correct type of
1580 ;;; sequence.
1582 ;;; Revision 1.113 2010/02/23 00:59:12 rtoy
1583 ;;; Support the Fortran capability of passing an array of one type
1584 ;;; to a routine expecting a different type. Currently only supports REAL
1585 ;;; and COMPLEX arrays (and their double precison versions).
1587 ;;; NOTES:
1588 ;;; o Update
1590 ;;; f2cl0.l:
1591 ;;; o Export new symbols f2cl-copy-seq and make-compatible-seq.
1593 ;;; f2cl1.l:
1594 ;;; o New variable *copy-array-parameter* for keeping track of the option
1595 ;;; for f2cl and f2cl-compile.
1596 ;;; o Update f2cl and f2cl-compile to recognize :copy-array-parameter.
1597 ;;; o Modify massage-arglist and generate-call-to-routine to handle the
1598 ;;; new :copy-array-parameter capability.
1600 ;;; f2cl5.l:
1601 ;;; o Fix issue where quoted elements were modified. They shouldn't be.
1602 ;;; o Fix issue where (array simple-float (*)) would get erroneously
1603 ;;; converted to (array simple-float (f2cl-lib:int-mul)). We want to
1604 ;;; leave bare * alone.
1606 ;;; macros.l:
1607 ;;; o New macro f2cl-copy-seq to generate code to copy a sequence
1608 ;;; appropriately.
1609 ;;; o New function to create a compatible array to support
1610 ;;; :copy-array-parameter.
1612 ;;; Revision 1.112 2009/01/08 12:57:19 rtoy
1613 ;;; f2cl0.l:
1614 ;;; o Export *STOP-SIGNALS-ERROR-P*
1616 ;;; macros.l:
1617 ;;; o Add *STOP-SIGNALS-ERROR-P* to allow user to control whether STOP
1618 ;;; signals a continuable error or not. Default is to signal the
1619 ;;; error.
1621 ;;; Revision 1.111 2009/01/07 21:50:16 rtoy
1622 ;;; Use the fast rint-* functions for CMUCL with sse2 support.
1624 ;;; Revision 1.110 2009/01/07 21:42:45 rtoy
1625 ;;; Gcl doesn't recognize :compile-toplevel and friends. Use old style.
1627 ;;; Revision 1.109 2009/01/07 21:34:41 rtoy
1628 ;;; Clean up junk:
1630 ;;; o Remove unused macro REXPT.
1631 ;;; o Remove duplicated function PROCESS-IMPLIED-DO.
1632 ;;; o Remove code that was commented out.
1634 ;;; Revision 1.108 2009/01/07 17:28:19 rtoy
1635 ;;; f2cl0.l:
1636 ;;; o Export new dfloat function, an alias for dble.
1637 ;;; o Merge some cleanups from Maxima.
1639 ;;; f2cl1.l:
1640 ;;; o Add dfloat to list of intrinsic functions.
1642 ;;; macros.l:
1643 ;;; o Merge some cleanups and fixes from Maxima. Mostly for gcl and ecl.
1644 ;;; o Add implementation of dfloat.
1646 ;;; Revision 1.107 2009/01/07 02:22:00 rtoy
1647 ;;; Need to quit a repeated group if we're out of arguments to print.
1648 ;;; This prevents us from repeatedly print newlines and other strings when
1649 ;;; the repetition is more than the number of arguments we have left.
1651 ;;; Revision 1.106 2008/09/15 15:27:36 rtoy
1652 ;;; Fix serious bug in aint. aint(x) for x an integer was returning x-1
1653 ;;; (for positive x). It should have returned x.
1655 ;;; Revision 1.105 2008/09/10 18:53:49 rtoy
1656 ;;; The case where the arg was negative or zero was mishandled and ended
1657 ;;; up being printed using ~E. Should have been ~F.
1659 ;;; Revision 1.104 2008/08/22 21:27:43 rtoy
1660 ;;; Oops. Forgot one place to conditionalize on gcl.
