Fix the inefficient evaluation of translated predicates
[maxima.git] / src / result.lisp
blobefd52a1dd5af252dd69ceee04f8bb2db726fc40c
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module result)
15 (declare-top (special varlist genvar $ratfac $keepfloat modulus *alpha xv))
17 (load-macsyma-macros ratmac)
19 (defmfun $poly_discriminant (poly var)
20 (let* ((varlist (list var))
21 ($ratfac nil)
22 (genvar ())
23 (rform (rform poly))
24 (rvar (car (last genvar)))
25 (n (pdegree (setq poly (car rform)) rvar)))
27 (cond ((= n 1) 1)
28 ((or (= n 0) (not (atom (cdr rform))))
29 (merror (intl:gettext "poly_discriminant: first argument must be a polynomial in ~:M; found: ~M") var poly))
30 (t (pdis (presign
31 (ash (* n (1- n)) -1)
32 (pquotient (resultant poly (pderivative poly rvar))
33 (p-lc poly))))))))
35 (defmfun $resultant (a b mainvar)
36 (let ((varlist (list mainvar)) (genvar nil)
37 ($ratfac t) ($keepfloat nil)
38 formflag res (ans 1))
39 (when ($ratp a) (setf a ($ratdisrep a) formflag t))
40 (when ($ratp b) (setf b ($ratdisrep b) formflag t))
41 (newvar a)
42 (newvar b)
43 (setq a (lmake2 (cadr (ratrep* a)) nil))
44 (setq b (lmake2 (cadr (ratrep* b)) nil))
45 (setq mainvar (caadr (ratrep* mainvar)))
47 (dolist (a-term a)
48 (dolist (b-term b)
49 (setq res (result1 (car a-term) (car b-term) mainvar))
50 (setq ans (ptimes ans
51 (pexpt
52 (if (zerop (third res))
53 (first res)
54 (ptimeschk (first res)
55 (pexpt (makprod (second res) nil)
56 (third res))))
57 (* (cdr a-term) (cdr b-term)))))))
59 (if formflag (pdis* ans) (pdis ans))))
61 (defun result1 (p1 p2 var)
62 (cond ((or (pcoefp p1) (pointergp var (car p1)))
63 (list 1 p1 (pdegree p2 var)))
64 ((or (pcoefp p2) (pointergp var (car p2)))
65 (list 1 p2 (pdegree p1 var)))
66 ((null (cdddr p1))
67 (cond ((null (cdddr p2)) (list 0 0 1))
68 (t (list (pexpt (caddr p1) (cadr p2))
69 (pcsubsty 0 var p2)
70 (cadr p1)))))
71 ((null (cdddr p2))
72 (list (pexpt (caddr p2) (cadr p1))
73 (pcsubsty 0 var p1)
74 (cadr p2)))
75 ((> (setq var (gcd (pgcdexpon p1) (pgcdexpon p2))) 1)
76 (list 1 (resultant (pexpon*// p1 var nil)
77 (pexpon*// p2 var nil)) var))
78 (t (list 1 (resultant p1 p2) 1))))
80 (defmvar $resultant '$subres "Designates which resultant algorithm")
82 (defvar *resultlist '($subres $mod $red))
84 (defun resultant (p1 p2) ;assumes same main var
85 (if (> (p-le p2) (p-le p1))
86 (presign (* (p-le p1) (p-le p2)) (resultant p2 p1))
87 (case $resultant
88 ($subres (subresult p1 p2))
89 #+broken ($mod (modresult p1 p2))
90 ($red (redresult p1 p2))
91 (t (merror (intl:gettext "resultant: no such algorithm: ~M") $resultant)))))
93 (defun presign (n p)
94 (if (oddp n) (pminus p) p))
96 ;; Computes resultant using subresultant PRS. See Brown, "The Subresultant PRS
97 ;; Algorithm" (TOMS Sept. 1978). This is Algorithm 1, as found on page 241.
99 ;; This routine will not work if the coefficients contain hidden copies of the
100 ;; main polynomial variable. For example, if P is x*sqrt(x^2-1) + 2 then, when
101 ;; encoded as a polynomial in x, it appears as x*c + 2 for some (opaque)
102 ;; c. While doing the PRS calculation, the SUBRESULT code will square c, causing
103 ;; extra x's to appear and making the degree of polynomials derived from P
104 ;; behave erratically. The code might error or, worse, return a wrong result.
106 ;; Write G[1] = P, G[2] = Q and write g[i] for the leading coefficient of
107 ;; G[i]. On the k'th iteration of the loop, we are computing G[k+2], which is
108 ;; given by the formula
110 ;; G[k+2] = (-1)^(delta[k]+1) prem(G[k], G[k+1]) / (g[k] h[k]^delta[k])
112 ;; except we set the denominator to 1 when k=1. Here, h[2] = g[2]^delta[1] and,
113 ;; for i >= 3, satisfies the recurrence:
115 ;; h[i] = g[i]^delta[i-1] h[i-1]^(1 - delta[i-1])
117 ;; Here, delta[i] = deg(G[i]) - deg(G[i+1]), which is non-negative.
