Fix the inefficient evaluation of translated predicates
[maxima.git] / src / trans3.lisp
blobb579e0dac7b495443a139cc1b4218904503c129c
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
10 ;;; Maintained by GJC ;;;
11 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (in-package :maxima)
15 (macsyma-module trans3)
17 ;;; The translation of macsyma LAMBDA into lexicaly scoped closures.
18 ;;; Two cases [1] the downward transmission of variable binding environment,
19 ;;; e.g. MAP(LAMBDA([U],F(U,X)),EXP)
20 ;;; [2] downward and upward, requiring a full closure, e.g.
21 ;;; MAP(LAMBDA([U],SUM:SUM+U),EXP);
23 ;;; LAMBDA([U],F(U,X)) =>
24 ;;; (DOWN-CLOSE (LAMBDA (U) (F U X)) (X))
26 ;;; TBIND, TBOUNDP, and TUNBIND and TUNBINDS hack lexical scoping.
28 ;;; A function to determine free vars from a lisp expression.
29 ;;; It returns a <var-set> which is a list of pairs
30 ;;; (<var> . <side-effectp>)
32 ;;; N.B. This code does a veritable storm of consing, it need not
33 ;;; do any if it used the lambda-bound plist scheme of GJC;UTRANS >
34 ;;; a compiler is allowed to cons though, isn't it?
36 (defun free-lisp-vars (exp &aux prop)
37 (cond ((atom exp)
38 (cond ((or (null exp)(eq t exp)) nil)
39 ((symbolp exp) `((,exp . nil)))
40 (t nil)))
41 ((atom (car exp))
42 (cond ((setq prop (get (car exp) 'free-lisp-vars))
43 (funcall prop exp))
44 ((setq prop (get (car exp) 'macro))
45 (free-lisp-vars (funcall prop exp)))
46 ((getl (car exp) '(fsubr fexpr))
47 (warn-fexpr (car exp)
48 "environment may fail to be correct.")
49 (free-lisp-vars-of-argl (cdr exp)))
51 (free-lisp-vars-of-argl (cdr exp)))))
52 ((eq (caar exp) 'lambda)
53 (sum-var-sets (free-lisp-vars (car exp))
54 (free-lisp-vars-of-argl (cdr exp))))
56 (barfo (intl:gettext "encountered an unrecognized Lisp expression in FREE-LISP-VARS.")))))
59 (defun free-lisp-vars-of-argl (argl)
60 (union-var-set (mapcar #'free-lisp-vars argl)))
62 ;;; (REDUCE-VAR-SET '((A . NIL) NIL (B . T) (B . NIL))) => ((A . NIL) (B . T))
63 ;;; mult-set reduction.
65 (defun reduce-var-set&op (var-set op)
66 (do ((var-set var-set (cdr var-set))
67 (reduced-var-set nil)
68 (var1)
69 (var2))
70 ((null var-set) reduced-var-set)
71 (setq var1 (car var-set))
72 (cond ((null var1))
73 ((setq var2 (assoc (car var1) reduced-var-set :test #'eq))
74 (rplacd var2 (funcall op (cdr var1) (cdr var2))))
76 (push var1 reduced-var-set)))))
78 (defun reduce-var-set (var-set)
79 (reduce-var-set&op var-set #'(lambda (p1 p2)(or p1 p2))))
81 ;;; S1 - S2. S1 reduced, minus any vars that are in S2.
83 (defun difference-var-sets (s1 s2)
84 (setq s1 (reduce-var-set s1))
85 (do ((s nil))
86 ((null s1) s)
87 (cond ((assoc (caar s1) s2 :test #'eq)) ;;; is the first elem of S1 a member of S2?
89 (push (car s1) s))) ;;; yes. shove it in.
90 (pop s1)))
92 ;;; N.B. union of var sets is defined classicaly ala G.F.
94 (defun union-var-set (set-of-var-sets)
95 (reduce-var-set (apply #'append set-of-var-sets)))
97 ;;; SUM-VAR-SETS is the usual convention.