1662 ;;; Revision 1.103 2008/08/21 20:16:49 rtoy
1663 ;;; Gcl doesn' like ~/ format specifier, so rearrange things so we don't
1664 ;;; use it. (Should we just do the same for every one?)
1666 ;;; Revision 1.102 2008/03/26 13:19:52 rtoy
1667 ;;; Lazily initialize the lun-hash table. *lun-hash* starts as an empty
1668 ;;; hash-table, and lun->stream will initialize units 5, 6, and t as
1669 ;;; needed.
1671 ;;; Based on similar change in maxima to work around an issue with clisp
1672 ;;; where the predefined entries had closed streams.
1674 ;;; Revision 1.101 2008/03/08 12:49:08 rtoy
1675 ;;; Make :list-directed output be more like Fortran. There is quite a bit
1676 ;;; of variation between, say, g77 and Sun Fortran, so we pick something
1677 ;;; reasonably close. We have a mix of g77 and Sun Fortran output. Still
1678 ;;; needs some work.
1680 ;;; Revision 1.100 2008/03/07 23:15:01 rtoy
1681 ;;; Use ~? so we can control the format string to print out various
1682 ;;; objects for list-directed output.
1684 ;;; Revision 1.99 2008/03/06 21:20:41 rtoy
1685 ;;; Change the open mode from append to supersede. I think this makes
1686 ;;; more sense and seems to match g77 better.
1688 ;;; Revision 1.98 2008/03/06 20:04:10 rtoy
1689 ;;; Use ~G for list-directed I/O so that numbers come out reasonably.
1690 ;;; (F77 standard says E or F is used, depending on the magnitude of the
1691 ;;; number. The parameters for E and F are processor dependent as is the
1692 ;;; magnitude used to select between E or F. This is pretty close to how
1693 ;;; ~G works in Lisp.)
1695 ;;; Revision 1.97 2008/02/26 04:14:31 rtoy
1696 ;;; Explicitly check for T and NIL.
1698 ;;; Revision 1.96 2008/02/22 22:19:34 rtoy
1699 ;;; Use RCS Id as version.
1701 ;;; Revision 1.95 2008/02/22 22:13:18 rtoy
1702 ;;; o Add function F2CL-VERSION to get version info.
1703 ;;; o Add version string to each of the files so F2CL-VERSION can get the
1704 ;;; version info. The version string is basically the date of when the
1705 ;;; file was last checked in.
1707 ;;; Revision 1.94 2007/09/30 03:47:47 rtoy
1708 ;;; When we're out of formats, we restart with the last repeat spec.
1710 ;;; Revision 1.93 2007/09/28 22:01:08 rtoy
1711 ;;; First attempt at getting implied-do loops in data statements working
1712 ;;; with nested loops.
1714 ;;; f2cl1.l:
1715 ;;; o PARSE-DATA-IMPLIED-DO handles implied do loops even when the loops
1716 ;;; are nested.
1718 ;;; macros.l:
1719 ;;; o Update PROCESS-IMPLIED-DO to handle the new forms returned by
1720 ;;; PARSE-DATA-IMPLIED-DO.
1721 ;;; o Don't create constants out of the initializer since we use POP to
1722 ;;; access them one by one.
1723 ;;; o Minor tweak for list-directed output to allow a slightly longer line
1724 ;;; length. This matches what g77 produces for one simple test case.
1726 ;;; Revision 1.92 2007/09/28 20:26:13 rtoy
1727 ;;; o For REWIND and CLOSE$, declare the result as ignorable.
1728 ;;; o For list-directed output, don't print out strings as an array with
1729 ;;; spaces between each element. Strings should go out as strings.
1731 ;;; Revision 1.91 2007/09/28 15:41:14 rtoy
1732 ;;; Some cleanup for list-directed output:
1734 ;;; o Complex numbers should be printed in the form (r, i), not #c(r, i)
1735 ;;; o Arrays should print out only the elements instead of #(...).
1737 ;;; Revision 1.90 2007/09/28 05:00:58 rtoy
1738 ;;; To support multidimensional arrays in implied do loops better, we need
1739 ;;; to pass the entire array bounds, including upper and lower limits so
1740 ;;; that array indexing can work.
