1 EQUALP(X, Y) returns TRUE if X EQUALs Y otherwise FALSE (doesn't give an
2 error message like EQUAL(X, Y) would do in this case)
4 REMFUN(FUN, EXP) replaces all occurrences of FUN(ARG) by ARG in EXP
6 REMFUN(FUN, EXP, VAR) replaces all occurrences of FUN(ARG) by ARG in EXP
7 only if ARG contains the variable VAR
9 FUNP(FUN, EXP) true if EXP contains the function FUN
11 FUNP(FUN, EXP, VAR) true if EXP contains the function FUN and the variable
12 VAR is somewhere in the argument of one of the
15 ABSINT(FUN, VAR, HALFPLANE) indefinite integral of FUN with respect to
16 VAR in the given halfplane (POS, NEG, or BOTH).
17 If HALFPLANE is omitted, POS is assumed as a
18 default. FUN may contain expressions of the form
19 ABS(X), ABS(SIN(X)), ABS(A)*EXP(-ABS(B)*ABS(X))
21 ABSINT(FUN, VAR, A, B) definite integral of FUN with respect to VAR from A to
22 B. FUN may include absolute values
24 FOURIER(F, X, P) produces a list of the Fourier coefficients of F(X) defined
25 on the interval [-P, P]
27 FOURSIMP(L) simplifies SIN(N %PI) to 0 if SINNPIFLAG [TRUE] is TRUE and
28 COS(N %PI) to (-1)^N if COSNPIFLAG [TRUE] is TRUE
30 FOUREXPAND(L, X, P, LIMIT) generates the Fourier series from the list of
31 Fourier coefficients L up thru LIMIT terms (LIMIT
32 may be INF). X and P have same meaning as in
35 FOURCOS(F, X, P) Fourier cosine coefficients for F(X) defined on [0, P]
37 FOURSIN(F, X, P) Fourier sine coefficients for F(X) defined on [0, P]
39 TOTALFOURIER(F, X, P) := FOUREXPAND(FOURSIMP(FOURIER(F, X, P)), X, P, 'INF)
41 FOURINT(F, X) creates a list of the Fourier integral coefficients of F(X)
42 defined on [MINF, INF]
44 FOURINTCOS(F, X) Fourier cosine integral coefficients for F(X) on [0, INF]
46 FOURINTSIN(F, X) Fourier sine integral coefficients for F(X) on [0, INF]