99 (defun sum-var-sets (&rest l)
100 (reduce-var-set (apply #'append l))) ; consing up a storm aren't we?
102 (defun make-var-set (vars)
103 (loop for v in vars collect (ncons v)))
105 (macrolet ((empty-free-lisp-vars (name)
106 (let ((form (gensym)))
107 `(defun-prop (,name free-lisp-vars) (,form)
108 (declare (ignore ,form))
109 '()))))
110 (empty-free-lisp-vars declare)
111 (empty-free-lisp-vars function)
112 (empty-free-lisp-vars go)
113 (empty-free-lisp-vars quote))
115 ;;; (LAMBDA <BVL> . <BODY>)
117 (defun-prop (lambda free-lisp-vars) (form)
118 (difference-var-sets
119 ; get free lisp vars from body forms
120 (free-lisp-vars-of-argl (cddr form))
121 ; get vars bound by LAMBDA
122 (make-var-set (cadr form))))
124 ;;; (PROG <BVLSPEC> . <BODY>)
126 (defun-prop (prog free-lisp-vars) (form)
127 (sum-var-sets
128 ; get free lisp vars from init forms
129 (union-var-set
130 (mapcar (lambda (e) (when (consp e) (free-lisp-vars (cadr e))))
131 (cadr form)))
132 (difference-var-sets
133 ; get free lisp vars from body forms
134 (union-var-set (mapcar (lambda (e)
135 ; skip go tags
136 (if (go-tag-p e) '() (free-lisp-vars e)))
137 (cddr form)))
138 ; get vars bound by PROG
139 (make-var-set (mapcar (lambda (e) (if (consp e) (car e) e))
140 (cadr form))))))
142 ;;; (LET <BVLSPEC> . <BODY>)
144 (defun-prop (let free-lisp-vars) (form)
145 (sum-var-sets
146 ; get free lisp vars from init forms
147 (union-var-set
148 (mapcar (lambda (e) (when (consp e) (free-lisp-vars (cadr e))))
149 (cadr form)))
150 (difference-var-sets
151 ; get free lisp vars from body forms
152 (free-lisp-vars-of-argl (cddr form))
153 ; get vars bound by LET
154 (make-var-set (mapcar (lambda (e) (if (atom e) e (car e)))
155 (cadr form))))))
157 ;;; (DO (<VARSPEC> ...) (<END-TEST-FORM> . <RESULT-FORMS>) . <BODY>)
159 (defun-prop (do free-lisp-vars) (form)
160 (sum-var-sets
161 ; get free lisp vars from init forms
162 (union-var-set (mapcar (lambda (e)
163 (when (consp e)
164 (free-lisp-vars (cadr e))))
165 (cadr form)))
166 (difference-var-sets
167 (sum-var-sets
168 ; get free lisp vars from body forms
169 (union-var-set (mapcar (lambda (e)
170 ; skip go tags
171 (if (go-tag-p e) '() (free-lisp-vars e)))
172 (cdddr form)))
173 ; get free lisp vars from the end test form and result forms
174 (free-lisp-vars-of-argl (caddr form))
175 ; get free lisp vars from step forms
176 (union-var-set (mapcar (lambda (e)
177 (when (consp e)
178 (free-lisp-vars (caddr e))))
179 (cadr form))))
180 ; get vars bound by DO
181 (make-var-set (mapcar (lambda (e) (if (atom e) e (car e)))
182 (cadr form))))))
184 ;;; (COND (<I> ..) (<J> ..) ...)
186 (defun-prop (cond free-lisp-vars) (form)
187 (union-var-set (mapcar #'free-lisp-vars-of-argl (cdr form))))
189 ;;; (SETQ ... ODD AND EVENS...)
191 (defun-prop (setq free-lisp-vars) (form)
192 (do ((free-vars nil (sum-var-sets `((,(car form) . t))
193 (free-lisp-vars (cadr form))
194 free-vars))
195 (form (cdr form) (cddr form)))
196 ((null form) free-vars)))
198 ;;; uhm. LAMBDA, PROG, GO, DO, COND, QUOTE, SETQ.
