Add mathjax for dlange
[maxima.git] / src / rat3d.lisp
blobd91df4b27062749cde89dc9239b5af8e869f71f6
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module rat3d)
15 ;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 4.
16 ;; IT INCLUDES THE POLYNOMIAL FACTORING ROUTINES.
18 (declare-top (special *odr* *checkagain))
20 (defmvar *irreds nil)
22 (defmvar $berlefact t)
24 (defmvar $factor_max_degree_print_warning t
25 "Print a warning message when a polynomial is not factored because its
26 degree is larger than $factor_max_degree?"
27 boolean)
29 (defun listovars (q)
30 (cond ((pcoefp q) nil)
31 (t (let ((ans nil))
32 (declare (special ans))
33 (listovars0 q)))))
35 (defun listovars0 (q)
36 (declare (special ans))
37 (cond ((pcoefp q) ans)
38 ((member (car q) ans :test #'eq) (listovars1 (cdr q)))
39 (t (push (car q) ans)
40 (listovars1 (cdr q)))))
42 (defun listovars1 (ql)
43 (declare (special ans))
44 (cond ((null ql) ans)
45 (t (listovars0 (cadr ql)) (listovars1 (cddr ql)))))
47 (defun dontfactor (y)
48 (cond ((or (null $dontfactor) (equal $dontfactor '((mlist)))) nil)
49 ((memalike (pdis (make-poly y)) $dontfactor) t)))
51 (defun removealg (l)
52 (loop for var in l
53 unless (algv var) collect var))
55 (defun degvecdisrep (degl)
56 (do ((l degl (cdr l))
57 (gv genvar (cdr gv))
58 (ans 1))
59 ((null l) ans)
60 (and (> (car l) 0)
61 (setq ans (list (car gv) (car l) ans)))))
63 (defun ptermcont (p)
64 (let ((tcont (degvecdisrep (pmindegvec p)))
65 ($algebraic))
66 (list tcont (pquotient p tcont))))
68 (defun pmindegvec (p)
69 (minlist (let ((*odr* (putodr (reverse genvar)))
70 (nn* (1+ (length genvar)))
71 (*min* t))
72 (degvector nil 1 p))))
74 (defun pdegreevector (p)
75 (maxlist (let ((*odr* (putodr (reverse genvar)))
76 (nn* (1+ (length genvar)))
77 (*mx* t))
78 (degvector nil 1 p))))
80 (defun maxlist(l) (maxminl l t))
82 (defun minlist(l) (maxminl l nil))
84 (defun maxminl (l switch)
85 (do ((l1 (copy-list (car l)))
86 (ll (cdr l) (cdr ll)))
87 ((null ll) l1)
88 (do ((v1 l1 (cdr v1))
89 (v2 (car ll) (cdr v2)))
90 ((null v1))
91 (cond (switch
92 (cond ((> (car v2) (car v1))
93 (rplaca v1 (car v2)))))
94 (t (cond ((< (car v2) (car v1))
95 (rplaca v1 (car v2)))))))))
97 (defun quick-sqfr-check (p var)
98 (let ((gv (delete var (listovars p) :test #'equal))
99 (modulus (or modulus *alpha))
100 (l) (p0))
101 (if $algebraic (setq gv (removealg gv)))
102 (and gv
103 (not (pzerop (pcsubsty (setq l (rand (length gv) modulus))
104 gv (pmod (p-lc p)))))
105 (not (pcoefp (setq p0 (pcsubsty l gv (pmod p)))))
106 (pcoefp (pgcd p0 (pderivative p0 (car p0))))
107 (list l gv p0))))
109 (defun monom->facl (p)
110 (cond ((pcoefp p) (if (equal p 1) nil (list p 1)))
111 (t (list* (pget (car p)) (cadr p) (monom->facl (caddr p))))))
113 (defun psqfr (p)
114 (prog (r varl var mult factors)
115 (cond ((pcoefp p) (return (cfactor p)))
116 ((pminusp p) (return (cons -1 (cons 1 (psqfr (pminus p)))))))
117 (desetq (factors p) (ptermcont p))
118 (setq factors (monom->facl factors))
119 (cond ((pcoefp p) (go end)))
120 (setq varl (sort (listovars p) 'pointergp))
121 setvar
122 (setq var (car varl) varl (cdr varl) mult 0)
123 (cond ((pointergp var (car p)) (go nextvar))
124 ((dontfactor var)
125 (setq factors (cons p (cons 1 factors))
126 p 1)
127 (go end)))
128 (cond ((quick-sqfr-check p var) ;QUICK SQFR CHECK BY SUBST.
