Rename *ll* and *ul* to ll and ul in defint-list
[maxima.git] / share / contrib / stirling.mac
blobae9787240d672e2b20d94a772ed130e0d9a930db
1 /* Copyright 2006 by Barton Willis
3   This is free software; you can redistribute it and/or
4   modify it under the terms of the GNU General Public License,
5   http://www.gnu.org/copyleft/gpl.html.
7  This software has NO WARRANTY, not even the implied warranty of
8  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
9 */
11 /* See A&S 6.1.37 and 6.1.40
13 stirling(e) replaces all gamma functions in the expression 'e' with the zeroth
14 order Stirling expansion.
16 stirling(e, n) replaces all gamma functions in the expression 'e' with the O(1/x^(2n)) 
17 Stirling expansion. 
19 stirling(e, n, pred) replaces all expressions of the form gamma(q) in 'e' with
20 the O(1/x^(2n)) Stirling expansion provided pred(q) evaluates to true. When 
21 pred(q) is false, the Stirling expansion is not applied to a term of the form 
22 gamma(q). If you want to use the optional argument 'pred,' you must specify 
23 the value of 'n.'
25 Examples:
27 (%i1) stirling(gamma(%alpha+x)/gamma(x),1);
28 (%o1) %e^(-%alpha)*x^(1/2-x)*(x+%alpha)^(x+%alpha-1/2)
30 (%i2) taylor(%,x,inf,1);
31 (%o2) x^%alpha+(x^%alpha*%alpha^2-x^%alpha*%alpha)/(2*x)+...
33 (%i3) map('factor,%);
34 (%o3) x^%alpha+((%alpha-1)*%alpha*x^(%alpha-1))/2
36 The function 'stirling' knows the difference between the variable 'gamma' and
37 the function gamma:
39 (%i4) stirling(gamma(gamma));
40 (%o4) sqrt(2)*sqrt(%pi)*gamma^(gamma-1/2)*%e^(-gamma)
42 To conditionally apply a Stirling expansion, give 'stirling' a third
43 argument; for example, to apply the expansion only when the argument to 
44 the gamma function is a symbol, you may use:
46 (%i5) stirling(gamma(a) / gamma(a+b),1, symbolp);
47 (%o5) (sqrt(2)*sqrt(%pi)*a^(a-1/2)*%e^(-a))/gamma(b+a)
49 To apply the Stirling expansion only when the argument to gamma does
50 not depend on the symbol 'a,' you may use:
52 (%i6) stirling(gamma(a) / gamma(a+b), 5, lambda([s], freeof('a,s)));
53 (%o6) gamma(a)/gamma(b+a)
55 To use this code, the file 'opsubst.lisp' must be in your search path.
60 load("opsubst"); 
62 stirling(z, [a]) := block([n, s, acc : 0, %m, pred, zerobern : true],
64        n : if a = [] then 1 else first(a),
66        pred : if (a = [] or length(a) < 2) then buildq([],lambda([s], true)) else 
67           if length(a) = 2 then second(a) else
68            error("The function 'stirling' requires one or two arguments"),
70        if integerp(n) and n > -1 then (
71           n : n - 1,
72           for %m from 1 thru n do (
73                acc : acc + bern(2*%m)/(2*%m *(2*%m-1)*s^(2*%m-1))),
74           acc : exp(-s)* s^(s-1/2) * sqrt(2*%pi) * exp(acc),
75           opsubst(buildq([acc,pred], lambda([s], if pred(s) then acc else funmake(gamma, [s]))), 'gamma, z))
76        else error("The second argument to 'stirling' must be a nonnegative integer"));