1742 ;;; f2cl5.l:
1743 ;;; o Find the entire array bounds.
1744 ;;; o Don't use make-declaration to get the array type. Explicitly look
1745 ;;; through *explicit_vble_decls* to find the type. (Are there other
1746 ;;; places we need to look?)
1748 ;;; macros.l:
1749 ;;; o Pass the entire list of array bounds to fref so we can handle
1750 ;;; multidimensional arrays.
1752 ;;; Revision 1.89 2007/09/27 14:56:39 rtoy
1753 ;;; When we run out of format specs, but there are still items to print,
1754 ;;; we go back and find the first repeat spec and start there.
1756 ;;; If there is no such thing, we just reuse the entire format spec. Not
1757 ;;; sure if this is right or if it's a bug. Maybe we should signal an
1758 ;;; error?
1760 ;;; Revision 1.88 2007/09/27 02:12:12 rtoy
1761 ;;; Support the L edit descriptor better.
1763 ;;; f2cl5.l:
1764 ;;; o Recognize the L descriptor and convert it to ~wA.
1766 ;;; macros.l:
1767 ;;; o Convert T and NIL to :T and :F, respectively. When coupled with ~A,
1768 ;;; this prints as T and F, as desired.
1770 ;;; Revision 1.87 2007/09/26 13:11:06 rtoy
1771 ;;; Remove the unused FOREVER parameter from EXECUTE-FORMAT.
1773 ;;; Revision 1.86 2007/09/26 13:10:15 rtoy
1774 ;;; Better list-directed output.
1776 ;;; f2cl5.l:
1777 ;;; o For list-directed output (format is *), return :list-directed to
1778 ;;; tell format that we're using list-directed output. (The previous
1779 ;;; scheme didn't really work well.)
1781 ;;; macros.l:
1782 ;;; o Add FLATTEN-LIST function
1783 ;;; o Don't output a newline for repeated items. We shouldn't do that.
1784 ;;; o Add support for :list-directed output. We recognize that and then
1785 ;;; just output all the args in a special way.
1787 ;;; Revision 1.85 2007/09/25 21:31:32 rtoy
1788 ;;; f2cl5.l:
1789 ;;; o Slight change in the format used for "*" format.
1790 ;;; o Change the repeatable descriptors to remove the repeat count if the
1791 ;;; count is 1. This was confusing the execute-format when determining
1792 ;;; when to print out newlines. This change applied to I, F, E, D, and
1793 ;;; G descriptors.
1795 ;;; macros.l:
1796 ;;; o Handle printing of "repeat forever" loops better. An extra arg to
1797 ;;; EXECUTE-FORMAT tells us to repeat "forever".
1798 ;;; o Output a newline at the end of a repeated specification.
1800 ;;; Revision 1.84 2007/09/25 18:46:42 rtoy
1801 ;;; For repeated descriptors, we were printing a new line after each item
1802 ;;; instead of after all items had been printed. Output new line only
1803 ;;; once, when we're done.
1805 ;;; Revision 1.83 2007/09/25 18:17:50 rtoy
1806 ;;; Oops. We should always process #\: and exit only if there is more
1807 ;;; args to process.
1809 ;;; Revision 1.82 2007/09/25 17:31:05 rtoy
1810 ;;; f2cl5.l:
1811 ;;; o Return #\: when encountering a colon edit descriptor.
1813 ;;; macros.l:
1814 ;;; o Recognize #\: and terminate processing if there are no arguments
1815 ;;; left.
1817 ;;; Revision 1.81 2007/09/23 20:51:43 rtoy
1818 ;;; Previous checkin changed how character strings are initialized.
1819 ;;; Modify code accordingly. (This needs to be rethought and made less
1820 ;;; fragile.)
1822 ;;; Revision 1.80 2007/09/21 17:45:13 rtoy
1823 ;;; INDEX was calling SEARCH with the arguments in the wrong order.
1825 ;;; Revision 1.79 2007/09/20 21:27:12 rtoy
1826 ;;; Was not handling atoms correctly. This needs more work.