200 (defun-prop (and free-lisp-vars)(form)(free-lisp-vars-of-argl (cdr form)))
201 (defun-prop (or free-lisp-vars)(form)(free-lisp-vars-of-argl (cdr form)))
203 ;;; these next forms are generated by TRANSLATE.
205 (defprop $piece t sort-of-lexical)
207 (defun-prop (trd-msymeval free-lisp-vars) (form)
208 (if (get (cadr form) 'sort-of-lexical)
209 ;; acts like a lexical variable because of the $SUBSTPART translator.
210 (list (list (cadr form)))
211 ()))
213 (defun-prop (mfunction-call free-lisp-vars) (form)
214 ;; it is not strictly known if the name of the function being called
215 ;; is a variable or not. lets say its not.
216 (free-lisp-vars-of-argl (cddr form)))
218 ;;; (FUNGEN&ENV-FOR-MEVAL () () EXP)
219 (defun-prop (fungen&env-for-meval free-lisp-vars) (form)
220 (free-lisp-vars (car (cdddr form))))
222 ;;; the various augmented lambda forms.
224 (defun free-lisp-vars-m-tlambda (form)
225 (difference-var-sets (free-lisp-vars-of-argl (cddr form))
226 (free-lisp-vars-of-argl (cadr form))))
228 (mapc #'(lambda (u) (putprop u 'free-lisp-vars-m-tlambda 'free-lisp-vars))
229 '(m-tlambda m-tlambda&))
231 (defun free-lisp-vars-m-tlambda&env (form)
232 (difference-var-sets (free-lisp-vars-of-argl (cddr form))
233 (free-lisp-vars-of-argl (car (cadr form)))))
235 (defprop m-tlambda&env free-lisp-vars-m-tlambda&env free-lisp-vars)
236 (defprop m-tlambda&env& free-lisp-vars-m-tlambda&env free-lisp-vars)
238 ;;; Other entry points:
240 (defun tbound-free-vars (free-varl)
241 ;; Takes a FREE-VAR list and returns a list of two lists.
242 ;; the tbound free vars and the tbound free vars that are
243 ;; side effected also.
244 (do ((free nil)
245 (free&s nil))
246 ((null free-varl) (list free free&s))
247 (let ((v (pop free-varl)))
248 (cond ((and (tboundp (car v))
249 (not (tr-get-special (car v))))
250 (push (car v) free)
251 (cond ((cdr v)
252 (push (car v) free&s))))))))
254 (defun side-effect-free-check (varl form)
255 (cond ((null varl) t)
257 (tr-format (intl:gettext "error: unsupported side effects on ~:M in expression ~M~%") `((mlist) ,@varl) form)
258 nil)))
261 ;;; O.K. here is the translate property for LAMBDA.
262 ;;; given catch and throw we don't know where a funarg lambda
263 ;;; may end up.
265 ;;; Cases:
266 ;;; I. No side effects on free variables.
267 ;;; A. one funarg only, not reconsed. e.g.
268 ;;; F(N,L):=MAP(LAMBDA([U],Q(N,U)),L)$
269 ;;; (PROGN (SET-ENV <*LINK*> N)
270 ;;; (FUNCTION (LAMBDA (U) (LET ((N (GET-ENV *LINK*))) (f* U N)))))
271 ;;; B. need new instance of the environment each time,
272 ;;; F(N):=LAMBDA([U],N*U);
273 ;;; `(LAMBDA (U) (gen-func U 'N)) without extend loaded.
274 ;;; II. side effects.
275 ;;; A. Those since effects need to be propogated to the environment
276 ;;; where the LAMBDA was made. This is difficult to do in the
277 ;;; present translator. e.g.
278 ;;; F(L):=BLOCK([SUM:0],FULLMAP(LAMBDA([U],SUM:SUM+U),L),SUM);
279 ;;; every function which guarantees the order of argument evalation
280 ;;; (MPROG and MPROGN), must translate and expression and get information
281 ;;; about environment propagation.
