1 ;; Copyright 2009,2021 by Barton Willis
3 ;; This is free software; you can redistribute it and/or
4 ;; modify it under the terms of the GNU General Public License,
5 ;; http://www.gnu.org/copyleft/gpl.html.
7 ;; This software has NO WARRANTY, not even the implied warranty of
8 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 ;; mea culpa---for numerical evaluation of the hypergeometric functions, the
13 ;; method uses a running error. When the error is too large, the value of fpprec
14 ;; is increased and the evaluation is redone with the larger value of fpprec.
15 ;; The option variable max_fpprec is the largest value for fpprec Maxima will try.
17 (defmvar $max_fpprec
1000)
19 (setf (get '$max_fpprec
'assign
)
21 (declare (ignore unused
))
22 (if (not (and (atom b
) (integerp b
)))
24 (mtell "The value of `max_fpprec' must be an integer.~%")
27 (defmvar $expand_hypergeometric nil
)
29 (setf (get '$expand_hypergeometric
'assign
)
31 (declare (ignore unused
))
32 (if (not (or (eq b nil
) (eq b t
)))
34 (mtell "The value of `expand_hypergeometric' must be either true or false.~%")
37 ;; If the length of l is n, return true; otherwise signal wna-err = (wrong number of arguments, by the way).
39 (defun argument-length-check (l n
)
40 (if (and (consp l
) (consp (first l
)) (equal n
(length (margs l
)))) t
(wna-err (caar l
))))
42 ;; When multiple_value_return is nil, multiple_values(e1,e2,...) --> e1; otherwise
43 ;; multiple_values(e1,e2,...) --> multiple_values(e1,e2,...).
45 (setf (get '$multiple_values
'operators
) 'simp-multiple-values
)
47 (defmvar $multiple_value_return nil
)
49 (defun simp-multiple-values (e yy z
)
51 (if $multiple_value_return
52 `(($multiple_values simp
) ,@(mapcar #'(lambda (s) (simpcheck s z
)) (cdr e
)))
53 (simpcheck (cadr e
) z
)))
55 ;; Detect undefined and polynomial cases.
57 (defun classify-hypergeometric (a b x
)
58 (let ((ah nil
) (bh nil
))
60 ;; Let bh = the least member of b that is a negative integer. If there is
61 ;; no such member, set bh = nil.
64 (if (and (integerp bk
) (<= bk
0) (or (eq bh nil
) (< bk bh
))) (setq bh bk
)))
66 ;; Let ah = the greatest member of a that is a negative integer. If there is
67 ;; no such member, set ah = nil.
70 (if (and (integerp ak
) (<= ak
0) (or (eq ah nil
) (> ak ah
))) (setq ah ak
)))
72 ;; Undefined when either (1) ah is nil and bh is non-nil or (2) ah and bh are
73 ;; non-nil and ah >= bh, and each member of a and b are numbers. (We don't
74 ;; want hypergeometric([a],[-3],x) to be undefined, do we?). I suppose this
75 ;; function could look for declared integers...
77 (cond ((and (every '$numberp a
)
79 (or (and (not ah
) bh
) (and ah bh
(>= bh ah
)))) 'undefined
)
81 ((or ah
(zerop1 ($ratdisrep x
))
82 (and ($taylorp x
) (eql 0 ($second
($first
($taylorinfo x
))))
83 (integerp ($third
($first
($taylorinfo x
))))))
88 ;; The function simpcheck changes taylor polynomials to general form--that messes
89 ;; it harder to taylorize hypergeometrics (things like hypergeometric([5],[], taylor(x,x,0,3)) -->
90 ;; a taylor polynomial. So use tsimpcheck: if e is a taylor polynomial, simplify; otherwise, simpcheck.
92 (defun tsimpcheck (e z
)
93 (if (or ($taylorp e
) ($ratp e
)) (simplifya e z
) (simpcheck e z
)))
95 ;; We don't want realpart and imagpart to think that hypergeometric functions are
96 ;; real valued. So declare hypergeometric to be complex.