1828 ;;; Revision 1.78 2007/09/20 17:38:25 rtoy
1829 ;;; In ARRAY-INITIALIZE, we can't make a literal list of the data because
1830 ;;; the data might not be literal. (That is, the data might be constants
1831 ;;; from a parameter statement.)
1833 ;;; Revision 1.77 2007/06/18 15:50:16 rtoy
1834 ;;; Bug [ 1709300 ] unused key parameters
1836 ;;; o In %open-file, ignore UNIT, and produce an error if FORM is UNFORMATTED
1837 ;;; o In %close, produce an error if STATUS is specified.
1839 ;;; Revision 1.76 2006/12/01 04:23:43 rtoy
1840 ;;; Minor cleanups
1842 ;;; src/f2cl0.l:
1843 ;;; o Cosmetic changes
1845 ;;; src/macros.l:
1846 ;;; o Make code work with "modern"-mode lisps. (Ported from maxima.)
1848 ;;; Revision 1.75 2006/11/28 19:06:18 rtoy
1849 ;;; o Make sure the second arg to FSET-STRING is a string.
1850 ;;; o FCHAR was using the wrong function.
1851 ;;; o Cleanup FFORMAT so there are no compiler warnings about REPLACE
1852 ;;; being called on constant data. (This is probably a compiler bug in
1853 ;;; CMUCL, but we should get rid of the stuff ourselves, anyway, instead
1854 ;;; of depending on the compiler to do it for us.)
1856 ;;; Revision 1.74 2006/11/27 19:09:51 rtoy
1857 ;;; In some places in LAPACK, an array slice is taken where the slice
1858 ;;; exceeds the bounds of the array. However, the array is never
1859 ;;; accessed. What are we to do? We could modify the LAPACK routines
1860 ;;; (everywhere!) to check for this, or we can silently make array-slice
1861 ;;; make a 0-element array. If the array is then accessed, we should get
1862 ;;; an error at the point of access, not the point of creation.
1864 ;;; Revision 1.73 2006/11/21 22:05:03 rtoy
1865 ;;; Fix ichar to accept either a real character or (more likely) a
1866 ;;; string.
1868 ;;; Revision 1.72 2006/11/21 18:21:37 rtoy
1869 ;;; o Add CDABS and DCONJG functions.
1870 ;;; o Add some type declarations for DIMAG
1872 ;;; Revision 1.71 2006/05/02 22:12:02 rtoy
1873 ;;; src/f2cl5.l:
1874 ;;; o Try to make better declarations for variables defined in parameter
1875 ;;; statements. We'll declare them as (double-float 42d0 42d0) if the
1876 ;;; parameter was initialized to 42d0.
1877 ;;; o MAKE-DECLARATION updated to take an extra keyword argument to
1878 ;;; indicate if this is a parameter variable and to give the initial
1879 ;;; value of the parameter so we can make the appropriate declaration.
1880 ;;; o When initializing simple variables in data statements, try to bind
1881 ;;; the variable with the initial value instead binding a default 0 zero
1882 ;;; and setq'ing it later.
1884 ;;; src/macros.l:
1885 ;;; o Change DEFTYPE for INTEGER4 to allow parameters so we can specify
1886 ;;; tight bounds if desired.
1888 ;;; Revision 1.70 2006/05/01 17:40:05 rtoy
1889 ;;; Change STOP to produce a continuable error instead of an error so that
1890 ;;; we can continue from the STOP statement, if we choose to. It's not
1891 ;;; necessarily an error in a converted program to reach a STOP statement.
1893 ;;; Revision 1.69 2006/04/27 17:44:01 rtoy
1894 ;;; src/f2cl0.l:
1895 ;;; o Export dimag, dcmplx, zsqrt
1897 ;;; src/f2cl1.l:
1898 ;;; o Add dcmplx, dimag, and zsqrt to the list of intrinsic function
1899 ;;; names.
1900 ;;; o When parsing "implicit none" statements, we don't modify
1901 ;;; *IMPLICIT_VBLE_DECLS*. I don't think it's needed and it can cause
1902 ;;; errors later on because :none is not a Lisp type.