119 ;; Dictionary between program variables and values computed by the algorithm:
121 ;; - g is set to g[i-2]
122 ;; - h is set to g[i-2]^d / "h^1-d"
124 ;; Since d and h^1-d haven't yet been set on this iteration, they get their
125 ;; previous values, which turn out to give:
127 ;; - h is set to g[i-2]^delta[i-3] h[i-3]^[1-delta[i-3]] which, substituting
128 ;; above, is h[i-2].
130 ;; Continuing:
132 ;; - degq is set to deg(G[i-1])
133 ;; - d is set to delta[i-2]
134 ;; - h^1-d is (confusingly!) set to h[i-2]^(delta[i-2] - 1).
136 (defun subresult (p q)
137 (loop for g = 1 then (p-lc p)
138 for h = 1 then (pquotient (pexpt g d) h^1-d)
139 for degq = (pdegree q (p-var p))
140 for d = (- (p-le p) degq)
141 for h^1-d = (if (equal h 1) 1 (pexpt h (1- d)))
142 if (zerop degq) return (if (pzerop q) q (pquotient (pexpt q d) h^1-d))
143 do (psetq p q
144 q (presign (1+ d) (pquotient (prem p q)
145 (ptimes g (ptimes h h^1-d)))))))
147 ;; PACKAGE FOR CALCULATING MULTIVARIATE POLYNOMIAL RESULTANTS
148 ;; USING MODIFIED REDUCED P.R.S.
150 (defun redresult (u v)
151 (prog (a r sigma c)
152 (setq a 1)
153 (setq sigma 0)
154 (setq c 1)
155 a (if (pzerop (setq r (prem u v))) (return (pzero)))
156 (setq c (ptimeschk c (pexpt (p-lc v)
157 (* (- (p-le u) (p-le v))
158 (- (p-le v) (pdegree r (p-var u))
159 1)))))
160 (setq sigma (+ sigma (* (p-le u) (p-le v))))
161 (if (zerop (pdegree r (p-var u)))
162 (return
163 (presign sigma
164 (pquotient (pexpt (pquotientchk r a) (p-le v)) c))))
165 (psetq u v
166 v (pquotientchk r a)
167 a (pexpt (p-lc v) (+ (p-le u) 1 (- (p-le v)))))
168 (go a)))
171 ;; PACKAGE FOR CALCULATING MULTIVARIATE POLYNOMIAL RESULTANTS
172 ;; USING MODULAR AND EVALUATION HOMOMORPHISMS.
173 ;; modresultant fails on the following example
174 ;;RESULTANT(((-4)*Z)^4+(Y+8*Z)^4+(X-5*Z)^4-1,
175 ;; ((-4)*Z)^4-(X-5*Z)^3*((-4)*Z)^3+(Y+8*Z)^3*((-4)*Z)^2
176 ;; +(-2)*(Y+8*Z)^4+((-4)*Z)^4+1,Z)
178 #+broken
179 (progn
180 (defun modresult (a b)
181 (modresult1 a b (sort (union* (listovars a) (listovars b))
182 (function pointergp))))
184 (defun modresult1 (x y varl)
185 (cond ((null modulus) (pres x y (car varl) (cdr varl)))
186 (t (cpres x y (car varl) (cdr varl))) ))
188 (defun pres (a b xr1 varl)
189 (prog (m n f a* b* c* p q c modulus)
190 (setq m (cadr a))
191 (setq n (cadr b))
192 (setq f (coefbound m n (maxnorm (cdr a)) (maxnorm (cdr b)) ))
193 (setq q 1)
194 (setq c 0)
195 (setq p *alpha)
196 (go step3)
197 step2 (setq p (newprime p))
198 step3 (set-modulus p)
199 (setq a* (pmod a))
200 (setq b* (pmod b))
201 (cond ((or (reject a* m xr1) (reject b* n xr1)) (go step2)))
202 (setq c* (cpres a* b* xr1 varl))
203 (set-modulus nil)
204 (setq c (lagrange3 c c* p q))
205 (setq q (* p q))
206 (cond ((> q f) (return c))
207 (t (go step2)) ) ))
209 (defun reject (a m xv)
210 (not (eqn (pdegree a xv) m)))
212 (defun coefbound (m n d e)
213 (* 2 (expt (1+ m) (ash n -1))
214 (expt (1+ n) (ash m -1))
215 (cond ((oddp n) (1+ ($isqrt (1+ m))))
216 (t 1))
217 (cond ((oddp m) (1+ ($isqrt (1+ n))))
218 (t 1))