99 (:load-toplevel
:execute
)
100 (let (($context
'$global
) (context '$global
))
101 (meval '(($declare
) %hypergeometric $complex
))))
103 (setf (get '%hypergeometric
'conjugate-function
) 'conjugate-hypergeometric
)
105 ;; hypergeometric(a,b,x) is entire (commutes with conjugate) when length(a) < length(b) + 1. Also
106 ;; hypergeometric(a,b,x) is analytic inside the unit disk. Outside the unit disk, we need to be careful;
107 ;; for now, conjugate gives a nounform in this case. I suppose we could check for declared negative integer
108 ;; parameter in the list a...I'll wait for a user to request this feature :)
110 (defun conjugate-hypergeometric (l)
111 (let ((a (first l
)) (b (second l
)) (x (third l
)))
112 (cond ((or (< ($length a
) (+ 1 ($length b
))) (eq t
(mgrp 1 (take '(mabs) x
))))
113 (take '(%hypergeometric
) (take '($conjugate
) a
) (take '($conjugate
) b
) (take '($conjugate
) x
)))
115 (list (list '$conjugate
'simp
) (take '(%hypergeometric
) a b x
))))))
117 (defun lenient-complex-p (e)
118 (and ($freeof
'$infinity
'$und
'$ind
'$inf
'$minf
'$false
'$true t nil e
) ;; what else?
120 (not ($featurep e
'$nonscalar
))
122 (not ($member e $arrays
))))
124 ;;(defprop $hypergeometric simp-hypergeometric operators)
126 ;; Do noncontroversial simplifications on the hypergeometric function. A user that
127 ;; wants additional simplifications can use $hypergeometric_simp. The simplifications are
129 ;; (a) hypergeometric([], [], x) --> exp(x),
131 ;; (b) hypergeometric([a], [], x) --> 1 / (1 - x)^a,
133 ;; (c) hypergeometric([a1,...], [b1, ...], 0) --> 1,
135 ;; (d) hypergeometric([-n,...], [b1, ...], x) --> polynomial.
137 ;; (d) sort and delete common parameters; for example
138 ;; hypergeometric([p,b,a],[c,b],x) --> hypergeometric([a,p],[c],x).
140 ;; (e) hypergeometric([0,a1, ... ], [b1, ...], x) --> 1.
142 ;; Why does this code do (take '(mlist) a) instead of (cons '(mlist) a)? Because
143 ;; (cons '(mlist) a) messes up tellsimp rules. Say tellsimp([a], a]). Then
144 ;; (take (mlist) a) --> a, but (cons '(mlist) a) --> ((mlist) a). And that's not correct.
146 (def-simplifier (hypergeometric :simpcheck
:custom
) (a b x
)
147 (let ((l nil
) (a-len) (b-len)
148 (hg-type nil
) (dig) (return-type) ($domain
'$complex
))
150 (unless (and($listp a
) ($listp b
))
151 (mtell "warning: The first two arguments to 'hypergeometric' must be lists.~%")
152 (return-from simp-%hypergeometric
(give-up)))
154 (setq a
(mapcar #'(lambda (s) (tsimpcheck s %%simpflag
)) (margs a
))
155 b
(mapcar #'(lambda (s) (tsimpcheck s %%simpflag
)) (margs b
))
156 x
(tsimpcheck x %%simpflag
))
158 ;; Delete common members of a and b. This code is taken from hyp.lisp.
160 (setq l
(zl-intersection a b
))
164 ;; Check for undefined cases
165 (setq hg-type
(classify-hypergeometric a b x
))
167 (setq a-len
(length a
))
168 (setq b-len
(length b
))
170 ;; Sort a and b and reconvert to Maxima lists.
172 (setq a
(sort a
'$orderlessp
))
173 (setq b
(sort b
'$orderlessp
))
174 (setq a
(simplify (cons '(mlist) a
)))
175 (setq b
(simplify (cons '(mlist) b
)))
177 ;; If constantp(x), apply rectform to x. For now, multiplication and division
178 ;; of complex numbers doesn't always return a number in rectangular form. Let's
179 ;; apply rectform to constants.
182 (setq x
($rectform x
)))
185 ;; Catch undefined cases and return a nounform.
186 ((or (eq hg-type
'undefined
)
187 (member-if #'(lambda(s) (not (lenient-complex-p s
))) (cdr a
))
188 (member-if #'(lambda(s) (not (lenient-complex-p s
))) (cdr b
))
189 (not (lenient-complex-p x
)))
192 ;; pFq([a1,...,ap], [b1,...,bq], 0) --> 1 + 0
196 ;; pFq([0,a1,...,ap], [b1,...,bq], x) --> 1
197 ((member-if 'zerop1
(margs a
))
200 ;; Do hypergeometric([],[],x) --> exp(x). All numerical evaluation is funneled through
201 ;; the same entry point; the function hypergeometric-0f0 doesn't do numerical evaluation.
202 ((and (= 0 a-len
) (= 0 b-len
)
203 (hypergeometric-0f0 x
)))
205 ;; Do hypergeometric([a],[],x) --> 1 / (1-x)^a.
