2 /* ------------------------------ */
3 /* Gosper's algorithm's Test File */
11 g4:(-1)^k*a!/(k!*(a-k)!);
17 /* Non-Gosper summable */
18 /* It has been checked against the Mathematica package "Zb" */
19 /* by Paule/Schorn/Riese available at www.risc.uni-linz.ac.at */
22 /* --------------------------------- */
23 /* Zeiberger's Algorithm's Test File */
43 f10: binomial(n,k)^10;
45 /* Binomial theorem */
46 h1: binomial(n,k)*x^k;
48 /* Vandermonde identity recurrence */
49 h2: binomial(a, k)* binomial(b, n-k);
51 /* Dixon's identity */
52 h3: binomial(n+b, n+k)* binomial(n+c, c+k)*binomial(b+c, b+k)*(-1)^k;
54 /* Karlsson-Gosper identity 1 */
55 h4: binomial(n,k)*(n-1/4)!/(n-k-1/4)!/(2*n+k + 1/4)!*9^(-k);
57 /* Karlsson-Gosper identity 2 */
58 h5: binomial(n,k) * (n-1/4)! / (n-k-1/4)! / (2*n+k+5/4)! * 9^(-k);
60 /* Wilson polynomials recurrence */
61 h6: binomial(n,k) * (n+a+b+c+d-2+k)! * (a+x+k-1)! * (a-x+k-1)! /
62 (n+a+b+c+d-2)! / (a+b+k-1)! / (a+c+k-1)! / (a+d+k-1)! * (-1)^k;
65 /* Wilson polynomials without constants in k (for debugging) */
66 h6b : removeBinomial(h6)/(n!)*((n+d+c+b+a-2)!);
68 /* Laguerre-Orthogonality */
69 h7: (k+k2)! * (n1)! * (n2)! / (k)! / (n1-k)! / (k2)! / (n2-k2)! /
70 (k)! / (k2)! * (-1)^k;
72 /* Fibonacci-Recurrence */
73 h8: (-k+n)! / k! / (-2*k+n)!;
75 /* Trinomial coefficients */
76 h9: n! / k! / (k+m)! / (-2*k-m+n)!;
78 /* First special case of Strehl identity (MEMO, Feb 25, 1992) */
79 h10: binomial(n, k)^2 * binomial( 2*k, k);
82 /* Second special case of Strehl identity (MEMO, Feb 25, 1992) */
83 h11: binomial(n, k)^2 * binomial( 2*k, k+a);
85 /* Third special case of Strehl identity (MEMO, Feb 25, 1992) */
86 h12: binomial(n, k)^2 * binomial( 2*k, k) * binomial(2*k,n-k);
88 /* Fibonacci recurrence */
89 h13: (n+k)! * n! / k!^3 / (n-k)!^2;
91 /* Debugging artificial examples */
92 d1 : (2*n+k-1)!/(4*n+2*k)!;
94 d2 : (3*n+k-1)!/(6*n+2*k)!;
98 [[g1,k,n,0],[g2,k,n,0],[g3,k,n,0],
99 [g4,k,n,0],[g5,k,n,0],[g6,k,n,0]];
102 [[f1,k,n,1],[f2,k,n,1],[f3,k,n,2],[f4,k,n,2],
103 [h1,k,n,1],[h2,k,n,1],[h8,k,n,2],[h9,k,n,2],
104 [h10,k,n,2],[h13,k,n,2],[d1,k,n,1],[d2,k,n,1]];
107 [[h3,k,n,1],[h4,k,n,1],[h5,k,n,1],[h7,k,n1,1],[h11,k,n,3]];
109 EXTREME_TEST : [[f5,k,n,3], [h6,k,n,2],[h12,k,n,5]];
111 FULL_TEST : append(GOSPER_TEST,EASY_TEST,
112 HARD_TEST,EXTREME_TEST);
114 kill (g1, g2, g3, g4, g5, g6, g7,
115 f1, f2, f3, f4, f5, f6, f7, f8, f9, f10,
116 h1, h2, h3, h4, h5, h6, h6b, h7, h8, h9, h10, h11, h12, h13,