219 ;; (FACTORIAL (PLUS M N)) USED TO REPLACE PREV. 4 LINES. KNU II P. 375
220 (expt d n)
221 (expt e m) ))
223 (defun main2 (a var exp tot)
224 (cond ((null a) (cons exp tot))
225 (t (main2 (cddr a) var
226 (max (setq var (pdegree (cadr a) var)) exp)
227 (max (+ (car a) var) tot))) ))
229 (defun cpres (a b xr1 varl) ;XR1 IS MAIN VAR WHICH
230 (cond ((null varl) (cpres1 (cdr a) (cdr b))) ;RESULTANT ELIMINATES
231 (t (prog ( m2 ( m1 (cadr a))
232 ( n1 (cadr b)) n2 (k 0) c d a* b* c* bp xv) ;XV IS INTERPOLATED VAR
233 (declare (fixnum m1 n1 k))
235 step2
236 (setq xv (car varl))
237 (setq varl (cdr varl))
238 (setq m2 (main2 (cdr a) xv 0 0)) ;<XV DEG . TOTAL DEG>
239 (setq n2 (main2 (cdr b) xv 0 0))
240 (cond ((zerop (+ (car m2) (car n2)))
241 (cond ((null varl) (return (cpres1 (cdr a) (cdr b))))
242 (t (go step2)) ) ))
243 (setq k (1+ (min (+ (* m1 (car n2)) (* n1 (car m2)))
244 (+ (* m1 (cdr n2)) (* n1 (cdr m2))
245 (- (* m1 n1))) )))
246 (setq c 0)
247 (setq d 1)
248 (setq m2 (car m2) n2 (car n2))
249 (setq bp (- 1))
250 step3
251 (cond ((equal (setq bp (1+ bp)) modulus)
252 (merror "CPRES: resultant primes too small."))
253 ((zerop m2) (setq a* a))
254 (t (setq a* (pcsubst a bp xv))
255 (cond ((reject a* m1 xr1)(go step3)) )) )
256 (cond ((zerop n2) (setq b* b))
257 (t (setq b* (pcsubst b bp xv))
258 (cond ((reject b* n1 xr1) (go step3))) ))
259 (setq c* (cpres a* b* xr1 varl))
260 (setq c (lagrange33 c c* d bp))
261 (setq d (ptimeschk d (list xv 1 1 0 (cminus bp))))
262 (cond ((> (cadr d) k) (return c))
263 (t (go step3))))))))
266 ;; *** NOTE THAT MATRIX PRODUCED IS ALWAYS SYMETRIC
267 ;; *** ABOUT THE MINOR DIAGONAL.
269 (defmfun $bezout (p q var)
270 (let ((varlist (list var)) genvar)
271 (newvar p)
272 (newvar q)
273 (setq p (cadr (ratrep* p))
274 q (cadr (ratrep* q)))
275 (setq p (cond ((> (cadr q) (cadr p)) (bezout q p))
276 (t (bezout p q))))
277 (cons '($matrix)
278 (mapcar #'(lambda (l) (cons '(mlist) (mapcar 'pdis l)))
279 p))))
281 (defun vmake (poly n *l)
282 (do ((i (1- n) (1- i))) ((minusp i))
283 (cond ((or (null poly) (< (car poly) i))
284 (setq *l (cons 0 *l)))
285 (t (setq *l (cons (cadr poly) *l))
286 (setq poly (cddr poly)))))
287 (nreverse *l))
289 (defun bezout (p q)
290 (let* ((n (1+ (p-le p)))
291 (n2 (- n (p-le q)))
292 (a (vmake (p-terms p) n nil))
293 (b (vmake (p-terms q) n nil))
294 (ar (reverse (nthcdr n2 a)))
295 (br (reverse (nthcdr n2 b)))
296 (l (make-list n :initial-element 0)))
297 (rplacd (nthcdr (1- (p-le p)) a) nil)
298 (rplacd (nthcdr (1- (p-le p)) b) nil)
299 (nconc
300 (mapcar
301 #'(lambda (ar br)
302 (setq l (mapcar #'(lambda (a b l)
303 (ppluschk l (pdifference
304 (ptimes br a) (ptimes ar b))))
305 a b (cons 0 l))))
306 ar br)
307 (and (pzerop (car b))
308 (do ((b (vmake (cdr q) (cadr p) nil) (rot* b))
309 (m nil (cons b m)))
310 ((not (pzerop (car b))) (cons b m))))) ))
312 (defun rot* (b)
313 (setq b (copy-list b))
314 (prog2
315 (nconc b b)
316 (cdr b)
317 (rplacd b nil)))
320 (defun ppluschk (p q)
321 (cond ((pzerop p) q)
322 (t (pplus p q))))