206 ((and (= a-len
1) (= 0 b-len
)
207 (hypergeometric-1f0 (second a
) x
)))
209 ;; Try reflection identity for 1F1.
210 ((and (= a-len
1) (= b-len
1)
211 (hypergeometric-1f1 (second a
) (second b
) x hg-type
)))
213 ;; For 2F1, value at 1--nothing else.
214 ((and (= a-len
2) (= b-len
1)
215 (hypergeometric-2f1 (second a
) (third a
) (second b
) x
)))
217 ;; Try numerical evaluation; return nil on failure. This should handle IEEE float,
218 ;; IEEE complex float, bigfloat, and complex big float cases.
219 ((and (setq return-type
(use-float-hypergeometric-numerical-eval (margs a
) (margs b
) x
))
220 (setq dig
(ceiling (* (if (eq return-type
'float
) (float-digits 1.0) fpprec
)
221 #.
(/ (log 2) (log 10)))))
222 (hypergeometric-float-eval (margs a
) (margs b
) x dig return-type
)))
224 ;; Try rational number numerical evaluation; return nil on failure. This should handle
225 ;; rational and complex rational numerical evaluation.
226 ((use-rational-hypergeometric-numerical-eval (margs a
) (margs b
) x
)
227 (rational-hypergeometric-numerical-eval (margs a
) (margs b
) x
))
229 ;; Handle all other polynomial cases; this includes the case that
230 ;; x is a Taylor polynomial centered at zero.
231 ((hypergeometric-poly-case (margs a
) (margs b
) x
))
233 ;; Return a nounform.
237 ;; When x isn't a float, do 0F0([],[],x) --> exp(x).
238 (defun hypergeometric-0f0 (x)
239 (if (use-float-hypergeometric-numerical-eval nil nil x
) nil
(take '(mexpt) '$%e x
)))
241 ;; When a or x aren't floats, do 1F0([a],[],x) --> 1/(1-x)^a.
242 (defun hypergeometric-1f0 (a x
)
243 (cond ((use-float-hypergeometric-numerical-eval (list a
) nil x
) nil
)
245 (if (eq t
(mgrp 0 a
)) 0 nil
))
246 (t (div 1 (take '(mexpt) (sub 1 x
) a
)))))
248 ;; Apply the Kummer reflection identity when b-a is a negative integer and we know that
249 ;; the hypergeometric function is not already known to be a polynomial (that is a is not a
250 ;; negative integer) or when (great (neg x) x); otherwise, return nil. This function
251 ;; doesn't do floating point evaluation.
253 (defun hypergeometric-1f1 (a b x hg-type
)
254 (cond ((use-float-hypergeometric-numerical-eval (list a
) (list b
) x
) nil
)
255 ((or (and (not (eq hg-type
'polynomial
)) (great (neg x
) x
))
256 (and (not (eq hg-type
'polynomial
)) (integerp (sub b a
)) (< (sub b a
) 0)))
257 (mul (take '(mexpt) '$%e x
)
258 (take '(%hypergeometric
) (take '(mlist) (sub b a
)) (take '(mlist) b
) (neg x
))))
261 ;; Convert x to a float; if float fails (say overflow), convert to a
263 (defun safe-float (x)
269 ;; Coerce x to the number type of z. The Maxima function safe_float returns a bigfloat when
270 ;; conversion to a float fails (overflow, for example).
271 (defun number-coerce (x z
)
272 (cond ((complex-number-p z
'$bfloatp
)
274 ((complex-number-p z
'floatp
)
278 ;; 2F1(a,b;c, x) --> gamma(c) gamma(c - a - b) / (gamma(c-a) gamma (c-b))
279 ;; (Chu-Vandermonde identity, A & S 15.1.20) provided real_part(c-a-b) > 0 and c # 0,-1,-2, ...
280 ;; The c = 0, -1, -2, ... case should be caught previously. If we wanted to be super careful, we'd
281 ;; demand explicitly that c isn't a negative integer.
283 (defun hypergeometric-2f1 (a b c x
)
285 (setq z
(sub c
(add a b
)))
286 (cond ((and (onep1 x
) (complex-number-p z
'$numberp
) (eq t
(mgrp ($realpart z
) 0)))
289 (mul (take '(%gamma
) c
) (take '(%gamma
) z
))
290 (mul (take '(%gamma
) (sub c a
)) (take '(%gamma
) (sub c b
))))
296 ;; For numerical evaluation of a general hypergeometric function, there aren't many
297 ;; alternatives to power series summation.
299 ;; Pursuant to well-established Maxima coding practices :), bigfloat
300 ;; functions receive bigfloat arguments and return bigfloat values.