129 (setq r (oldcontent p))
130 (setq p (car r) factors (cons (cadr r)
131 (cons 1 factors)))
132 (go nextvar)))
133 (setq r (pderivative p var))
134 (cond ((pzerop r) (go nextvar)))
135 (cond ((and modulus (not (pcoefp r))) (pmonicize (cdr r))))
136 (setq p (pgcdcofacts p r))
137 (and algfac* (cadddr p) (setq adn* (ptimes adn* (cadddr p))))
138 (setq r (cadr p) ; PRODUCT OF P[I]
139 p (car p))
140 a (setq r (pgcdcofacts r p)
141 p (caddr r)
142 mult (1+ mult))
143 (and algfac* (cadddr r) (setq adn* (ptimes adn* (cadddr r))))
144 (cond ((not (pcoefp (cadr r)))
145 (setq factors
146 (cons (cadr r)
147 (cons mult factors)))))
148 (cond ((not (pcoefp (setq r (car r)))) (go a)))
149 nextvar
150 (cond ((pcoefp p) (go end))
151 (varl (go setvar))
152 (modulus (setq factors (append (fixmult (psqfr (pmodroot p))
153 modulus)
154 factors))
155 (setq p 1)))
156 end (setq p (cond ((equal 1 p) nil)
157 (t (cfactor p))))
158 (return (append p factors))))
160 (defun fixmult (l n)
161 (do ((l l (cddr l)))
162 ((null l))
163 (rplaca (cdr l) (* n (cadr l))))
166 (defun pmodroot (p)
167 (cond ((pcoefp p) p)
168 ((alg p) (pexpt p (expt modulus (1- (car (alg p))))))
169 (t (cons (car p) (pmodroot1 (cdr p))))))
171 (defun pmodroot1 (x)
172 (cond ((null x) x)
173 (t (cons (truncate (car x) modulus)
174 (cons (pmodroot (cadr x))
175 (pmodroot1 (cddr x)))))))
177 (defun savefactors (l)
178 (when $savefactors
179 (savefactor1 (car l))
180 (savefactor1 (cdr l)))
183 (defun savefactor1 (p)
184 (unless (or (pcoefp p)
185 (ptzerop (p-red p))
186 (member p *checkfactors* :test #'equal))
187 (push p *checkfactors*)))
189 (defun heurtrial1 (poly facs)
190 (prog (h j)
191 (setq h (pdegreevector poly))
192 (cond ((or (member 1 h :test #'equal) (member 2 h :test #'equal)) (return (list poly))))
193 (cond ((null facs) (return (list poly))))
194 (setq h (pgcd poly (car facs)))
195 (return (cond ((pcoefp h) (heurtrial1 poly (cdr facs)))
196 ((pcoefp (setq j (pquotient poly h)))
197 (heurtrial1 poly (cdr facs)))
198 (t (heurtrial (list h j) (cdr facs)))))))
200 (defun heurtrial (x facs)
201 (cond ((null x) nil)
202 (t (nconc (heurtrial1 (car x) facs)
203 (heurtrial (cdr x) facs)))))
206 (defun pfactorquad (p)
207 (prog (a b c d $dontfactor l v)
208 (cond((or (onevarp p)(equal modulus 2))(return (list p))))
209 (setq l (pdegreevector p))
210 (cond ((not (member 2 l :test #'equal)) (return (list p))))
211 (setq l (nreverse l) v (reverse genvar)) ;FIND MOST MAIN VAR
212 loop (cond ((equal (car l) 2) (setq v (car v)))
213 (t (setq l (cdr l)) (setq v (cdr v)) (go loop)))
214 (desetq (a . c) (bothprodcoef (make-poly v 2 1) p))
215 (desetq (b . c) (bothprodcoef (make-poly v 1 1) c))
216 (setq d (pgcd (pgcd a b) c))
217 (cond ((pcoefp d) nil)
218 (t (setq *irreds (nconc *irreds (pfactor1 d)))
219 (return (pfactorquad (pquotient p d)))))
220 (setq d (pplus (pexpt b 2) (ptimes -4 (ptimes a c))))
221 (return
222 (cond ((setq c (pnthrootp d 2))
223 (setq d (ratreduce (pplus b c) (ptimes 2 a)))
224 (setq d (pabs (pplus (ptimes (make-poly v) (cdr d))
225 (car d))))
226 (setq *irreds (nconc *irreds (list d (pquotient p d))))
227 nil)
228 (modulus (list p)) ;NEED TO TAKE SQRT(INT. MOD P) LCF.