1904 ;;; src/f2cl5.l:
1905 ;;; o Tell GET-FUN-ARG-TYPE about the result type of dcmplx, dsqrt, the
1906 ;;; complex*8 and complex*16 special functions.
1907 ;;; o ABS is an allowed lisp name. This gets rid of the spurious ABS$
1908 ;;; local variable whenever we use the ABS function.
1910 ;;; src/macros.l:
1911 ;;; o Add implementations of dcmplx, dimag, and zsqrt. (We need to add
1912 ;;; more, I think.)
1914 ;;; Revision 1.68 2006/01/12 01:33:32 rtoy
1915 ;;; If status is not given or unknown, create the file if it doesn't
1916 ;;; exist.
1918 ;;; Revision 1.67 2006/01/11 22:57:58 rtoy
1919 ;;; Add rudimentary support for opening files and reading from files.
1921 ;;; src/f2cl1.l:
1922 ;;; o Recognize and handle open, rewind, and close statements.
1924 ;;; src/f2cl5.l:
1925 ;;; o Update parser for read to handle unit numbers. Rudimentary support
1926 ;;; for implied-do lists too.
1927 ;;; o Add parser for open, rewind, and close statements.
1929 ;;; src/macros.l:
1930 ;;; o Add functions and macros to handle opening, rewinding,
1931 ;;; and closing files. Needs more work still.
1933 ;;; Revision 1.66 2006/01/09 03:08:13 rtoy
1934 ;;; src/f2cl1.l:
1935 ;;; o Translate a Fortran STOP to be the stop function. Was just
1936 ;;; returning NIL, and this doesn't work so well.
1938 ;;; src/macros.l:
1939 ;;; o Add STOP function. It prints out the any arg, and then signals an
1940 ;;; error.
1942 ;;; Revision 1.65 2006/01/09 00:37:43 rtoy
1943 ;;; src/f2cl5.l:
1944 ;;; o When looking for initializers, don't just remove initializers when
1945 ;;; the array is not a 1-D array. Keep them, and return a second value
1946 ;;; indicating if the array is 1-D or not.
1947 ;;; o MAKE-CHAR-DECL was not properly declaring and initializing 2-D
1948 ;;; arrays as 1-D arrays like we're supposed to. Compute the total size
1949 ;;; of the array if we can.
1951 ;;; src/macros.l:
1952 ;;; o F2CL-INIT-STRING needs to make a 1-D array, even if the string array
1953 ;;; is multi-dimensional.
1955 ;;; Revision 1.64 2006/01/04 17:53:40 rtoy
1956 ;;; We were not correctly processing initialization of string arrays in
1957 ;;; data statements.
1959 ;;; src/f2cl1.l:
1960 ;;; o In PARSE-DATA1, return the entire list of initializers instead of
1961 ;;; just the first, in case we have an array of initializers.
1963 ;;; src/f2cl5.l:
1964 ;;; o In MERGE-DATA-AND-SAVE-INITS, we need to recognize the
1965 ;;; initialization of strings and such. We don't do anything special
1966 ;;; right now, like we do for arrays of numbers.
1967 ;;; o In INSERT-DECLARATIONS, we need to handle the case of REPLACE in the
1968 ;;; *data-init*'s. We assume it's been handled somewhere else, so
1969 ;;; there's nothing to do here.
1971 ;;; Revision 1.63 2005/05/19 15:06:24 rtoy
1972 ;;; Oops. make-label is in the f2cl-lib package.
1974 ;;; Revision 1.62 2005/05/16 15:50:25 rtoy
1975 ;;; o Replace single semicolons with multiple semicolons as appropriate.
1976 ;;; o GCL apparently doesn't like some declarations, so comment them out
1977 ;;; for GCL.
1978 ;;; o GCL doesn't like the defparameter for *lun-hash*.
1979 ;;; o GCL doesn't seem to have least-positive-normalized-double-float, so
1980 ;;; make it the same as least-positive-double-float. Likewise for
1981 ;;; single-float.
1983 ;;; These changes come from maxima.