302 (in-package #:bigfloat
)
304 ;(import 'maxima::while) ;; <--- broken Why?
306 (defmacro while
(cond &rest body
)
311 (defun 0f0-numeric (x)
314 (defun 1f0-numeric (a x
)
315 (/ 1 (expt (- 1 x
) a
)))
317 ;; This is DLMF: http://dlmf.nist.gov/15.15#E1 with zo = 1/2. Also here is Maxima code that
318 ;; sums the first n+1 terms of the sum. The CL function 2f1-numeric-alt uses a running
319 ;; error and it sums until three consecutive partial sums have a modified relative difference
320 ;; that is bounded by the machine epsilon.
323 ff
(a,b
,c
,x
,n
) := block
([f
, f0
: 1, f1
: 1-
2 * b
/ c
,s
: 1,k
: 1, cf
: a
/ (1-2/x
), z
],
328 cf
: cf
* (a + k
) / ((k + 1) * z
),
329 f
: (k * f0
+ b
* f1
)/(k+c
),
336 (defun 2f1-numeric-alt (a b c x
)
337 (let ((f) (f0 1) (f1 (- 1 (/ (* 2 b
) c
))) (s 1) (ds 1) (k 1) (cf (/ a
(- 1 (/ 2 x
)))) (z) (se 0)
338 (eps (epsilon x
)) (done 0))
339 (setq b
(- c
(* 2 b
)))
340 (setq z
(- 1 (/ 2 x
)))
344 (setq done
(if (< (abs ds
) (* eps
(max 1 (abs s
)))) (+ done
1) 0))
345 (setq se
(+ se
(abs s
) (abs ds
)))
346 (setq cf
(/ (* cf
(+ a k
)) (* (+ 1 k
) z
)))
347 (setq f
(/ (+ (* k f0
) (* b f1
)) (+ k c
)))
351 (values (/ s
(expt (- 1 (/ x
2)) a
)) (* se
(epsilon x
)))))
353 ;; hypergeometric([ma,mb],[mc],mx); prefix m means Maxima expression.
355 (defun 2f1-numeric (ma mb mc mx digits
)
356 (let* ((region) (f) (ff) (er) (local-fpprec digits
) (eps) (mma) (mmb) (mmc) (mmx)
357 (x (bigfloat::to mx
))
358 (d (list (list "none" (abs x
)) ;; region I, inside unit disk
359 (list "15.3.4" (if (= x
1) nil
(abs (/ x
(- x
1)))))
360 (list "15.3.6" (abs (- 1 x
)))
361 (list "15.3.7" (if (zerop x
) nil
(abs (/ 1 x
))))
362 (list "15.3.8" (if (= x
1) nil
(abs (/ 1 (- 1 x
)))))
363 (list "15.3.9" (if (zerop x
) nil
(abs (- 1 (/ 1 x
))))))))
365 (setq d
(delete-if #'(lambda(s) (null (second s
))) d
))
366 ;; Sort d from least to greatest magnitude.
368 (setq d
(sort d
#'(lambda (a b
) (< (second a
) (second b
)))))
369 (setq region
(first (first d
)))
370 ;;(print `(region = ,region))
371 ;;(print `(d = ,(second (first d))))
374 ;; When x = 0, return 1.
377 ;; Use the alternative numerical method when |x| > 0.9; this happens when x is near exp(+/- %i %pi / 3).
379 ((> (second (first d
)) 0.9)
380 (setq eps
(epsilon (bigfloat::to mx
)))
384 (while (> (abs er
) (* eps
(max (abs f
) 1)))
385 (maxima::bind-fpprec local-fpprec
386 (setq mma
(maxima::nfloat ma
`((maxima::mlist
)) local-fpprec maxima
::$max_fpprec
))
387 (setq mmb
(maxima::nfloat mb
`((maxima::mlist
)) local-fpprec maxima
::$max_fpprec
))
388 (setq mmc
(maxima::nfloat mc
`((maxima::mlist
)) local-fpprec maxima
::$max_fpprec
))
389 (setq mmx
(maxima::nfloat mx
`((maxima::mlist
)) local-fpprec maxima
::$max_fpprec
))
390 (multiple-value-setq (f er
)
392 (bigfloat::to mma
) (bigfloat::to mmb
) (bigfloat:to mmc
) (bigfloat::to mmx
)))
393 (setq local-fpprec
(* 2 local-fpprec
))))
396 ;; ma or mb negative integers--that causes trouble for most of the A&S 15.3.4--15.3.9
397 ;; transformations--let's quickly dispatch hypergeometric-float-eval; also dispatch
398 ;; hypergeometric-float-eval when the transformation is "none" (with adjust-parameters
401 ((or (equal region
"none") (and (integerp ma
) (<= ma
0)) (and (integerp mb
) (<= mb
0))
403 (hypergeometric-float-eval (list ma mb
) (list mc
) mx digits nil
))
405 ;; The case of a,b, and c integers causes trouble; let's dispatch hgfred on it.