229 (t (setq *irreds (nconc *irreds (list p)))nil)))))
231 (defmfun $isqrt (x) ($inrt x 2))
233 (defmfun $inrt (x n)
234 (cond ((not (integerp (setq x (mratcheck x))))
235 (cond ((equal n 2) (list '($isqrt) x)) (t (list '($inrt) x n))))
236 ((zerop x) x)
237 ((not (integerp (setq n (mratcheck n)))) (list '($inrt) x n))
238 (t (car (iroot (abs x) n)))))
240 (defun iroot (a n) ; computes a^(1/n) see Fitch, SIGSAM Bull Nov 74
241 (cond ((< (integer-length a) n) (list 1 (1- a)))
242 (t ;assumes integer a>0 n>=2
243 (do ((x (expt 2 (1+ (truncate (integer-length a) n)))
244 (- x (truncate (+ n1 bk) n)))
245 (n1 (1- n)) (xn) (bk))
246 (nil)
247 (cond ((signp le (setq bk (- x (truncate a (setq xn (expt x n1))))))
248 (return (list x (- a (* x xn))))))))))
250 (defmfun $nthroot (p n)
251 (if (and (integerp n) (> n 0))
252 (let ((k (pnthrootp (cadr ($rat p)) n)))
253 (if k (pdis k) (merror (intl:gettext "nthroot: ~M is not a ~M power") p (format nil "~:r" n))))
254 (merror (intl::gettext "nthroot: ~M is not a positive integer") n)))
256 (defun pnthrootp (p n)
257 (ignore-rat-err (pnthroot p n)))
259 (defun pnthroot (poly n)
260 (cond ((equal n 1) poly)
261 ((pcoefp poly) (cnthroot poly n))
262 (t (let* ((var (p-var poly))
263 (ans (make-poly var (cquotient (p-le poly) n)
264 (pnthroot (p-lc poly) n)))
265 (ae (p-terms (pquotient (pctimes n (leadterm poly)) ans))))
266 (do ((p (psimp var (p-red poly))
267 (pdifference poly (pexpt ans n))))
268 ((pzerop p) ans)
269 (cond ((or (pcoefp p) (not (eq (p-var p) var))
270 (> (car ae) (p-le p)))
271 (rat-error "pnthroot error (should have been caught)")))
272 (setq ans (nconc ans (ptptquotient (cdr (leadterm p)) ae)))
273 )))))
275 (defun cnthroot(c n)
276 (cond ((minusp c)
277 (cond ((oddp n) (- (cnthroot (- c) n)))
278 (t (rat-error "cnthroot error (should have been caught"))))
279 ((zerop c) c)
280 ((zerop (cadr (setq c (iroot c n)))) (car c))
281 (t (rat-error "cnthroot error2 (should have been caught"))))
284 (defun pabs (x) (cond ((pminusp x) (pminus x)) (t x)))
286 (defun pfactorlin (p l)
287 (do ((degl l (cdr degl))
288 (v genvar (cdr v))
289 (a)(b))
290 ((null degl) nil)
291 (cond ((and (= (car degl) 1)
292 (not (algv (car v))))
293 (desetq (a . b) (bothprodcoef (make-poly (car v)) p))
294 (setq a (pgcd a b))
295 (return (cons (pquotientchk p a)
296 (cond ((equal a 1) nil)
297 (t (pfactor1 a)))))))))
300 (defun ffactor (l fn &aux (*alpha* *alpha*))
301 ;; (declare (special varlist)) ;i suppose...
302 (prog (q)
303 (cond ((and (null $factorflag) (mnump l)) (return l))
304 ((or (atom l) algfac* modulus) nil)
305 ((and (not gauss)(member 'irreducible (cdar l) :test #'eq))(return l))
306 ((and gauss (member 'irreducibleg (cdar l) :test #'eq)) (return l))
307 ((and (not gauss)(member 'factored (cdar l) :test #'eq))(return l))
308 ((and gauss (member 'gfactored (cdar l) :test #'eq)) (return l)))
309 (newvar l)
310 (if algfac* (setq varlist (cons *alpha* (remove *alpha* varlist :test #'equal))))
311 (setq q (ratrep* l))
312 (when algfac*
313 (setq *alpha* (cadr (ratrep* *alpha*)))
314 (setq minpoly* (subst (car (last genvar))
315 (car minpoly*)
316 minpoly*)))
317 (mapc #'(lambda (y z) (putprop y z (quote disrep)))
318 genvar
319 varlist)
320 (return (retfactor (cdr q) fn l))))
322 (defun factorout1 (l p)
323 (do ((gv genvar (cdr gv))
324 (dl l (cdr dl))
325 (ans))
326 ((null dl) (list ans p))
327 (cond ((zerop (car dl)))
328 (t (setq ans (cons (pget (car gv)) (cons (car dl) ans))
329 p (pquotient p (list (car gv) (car dl) 1)))))))
331 (defun factorout (p)
332 (cond ((and (pcoefp (ptterm (cdr p) 0))
333 (not (zerop (ptterm (cdr p) 0))))
334 (list nil p))