1985 ;;; Revision 1.61 2005/03/28 20:38:18 rtoy
1986 ;;; Make strings with an element-type of character instead of base-char,
1987 ;;; in case the Lisp implementation has unicode support.
1989 ;;; Revision 1.60 2004/09/01 14:17:57 rtoy
1990 ;;; atan2 takes single-float args, not double-float.
1992 ;;; Revision 1.59 2004/08/14 22:29:16 marcoxa
1993 ;;; Added an EVAL-WHEN to silence the LW compiler.
1995 ;;; Revision 1.58 2004/08/14 04:17:45 rtoy
1996 ;;; Need a definition for MAKE-LABEL.
1998 ;;; Revision 1.57 2003/11/23 14:10:11 rtoy
1999 ;;; FDO should not call function that are not in the F2CL-LIB package.
2000 ;;; Macros.l should be self-contained.
2002 ;;; Revision 1.56 2003/11/13 05:37:11 rtoy
2003 ;;; Add macro WITH-MULTI-ARRAY-DATA. Basically like WITH-ARRAY-DATA, but
2004 ;;; takes a list of array info so we don't get deeply nested code when
2005 ;;; there are lots of arrays.
2007 ;;; Keep WITH-ARRAY-DATA around for backward compatibility.
2009 ;;; Revision 1.55 2003/11/12 05:33:22 rtoy
2010 ;;; Macro to handle assigned gotos was wrong. Fix it.
2012 ;;; Revision 1.54 2003/09/25 03:43:43 rtoy
2013 ;;; Need to check for reserved names in the fdo macro. (I think.)
2015 ;;; Revision 1.53 2003/01/07 18:44:52 rtoy
2016 ;;; Add new implementations of aint. Speeds up mpnorm by a factor of 5 on
2017 ;;; CMUCL/sparc!
2019 ;;; Revision 1.52 2002/09/13 17:50:19 rtoy
2020 ;;; From Douglas Crosher:
2022 ;;; o Make this work with lower-case Lisps
2023 ;;; o Fix a few typos
2024 ;;; o Make a safer fortran reader.
2026 ;;; Revision 1.51 2002/06/30 13:08:51 rtoy
2027 ;;; Add some declarations to AINT so that CMUCL can completely inline the
2028 ;;; call to ftruncate.
2030 ;;; Revision 1.50 2002/05/05 23:41:17 rtoy
2031 ;;; Typo: extra paren.
2033 ;;; Revision 1.49 2002/05/05 23:38:47 rtoy
2034 ;;; The int-sub macro didn't handle things like (- 3 m m) correctly. It
2035 ;;; was returning (- 3 (- m m)) instead of (- (- 3 m) m)!
2037 ;;; Revision 1.48 2002/05/03 17:48:06 rtoy
2038 ;;; GCL doesn't have least-positive-normalized-{single/double}-float, so
2039 ;;; use just least-positive-{single/double}-float.
2041 ;;; Revision 1.47 2002/05/03 17:44:36 rtoy
2042 ;;; Replace row-major-aref with just aref because we don't need it and
2043 ;;; because gcl doesn't have it.
2045 ;;; Revision 1.46 2002/03/19 02:23:09 rtoy
2046 ;;; According to the rules of Fortran, the initializers in a DATA
2047 ;;; statement are supposed to be converted to match the type of the
2048 ;;; variable that is being initialized. Make it so by passing the
2049 ;;; variable type to the macro DATA-IMPLIED-DO so that the conversion can
2050 ;;; be done.
2052 ;;; Revision 1.45 2002/03/18 23:34:16 rtoy
2053 ;;; Was not correctly handling some implied do loops containing multiple
2054 ;;; variables in the loop in data statements. Fix that and clean up some
2055 ;;; of the processing. (Should probably do this kind of work in the f2cl
2056 ;;; compiler instead of at runtime, but it's only done once at runtime, so
2057 ;;; it's not a big deal.)
2059 ;;; Revision 1.44 2002/03/11 16:44:00 rtoy
2060 ;;; o Remove an extra paren.