406 ((and (integerp ma
) (integerp mb
) (integerp mc
))
407 (setq f
(maxima::$hgfred
(maxima::take
'(maxima::mlist
) ma mb
)
408 (maxima::take
'(maxima::mlist
) mc
) 'maxima
::z
))
409 (setq f
(maxima::$horner f
'maxima
::z
))
411 (multiple-value-setq (f d
)
412 (maxima::nfloat f
`((maxima::mlist
) ((maxima::mequal
) maxima
::z
,mx
)) digits maxima
::$max_fpprec
))
413 (values (bigfloat f
) (bigfloat d
))))
416 (let ((maxima::$multiple_value_return t
))
417 ;; It's really important to use the verb for here because
418 ;; that's what abramowitz_id is looking for.
419 (setq ff
`((maxima::%hypergeometric maxima
::simp
)
420 ((maxima::mlist maxima
::simp
) ,ma
,mb
)
421 ((maxima::mlist maxima
::simp
) ,mc
) maxima
::z
))
424 (format t
"ff = ~A~%" ff
)
425 (format t
"d = ~A~%" d
)
426 (format t
"region = ~A~%" region
))
429 (setq f
(if (equal region
"none")
430 `((maxima::multiple_values
) ,ff t
)
431 (maxima::mfuncall
'maxima
::$abramowitz_id ff region
)))
433 (format t
"f = ~A~%" f
)
434 (if (maxima::$second f
)
435 (setq d nil f
(maxima::$first f
)) (setq region
(first (pop d
)))))
440 (maxima::displa
`((maxima::mequal
) maxima
::z
,mx
)))
441 (setq f
(multiple-value-list
442 (maxima::nfloat f
`((maxima::mlist
) ((maxima::mequal
) maxima
::z
,mx
))
443 digits maxima
::$max_fpprec
)))
446 (format t
"f = ~A~%" f
)
447 (format t
"first f = ~A~%" (first f
))
448 (format t
"sec f = ~A~%" (second f
)))
449 (values (bigfloat::to
(first f
)) (bigfloat::to
(second f
))))))))
451 ;; Let a = (a1, a2, ..., am) and b = (b1, b2, ..., bn). Approximate sum(c(k) x^k / k!,k,1,inf),
452 ;; where c(k + 1) / c(k) = (a1 + k) (a2 + k) ... (am + k) / (b1 + k) (b2 + k) ... (bn + k).
454 (defun hypergeometric-by-series (a b x
)
455 ;; es = running error for e and ez running error for z.
457 (let ((s 0) (s0 1) (k 0) (z 1) (es 0) (ez 1) (n) (p) (q) (stop 20000) (dig))
458 (setq n
(* 2 (+ (length a
) (length b
) 1)))
459 (while (and (< k stop
) (/= s s0
)) ;; (not (= s s0)))
461 (setq p
(reduce #'* (mapcar #'(lambda (s) (+ s k
)) a
))) ;; p adds and p-1 multiplications
462 (setq q
(reduce #'* (mapcar #'(lambda (s) (+ s k
)) b
))) ;; q adds and q-1 multiplications
464 (setq z
(* z
(/ (* p x
) (* q k
))))
465 ;;(setq ez (+ (* n (abs z)) ez))
466 (setq ez
(+ (* (abs (/ (* x p
) (* q k
))) ez
) (* (abs z
) n
)))
468 (setq es
(+ es ez
(abs s0
))))
471 (if (>= k stop
) (values nil nil
)
473 ;; estimate number of correct digits:
477 (- (log (max (abs s
) (epsilon x
))) (log (* es
(epsilon x
))))
478 #.
(/ (log 2) (log 10)))))
480 ;;(print "-----------")
481 ;;(maxima::displa `((maxima::mequal) k ,k))
482 ;;(maxima::displa `((maxima::mequal) xxx ,(maxima::to (epsilon x))))
483 ;;(maxima::displa `((maxima::mequal) es ,(maxima::$float (maxima::to es))))
484 ;;(maxima::displa `((maxima::mequal) s ,(maxima::$float (maxima::to s))))
485 ;;(maxima::displa `((maxima::mequal) dig ,(maxima::$float (maxima::to dig))))
488 (defun hypergeometric-poly-case (a b x
)
489 (let ((z 1) (s 1) (k 0) (p) (q))
490 (while (not (zerop z
))
491 (setq p
(reduce #'* (mapcar #'(lambda (s) (+ s k
)) a
)))
492 (setq q
(reduce #'* (mapcar #'(lambda (s) (+ s k
)) b
)))
494 (setq z
(/ (* p x z
) (* q k
)))
498 ;; This function numerically evaluates pFq([a1,...,ap], [b1,....bq], x), where all the arguments
499 ;; are Maxima expressions, not bigfloat objects.