335 (t (factorout1 (pmindegvec p) p))))
337 (defun pfactor (p &aux ($algebraic algfac*))
338 (cond ((pcoefp p) (cfactor p))
339 ($ratfac (pfacprod p))
340 (t (setq p (factorout p))
341 (cond ((equal (cadr p) 1) (car p))
342 ((numberp (cadr p)) (append (cfactor (cadr p)) (car p)))
343 (t (let ((cont (cond (modulus (list (leadalgcoef (cadr p)) (monize (cadr p))))
344 (algfac* (algcontent (cadr p)))
345 (t (pcontent (cadr p))))))
346 (nconc
347 (cond ((equal (car cont) 1) nil)
348 (algfac*
349 (cond (modulus (list (car cont) 1))
350 ((equal (car cont) '(1 . 1)) nil)
351 ((equal (cdar cont) 1) (list (caar cont) 1))
352 (t (list (caar cont) 1 (cdar cont) -1))))
353 (t (cfactor (car cont))))
354 (pfactor11 (psqfr (cadr cont)))
355 (car p))))))))
357 (defun pfactor11 (p)
358 (cond ((null p) nil)
359 ((numberp (car p))
360 (cons (car p) (cons (cadr p) (pfactor11 (cddr p)))))
361 (t (let* ((adn* 1)
362 (f (pfactor1 (car p))))
363 (nconc (if (equal adn* 1) nil
364 (list adn* (- (cadr p))))
365 (do ((l f (cdr l))
366 (ans nil (cons (car l) (cons (cadr p) ans))))
367 ((null l) ans))
368 (pfactor11 (cddr p)))))))
370 (defun pfactor1 (p) ;ASSUMES P SQFR
371 (prog (factors *irreds *checkagain)
372 (cond ((dontfactor (car p)) (return (list p)))
373 ((and (not (zerop $factor_max_degree)) (> (apply 'max (pdegreevector p)) $factor_max_degree))
374 (when $factor_max_degree_print_warning
375 (mtell (intl:gettext "Refusing to factor polynomial ~M because its degree exceeds factor_max_degree (~M)~%") (pdis p) $factor_max_degree))
376 (return (list p)))
377 ((onevarp p)
378 (cond ((setq factors (factxn+-1 p))
379 (if (and (not modulus)
380 (or gauss (not algfac*)))
381 (setq *irreds factors
382 factors nil))
383 (go out))
384 ((and (not algfac*) (not modulus)
385 (not (equal (cadr p) 2)) (estcheck (cdr p)))
386 (return (list p))))))
387 (and (setq factors (pfactorlin p (pdegreevector p)))
388 (return factors))
389 (setq factors(if (or algfac* modulus) (list p) ;SQRT(NUM. CONT OF DISC)
390 (pfactorquad p)))
391 (cond ((null factors)(go out)))
392 (when *checkfactors*
393 (setq factors (heurtrial factors *checkfactors*))
394 (setq *checkagain (cdr factors)))
395 out (return (nconc *irreds (mapcan (function pfactorany) factors)))))
397 (defmvar $homog_hack nil) ; If T tries to eliminate homogeneous vars.
399 (declare-top (special *hvar *hmat))
401 (defun pfactorany (p)
402 (cond (*checkagain (let (*checkfactors*) (pfactor1 p)))
403 ((and $homog_hack (not algfac*) (not (onevarp p)))
404 (let ($homog_hack *hvar *hmat)
405 (mapcar #'hexpand (pfactor (hreduce p)))))
406 ($berlefact (factor1972 p))
407 (t (pkroneck p))))
410 (defun retfactor (x fn l &aux (a (ratfact x fn)))
411 (prog ()
412 b (cond ((null (cddr a))
413 (setq a (retfactor1 (car a) (cadr a)))
414 (return (cond ((and scanmapp (not (atom a)) (not (atom l))
415 (eq (caar a) (caar l)))
416 (tagirr l))
417 (t a))))
418 ((equal (car a) 1) (setq a (cddr a)) (go b))
419 (t (setq a (map2c #'retfactor1 a))
420 (return (cond ((member 0 a) 0)
421 (t (setq a (let (($expop 0) ($expon 0)
422 $negdistrib)
423 (muln (sortgreat a) t)))
424 (cond ((not (mtimesp a)) a)
425 (t (cons '(mtimes simp factored)
426 (cdr a)))))))))))
428 ;;; FOR LISTS OF ARBITRARY EXPRESSIONS
429 (defun retfactor1 (p e)
430 (power (tagirr (simplify (pdisrep p))) e))
432 (defun tagirr (x)
433 (cond ((or (atom x) (member 'irreducible (cdar x) :test #'eq)) x)
434 (t (cons (append (car x) '(irreducible)) (cdr x)))))
436 (defun revsign (x)
437 (cond ((null x) nil)
438 (t (cons (car x)
439 (cons (- (cadr x)) (revsign (cddr x)))))))
441 ;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 4