2061 ;;; o Indent FIND-ARRAY-DATA better.
2062 ;;; o Declare the iteration count to be of type INTEGER4.
2063 ;;; o Added macros INT-ADD, INT-SUB, INT-MUL to tell the compiler that the
2064 ;;; integer operation can't overflow. (First try.)
2065 ;;; o Tell the compiler that the result of truncate is an INTEGER4 in INT.
2067 ;;; Revision 1.43 2002/03/06 23:07:19 rtoy
2068 ;;; o Make INT return an integer4 type, not integer.
2069 ;;; o log10 was thinking it could generate complex result, but that's not
2070 ;;; true. Declare the arg correctly so the compiler knows it can't.
2072 ;;; Revision 1.42 2002/03/06 03:21:16 rtoy
2073 ;;; o Speed up FIND-ARRAY-DATA a little by declaring the offset to be a
2074 ;;; fixnum, which it has to be since it's an index to an array.
2075 ;;; o Remove the truncate/ftruncate-towards-zero functions.
2076 ;;; o For INT, AINT, and friends, TRUNCATE and FTRUNCATE are the right
2077 ;;; functions we want to use. (Stupid me!)
2078 ;;; o Update/correct some random comments.
2080 ;;; Revision 1.41 2002/02/17 15:55:29 rtoy
2081 ;;; o For all array accessors, wrap the offset calculations with (the
2082 ;;; fixnum ...) since they have to be anyway. Speeds up calculations
2083 ;;; quite a bit.
2084 ;;; o FREF takes an additional optional OFFSET arg to specify an offset
2085 ;;; for the new array slicing method.
2086 ;;; o Added WITH-ARRAY-DATA and FIND-ARRAY-DATA to support the new
2087 ;;; array-slicing method.
2088 ;;; o For FDO, add (the integer4 ...) for loop index calculations.
2089 ;;; o Add some more assertions for ISIGN and LOG10 to help the compiler
2090 ;;; generate better code.
2092 ;;; Revision 1.40 2002/02/10 03:43:51 rtoy
2093 ;;; Partial support for WRITE statements writing to a string instead of
2094 ;;; logical unit.
2096 ;;; Revision 1.39 2002/02/09 15:59:26 rtoy
2097 ;;; o Add more and better comments
2098 ;;; o AINT was broken because it should accept any range of floats.
2099 ;;; o DIM and friends computed the wrong thing!
2100 ;;; o Change DPROD to convert to doubles first.
2101 ;;; o Some cleanup of MAX and MIN
2103 ;;; Revision 1.38 2002/02/08 23:38:36 rtoy
2104 ;;; Use ARRAY-TOTAL-SIZE to compute how many elements are in the slice
2105 ;;; instead of the f2cl declared/derived bounds so that we can dynamically
2106 ;;; change the size of the array. Useful for an array in a common block.
2108 ;;; Revision 1.37 2002/02/07 03:23:15 rtoy
2109 ;;; Add functions to initialize F2CL's Fortran I/O and to close all of
2110 ;;; F2CL's open units.
2112 ;;; Revision 1.36 2002/02/04 03:23:46 rtoy
2113 ;;; o Make *lun-hash* a defparameter instead of a defvar.
2114 ;;; o Fix up i1mach so that the unit numbers match *lun-hash*.
2116 ;;; Revision 1.35 2002/01/13 16:29:00 rtoy
2117 ;;; o This file is in the f2cl-lib package now
2118 ;;; o Deleted some unused code.
2119 ;;; o Moved *INTRINSIC-FUNCTION-NAMES* to f2cl1.l
2121 ;;; Revision 1.34 2002/01/06 23:11:04 rtoy
2122 ;;; o Rename *intrinsic_function_names* to use dashes.
2123 ;;; o Comment out some unused functions and macros.
2125 ;;; Revision 1.33 2001/04/30 15:38:12 rtoy
2126 ;;; Add a version of I1MACH.
2128 ;;; Revision 1.32 2001/04/26 17:49:19 rtoy
2129 ;;; o SIGN and DIM are Fortran generic instrinsics. Make it so.