501 (defun hypergeometric-float-eval (ma mb mx digits
&optional
(adjust-params t
))
502 (let ((a-len (length ma
)) (b-len (length mb
)) (f nil
) (local-fpprec maxima
::$fpprec
) (d) (a) (b) (x))
504 ;(maxima::displa `((maxima::mlist) ,@ma))
505 ;(maxima::displa `((maxima::mlist) ,@mb))
506 ;(maxima::displa `((maxima::mlist) ,mx))
507 (setq a
(mapcar #'bigfloat
::to ma
))
508 (setq b
(mapcar #'bigfloat
::to mb
))
509 (setq x
(bigfloat::to mx
))
511 ;; Special case 0f0, 1f0, 2f1 for |x| > 1, and pfq for |x| > 1 and p >= q + 1.
512 ;; For a general hypergeometric, I don't know how to analytically continue, so in the last case,
515 ;; In the general case, sum the hypergeometric series using a running error, recursing
516 ;; on local-fpprec; bailout when local-fpprec exceeds 1000.
518 (cond ((and (eql a-len
0) (eql b-len
0)) ;; special case 0f0
519 (values (0f0-numeric x
) digits
))
521 ((and (eql a-len
1) (eql b-len
0)) ;; special case 1f0
522 (values (1f0-numeric (first a
) x
) digits
))
524 ((and (eql a-len
1) (integerp (first a
)) (< (first a
) 0) (eql b-len
1)) ;; special case 1f1
525 (maxima::bind-fpprec local-fpprec
526 (multiple-value-setq (f d
) (1f1-downward-recursion (first a
) (first b
) x
)))
529 ;; Optionally do Kummer transformation--when is the Kummer transformation advantageous?
530 ;; I think the sum is ill-conditioned when realpart(x) < 0. Since x is a float, realpart
533 ;; The adjust-params argument should prevent an infinite loop (transform --> untransform ...)
534 ;; In this case, an infinite loop shouldn't happen even without the adjust-param scheme.
542 (multiple-value-setq (f d
) (hypergeometric-float-eval
543 (list (maxima::sub
(car mb
) (car ma
)))
544 mb
(maxima::neg mx
) digits nil
))
545 (values (* (exp x
) f
) d
)))
547 ;; analytic continuation for 2f1;
548 ((and (eql a-len
2) (eql b-len
1) adjust-params
)
549 (2f1-numeric (car ma
) (cadr ma
) (car mb
) mx digits
))
551 ((or (< a-len
(+ b-len
1)) (in-unit-circle-p x
) (eq 'maxima
::polynomial
552 (maxima::classify-hypergeometric ma mb mx
)))
554 ;; recurse on local-fpprec; bailout when local-fpprec exceeds $max_fpprec.
556 (while (and (or (null f
) (< d digits
)) (< local-fpprec maxima
::$max_fpprec
))
557 (maxima::bind-fpprec local-fpprec
558 (multiple-value-setq (f d
) (hypergeometric-by-series a b x
))
559 (setq a
(mapcar #'(lambda (s) (bigfloat::to
(maxima::$bfloat s
))) ma
))
560 (setq b
(mapcar #'(lambda (s) (bigfloat::to
(maxima::$bfloat s
))) mb
))
561 (setq x
(bigfloat::to
(maxima::$bfloat mx
)))
562 ;(print "----------")
563 ;(print `(fpprec = ,local-fpprec))
565 ;(print `(digits = ,digits))
566 ;(incf local-fpprec (+ (- digits d) 10))))
567 (setq local-fpprec
(* 2 local-fpprec
))))
569 (if (>= local-fpprec maxima
::$max_fpprec
)
571 (maxima::mtell
"Exceeded maximum allowed fpprec.~%")
575 (defun in-unit-circle-p (x)
578 ;; Compute f11(a,b,x) using downward recursion (A&S 13.4.1). The first argument must be a negative integer:
580 ;; f <-- (k * fo + (2 * k + x) * fm1)/(b-k)
583 ;; I think this is faster than the power series summation--it might be useful for orthogonal polynomials.