282 ;;; (PROGN (FULLMAP (PROGN (SET-ENV) '(LAMBDA ...)) L)
283 ;;; (GET-ENV)), uhm. this is pretty tricky anyway.
284 ;;; B. side effects only have to be maintained inside the LAMBDA.
285 ;;; this is easier, and if you have it, you really don't need II.A.
286 ;;; since you can always ask the LAMBDA for its environment by
287 ;;; calling it on the proper message {If the LAMBDA is written that way}.
290 ;;; ((LAMBDA) ((MLIST) X Y ((MLIST Z))) . <BODY>)
291 ;;; must also handle the &REST arguments. N.B. MAPPLY correctly handles
292 ;;; the application of a lisp lambda form.
295 ;;; Some forms know that the lambda is not going to
296 ;;; be an upward funarg, that it is not possible (wanted)
297 ;;; have two different lambda's generated from the same
298 ;;; place. e.g. INTERPOLATE(SIN(X^2)=A,X,0,N) (implied lambda
299 ;;; which is contructed by the translation property for
300 ;;; interpolate. MAP(LAMBDA([U],...),L) is another example)
301 ;;; these forms will be called I-LAMBDA's, and will be generated
302 ;;; from LAMBDA's by the functions that want to. All this
303 ;;; is meaningless in the present macsyma evaluator of course, since
304 ;;; it uses dynamic binding and just hopes for the best.
306 (def%tr lambda (form)
307 (gen-tr-lambda form))
309 ;;; we keep a pointer to the original FORM so that we can
310 ;;; generate messages with it if need be.
312 (defun gen-tr-lambda (form &aux arg-info frees t-form dup)
313 (unless ($listp (cadr form))
314 (tr-format (intl:gettext "error: first argument of lambda expression must be a list; found ~M") (cadr form))
315 (tr-abort)
316 (return-from gen-tr-lambda nil))
317 (when (null (cddr form))
318 (tr-format (intl:gettext "error: empty body in lambda expression.~%"))
319 (tr-abort)
320 (return-from gen-tr-lambda nil))
321 (setq arg-info (mapcar #'(lambda (v)
322 (cond ((mdefparam v) nil)
323 ((and (op-equalp v 'mlist)
324 (mdefparam (cadr v))
325 (null (cddr v)))
327 (t '*bad*)))
328 (cdr (cadr form))))
329 (cond ((or (member '*bad* arg-info :test #'eq)
330 (and (member t arg-info :test #'eq)
331 (cdr (member t arg-info :test #'eq)))) ;;; the &REST is not the last one.
332 (tr-format (intl:gettext "error: unsupported argument list ~:M in lambda expression.~%") (cadr form))
333 (tr-abort)
334 nil)
335 ((setq dup (find-duplicate (cdadr form) :test #'eq :key #'mparam))
336 (tr-format (intl:gettext "error: ~M occurs more than once in lambda expression parameter list") (mparam dup))
337 (tr-abort)
338 nil)
340 (setq arg-info (member t arg-info :test #'eq) ;; &RESTP
341 t-form
342 (tr-lambda `((lambda)
343 ((mlist) ,@(mapcar #'(lambda (v)
344 (cond ((atom v) v)
345 (t (cadr v))))
346 (cdr (cadr form))))
347 ,@(cddr form)))
348 t-form (cdr t-form)
349 frees (tbound-free-vars (free-lisp-vars t-form)))))
350 (cond ((null (car frees))
351 (let ((tlambda (if arg-info 'm-tlambda& 'm-tlambda)))
352 `($any . (,tlambda ,(cadr t-form) ,@(cddr t-form)))))
353 ((null (cadr frees))
354 (let* ((tlambda (if arg-info 'm-tlambda&env& 'm-tlambda&env))
355 (fvl (car frees))
356 (cfvl (intersection fvl *tr-free-vars-to-capture*)))
357 `($any . (,tlambda (,(cadr t-form) ,fvl ,cfvl) ,@(cddr t-form)))))
359 (warn-meval form)
360 (side-effect-free-check (cadr frees) form)
361 (punt-to-meval form))))