2130 ;;; o Added D1MACH and R1MACH because they're very common in Fortran
2131 ;;; libraries.
2133 ;;; Revision 1.31 2001/02/26 15:38:23 rtoy
2134 ;;; Move *check-array-bounds* from f2cl1.l to macros.l since the generated
2135 ;;; code refers to it. Export this variable too.
2137 ;;; Revision 1.30 2000/08/30 17:00:42 rtoy
2138 ;;; o In EXECUTE-FORMAT, handle the case where the group is supposed to be
2139 ;;; repeated "forever" (as indicated by a repetition factor of T).
2140 ;;; o Remove some more unused code.
2142 ;;; Revision 1.29 2000/08/27 16:36:07 rtoy
2143 ;;; Clean up handling of format statements. Should handle many more
2144 ;;; formats correctly now.
2146 ;;; Revision 1.28 2000/08/07 19:00:47 rtoy
2147 ;;; Add type ARRAY-STRINGS to denote an array of strings.
2149 ;;; Revision 1.27 2000/08/03 13:45:53 rtoy
2150 ;;; Make FFORMAT1 handle lists that we get from implied do loops.
2152 ;;; The whole FFORMAT stuff needs to be rethought if we really want to
2153 ;;; support Fortran output.
2155 ;;; Revision 1.26 2000/08/01 22:10:41 rtoy
2156 ;;; o Try to make the Fortran functions to convert to integers work the
2157 ;;; way Fortran says they should.
2158 ;;; o Declaim most of the intrinsics as inline so we don't have an
2159 ;;; additional function call for simple things.
2160 ;;; o Add some compiler macros for Fortran max/min functions to call the
2161 ;;; Lisp max/min functions withouth using #'apply.
2162 ;;; o Try to declare the args to functions with branchs appropriately,
2163 ;;; even in the face of signed zeroes.
2165 ;;; Revision 1.25 2000/07/28 22:10:05 rtoy
2166 ;;; Remove unused var from ARRAY-SLICE.
2168 ;;; Revision 1.24 2000/07/28 17:09:13 rtoy
2169 ;;; o We are in the f2cl package now.
2170 ;;; o Remove the export expression.
2171 ;;; o // is now called F2CL-//, to prevent problems with the lisp variable
2172 ;;; //.
2173 ;;; o REAL is now called FREAL, to prevent problems with the lisp type
2174 ;;; REAL.
2176 ;;; Revision 1.23 2000/07/27 16:39:17 rtoy
2177 ;;; We want to be in the CL-USER package, not the USER package.
2179 ;;; Revision 1.22 2000/07/20 13:44:38 rtoy
2180 ;;; o Remove old fref macro
2181 ;;; o Add some comments
2182 ;;; o Add macro ARRAY-INITIALIZE to handle creating the appropriate for to
2183 ;;; give to make-array :initial-contents.
2185 ;;; Revision 1.21 2000/07/19 13:54:27 rtoy
2186 ;;; o Add the types ARRAY-DOUBLE-FLOAT, ARRAY-SINGLE-FLOAT, and
2187 ;;; ARRAY-INTEGER4.
2188 ;;; o All arrays are 1-D now to support slicing of Fortran arrays
2189 ;;; correctly.
2190 ;;; o All arrays are in column-major order just like Fortran (and the
2191 ;;; opposite of Lisp). This is to support slicing of arrays. Modified
2192 ;;; FREF to support this by taking an extra arg for the dimensions of
2193 ;;; the array.
2194 ;;; o Added macro ARRAY-SLICE to slice the array properly.
2195 ;;; o Optimized routine DMIN1 a bit. (Need to do that for more routines.)
2197 ;;; Revision 1.20 2000/07/14 15:50:59 rtoy
2198 ;;; Get rid of *dummy_var*. It's not used anymore.
2200 ;;; Revision 1.19 2000/07/13 16:55:34 rtoy
2201 ;;; To satisfy the Copyright statement, we have placed the RCS logs in
2202 ;;; each source file in f2cl. (Hope this satisfies the copyright.)
2204 ;;;-----------------------------------------------------------------------------