584 (defun 1f1-downward-recursion (a b x
)
585 (let ((fo 1) (fm1 (- 1 (/ x b
))) (f) (k -
1) (efo 0) (efm1 0) (ef 0))
586 (declare (type fixnum k
))
588 (cond ((eql a
0) (values fo
0))
589 ((eql a -
1) (values fm1
0))
593 (setq f
(/ (- (* k fo
) (* (+ (* 2 k
) x
) fm1
)) (- b k
)))
597 (* (abs (+ (* 2 k
) x
))) (+ efm1
(* 2 fm1
))
611 (defun float-or-bigfloat-p (x)
612 (or (floatp x
) ($bfloatp x
)))
614 ;; Return true iff it is possible to evaluate hypergeometric(a,b,x) using (exact)
615 ;; rational arithmetic. Thus (1) x and every member of a and b (Common Lisp lists) must be
616 ;; a $ratnump and (2) some member of a must be an explicit negative integer. When $numer
617 ;; is true, never do exact rational evaluation? (Likely when $numer is true, we'll never
620 (defun use-rational-hypergeometric-numerical-eval (a b x
)
622 (complex-number-p x
'$ratnump
)
623 (every #'(lambda (s) (complex-number-p s
'$ratnump
)) a
)
624 (every #'(lambda (s) (complex-number-p s
'$ratnump
)) b
)
625 (some #'(lambda (s) (and (integerp s
) (< s
0))) a
)))
627 ;; Evaluate hypergeometric(a,b,x) using (exact) rational arithmetic. Here a
628 ;; and b are Common Lisp lists. Don't call this function without first
629 ;; checking that use-rational-hypergeometric-numerical-eval returns true.
630 ;; These are all polynomial cases, so we don't need any analytic continuations.
632 (defun rational-hypergeometric-numerical-eval (a b x
)
633 (setq a
(mapcar #'(lambda (s) (bigfloat::to s
)) a
))
634 (setq b
(mapcar #'(lambda (s) (bigfloat::to s
)) b
))
635 (setq x
(bigfloat::to x
))
636 (maxima::to
(bigfloat::hypergeometric-poly-case a b x
)))
638 ;; Return float if hypergeometric(a,b,x) should evaluate to a double float (real or
639 ;; complex; return bigfloat if it should evaluate to a bigfloat (real or complex); otherwise
642 (defun use-float-hypergeometric-numerical-eval (a b x
)
644 ;; float, complex float, bigfloat, and complex bigfloat; this is a great deal of
645 ;; stuff to check. When $numer is true, everybody must be a $numberp for numerical
646 ;; evaluation; when numer is false, everybody must be a $numberp and somebody must
649 (if (and (every #'(lambda (s) (complex-number-p s
'$numberp
)) a
)
650 (every #'(lambda (s) (complex-number-p s
'$numberp
)) b
)
651 (complex-number-p x
'$numberp
)
654 (not (every #'(lambda (s) (complex-number-p s
'$ratnump
)) a
))
655 (not (every #'(lambda (s) (complex-number-p s
'$ratnump
)) b
))
656 (not (complex-number-p x
'$ratnump
))))
658 ;; When everybody is a float or rational, the return type is float; otherwise bigfloat.
660 (every #'(lambda (s) (complex-number-p s
'float-or-rational-p
)) a
)
661 (every #'(lambda (s) (complex-number-p s
'float-or-rational-p
)) b
)
662 (complex-number-p x
'float-or-rational-p
))
663 'float
'bigfloat
) nil
))
665 ;; Evaluate pFq(a,b,x) using floating point arithmetic. Coerce the returned value
666 ;; to the type described by return-type.
668 ;; When there is a double float overflow, ignore-errors should return nil. After that, we'll
669 ;; try again with a bigfloat.
671 (defun hypergeometric-float-eval (a b z digits return-type
)
673 (multiple-value-setq (x d
) (ignore-errors (bigfloat::hypergeometric-float-eval a b z digits
)))
675 (cond ((and (null x
) (eq return-type
'float
))
677 (hypergeometric-float-eval (mapcar '$bfloat a
)
683 ((or (null x
) (null d
)) nil
)
685 ((eq return-type
'float
)
686 ($float
(maxima::to x
)))
688 ((eq return-type
'bigfloat
)
689 ($bfloat
(maxima::to x
)))
691 ;; Unused hypergeometric-float-eval doesn't return rational
692 ;; ((eq return-type 'rational)
693 ;; ($rationalize (maxima::to x)))
695 ;; This should not happen.
696 (t (maxima::to x
)))))
698 (defun hypergeometric-poly-case (a b x
)
699 (let ((n nil
) (z 1) (s 1) (p) (q) (cf 1))
701 ;; Determine how many terms to sum
702 (cond ((and ($taylorp x
) (eql 0 ($second
($first
($taylorinfo x
))))
703 (integerp ($third
($first
($taylorinfo x
)))))
704 (setq n
($third
($first
($taylorinfo x
)))))
706 ((some #'(lambda (s) (and (integerp s
) (<= s
0))) a
)
708 (if (and (integerp ak
) (< ak
0)) (setq n
(if (null n
) ak
(max n ak
)))))
712 (if ($ratp x
) (setq s
($rat
1) z
($rat
1)))
714 ;; Expand to a polynomial when n is an integer and either
715 ;; (1) x and each member of a and b are complex numbers,
716 ;; (2) n < $expop or $expand_hypergeometric
717 ;; (3) x is a CRE expression.
719 (if (and (integerp n
) (or (and (complex-number-p x
'$numberp
)
720 (every #'(lambda (s) (complex-number-p s
'$numberp
)) a
)
721 (every #'(lambda (s) (complex-number-p s
'$numberp
)) b
))
722 (or $expand_hypergeometric
(< n $expop
))
725 (setq p
(reduce #'mul
(mapcar #'(lambda (s) (add s k
)) a
)))
726 (setq q
(reduce #'mul
(mapcar #'(lambda (s) (add s k
)) b
)))
728 ;; sigh..Maxima should (I think) return a rectangular form for
729 ;; complex number multiplication and division. But it doesn't. If
730 ;; that changes, delete the next two lines.
732 (setq cf
(mul cf
(div p
(mul q
(+ k
1)))))
733 (if ($constantp cf
) (setq cf
($rectform cf
)))
735 (setq s
(add s
(mul cf z
))))
739 (defun diff-hypergeometric (a b z x
)
740 (cond ((and ($freeof x a
) ($freeof x b
))
743 (let ((p (reduce #'mul a
))
744 (q (reduce #'mul b
)))
745 (setq a
(simplify (cons '(mlist) (mapcar #'(lambda (s) (add 1 s
)) a
))))
746 (setq b
(simplify (cons '(mlist) (mapcar #'(lambda (s) (add 1 s
)) b
))))
747 (mul ($diff z x
) p
(div 1 q
) (take '(%hypergeometric
) a b z
))))
748 (t (merror "Maxima does not know the derivatives of the hypergeometric functions with respect to the parameters"))))
751 ;; TeX hypergeometric([a],[b,c],x) as $$F\left( \begin{bmatrix}a\\b\;\,c\end{bmatrix} ,x\right)$$
752 ;; For no good reason, I'm not so fond of pFq notation. Some newer references don't use
755 (defprop %hypergeometric tex-hypergeometric tex
)
757 (defun tex-hypergeometric (x l r
)
758 (let ((p) (q) (wide-space ",\\;"))
759 (setq p
(tex-list (margs (cadr x
)) nil nil wide-space
))
760 (setq q
(tex-list (margs (caddr x
)) nil nil wide-space
))
761 (setq p
`(,@l
"F\\left( \\left. \\begin{array}{c}" ,@p
"\\\\" ,@q
"\\end{array} \\right |,"))
762 (tex (fourth x
) p
`("\\right)" ,@r
) 'mparen
'mparen
)))
764 ;; Integral of hypergeometric(a,b,z)
766 ;; Integrals and Series: Volume 3, More Special Functions
767 ;; Prudnikov, A. P., Brychkov, Yu A., Gould, G. G., Marichev, O.I.
771 ;; I pFq((a_p);(b_q);c z) dz
775 ;; = z (p+1)F(q+1)((a_p),1;(b_q),2;c z) 1.16.1.2
777 ;; product((b_q - 1))
778 ;; = ------------------ pFq((a_p)-1; (b_q)-1; c z) 1.16.1.3
779 ;; product((a_p - 1))
781 (defun hyp-integral-3 (a b z
)
782 "Integral of hypergeometric(a,b,z) wrt z"
783 (let* (($listarith t
)
786 (prod_b-1 (reduce #'mul
(margs b-1
)))
787 (prod_a-1 (reduce #'mul
(margs a-1
))))
789 (mul z
(take '(%hypergeometric
) (append a
'(1)) (append b
'(2)) z
))
790 (mul prod_b-1
(inv prod_a-1
) (take '(%hypergeometric
) a-1 b-1 z
)))))
792 (putprop '%hypergeometric
`((a b z
) nil nil
,'hyp-integral-3
) 'integral
)