Rename *ll* and *ul* to ll and ul in defint
[maxima.git] / share / bernstein / bernstein.lisp
blobe665c3b59d5f3c249cf6d838722f37bc7b94a8d2
1 ;; Author Barton Willis
2 ;; University of Nebraska at Kearney
3 ;; Copyright (C) 2011,2021 Barton Willis
5 ;; This program is free software; you can redistribute it and/or modify
6 ;; it under the terms of the GNU General Public License as published by
7 ;; the Free Software Foundation; either version 2 of the License, or
8 ;; (at your option) any later version.
10 ;; This program is distributed in the hope that it will be useful,
11 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;; GNU General Public License for more details.
15 (in-package :maxima)
17 ($load "bernstein_utilities.mac")
19 ;; When bernstein_explicit is non-nil, bernstein_poly(k,n,x) simplifies to
20 ;; binomial(n,k) * x^k (1-x)^(n-k) regardless of the values of k or n;
22 (defmvar $bernstein_explicit nil)
24 ;; numerical (complex rational, float, or big float) evaluation of bernstein polynomials
25 (in-package #:bigfloat)
27 (defun bernstein-poly (k n x)
28 (* (to (maxima::opcons 'maxima::%binomial n k)) (expt x k) (expt (- 1 x) (- n k))))
30 (in-package :maxima)
32 (defun $bernstein_poly (k n x) (simplify (list '(%bernstein_poly) k n x)))
33 (defprop $bernstein_poly %bernstein_poly alias)
34 (defprop $bernstein_poly %bernstein_poly verb)
35 (defprop %bernstein_poly $bernstein_poly reversealias)
36 (defprop %bernstein_poly $bernstein_poly noun)
38 (setf (get '%bernstein_poly 'conjugate-function)
39 #'(lambda (e)
40 (let ((k (car e))
41 (n (cadr e))
42 (x (caddr e)))
43 (if (and ($featurep k '$integer) ($featurep n '$integer))
44 (opcons '%bernstein_poly k n (opcons '$conjugate x))
45 (list (list '$conjugate 'simp) (take '(%bernstein_poly) k n x))))))
47 ;; integrate(bernstein_poly(k,n,x),x) = hypergeometric([k+1,k-n],[k+2],x)*x^(k+1)/(k+1)
49 (defun bernstein-integral (k n x)
50 (div
51 (mul
52 (opcons '%binomial n k)
53 (opcons 'mexpt x (add 1 k))
54 (opcons '%hypergeometric
55 (opcons 'mlist (add 1 k) (sub k n))
56 (opcons 'mlist (add 2 k))
57 x))
58 (add 1 k)))
60 (putprop '%bernstein_poly `((k n x) nil nil ,'bernstein-integral) 'integral)
61 (putprop '$bernstein_poly `((k n x) nil nil ,'bernstein-integral) 'integral)
63 (defun bernstein-poly-simp (e y z)
64 (declare (ignore y))
65 (let* ((fn (car (pop e)))
66 (k (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
67 (n (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
68 (x (if (consp e) (simpcheck (pop e) z) (wna-err fn))))
69 (if (consp e) (wna-err fn))
70 (cond ((and (integerp k) (integerp n) (>= k 0) (>= n k)
71 (complex-number-p x #'(lambda (s) (or (integerp s) ($ratnump s) (floatp s) ($bfloatp s)))))
72 (maxima::to (bigfloat::bernstein-poly (bigfloat::to k) (bigfloat::to n) (bigfloat::to x))))
74 ((zerop1 x) (opcons '%kron_delta k 0))
76 ((onep1 x) (opcons '%kron_delta k n))
78 ((or $bernstein_explicit (and (integerp k) (integerp n)))
79 (if (and (integerp k) (integerp n) (or (< k 0) (> k n))) (mul 0 x)
80 (mul (opcons '%binomial n k) (opcons 'mexpt x k) (opcons 'mexpt (sub 1 x) (sub n k)))))
82 (t (list (list fn 'simp) k n x)))))
84 (setf (get '%bernstein_poly 'operators) 'bernstein-poly-simp)
86 (defprop %bernstein_poly
87 ((k n x)
89 ((mtimes) ((%bernstein_poly) k n x)
90 ((mplus)
91 ((mtimes) -1
92 ((mqapply) (($psi array) 0) ((mplus) 1 k)))
93 ((mqapply) (($psi array) 0)
94 ((mplus) 1 ((mtimes) -1 k) n))
95 ((mtimes) -1
96 ((%log) ((mplus) 1 ((mtimes) -1 x))))
97 ((%log) x)))
99 ((mtimes)((%bernstein_poly) k n x)
100 ((mplus)
101 ((mqapply) (($psi array) 0) ((mplus) 1 n))
102 ((mtimes) -1
103 ((mqapply) (($psi array) 0)
104 ((mplus) 1 ((mtimes) -1 k) n)))
105 ((%log) ((mplus) 1 ((mtimes) -1 x)))))
107 ((mtimes)
108 ((mplus)
109 ((%bernstein_poly) ((mplus) -1 k) ((mplus) -1 n) x)
110 ((mtimes) -1
111 ((%bernstein_poly) k ((mplus) -1 n) x))) n))
112 grad)
114 (defun $bernstein_approx (e vars n)
115 (if (not ($listp vars)) (merror "The second argument to bernstein_approx must be a list"))
117 (setq vars (margs vars))
118 (if (some #'(lambda (s) (not ($mapatom s))) vars)
119 (merror "The second argument to bernstein_approx must be a list of atoms"))
121 (if (or (not (integerp n)) (< n 1)) (merror "The third argument to bernstein_approx must be a positive integer"))
123 (let* ((k (length vars))
124 (d (make-list k :initial-element 0))
125 (nn (make-list k :initial-element n))
126 (carry) (acc 0) (m) (x))
128 (setq m (expt (+ n 1) k))
129 (setq nn (cons '(mlist) nn))
130 (dotimes (i m)
131 (setq acc (add acc
132 (mul
133 (opcons '%multibernstein_poly (cons '(mlist) d) nn (cons '(mlist) vars))
134 ($substitute (cons '(mlist) (mapcar #'(lambda (s x) (opcons 'mequal x (div s n))) d vars)) e))))
135 (setq carry 1)
136 (dotimes (j k)
137 (setq x (+ carry (nth j d)))
138 (if (> x n) (setq x 0 carry 1) (setq carry 0))
139 (setf (nth j d) x)))
140 acc))
142 (defun $multibernstein_poly (k n x) (simplify (list '(%multibernstein_poly) k n x)))
143 (defprop $multibernstein_poly %multibernstein_poly alias)
144 (defprop $multibernstein_poly %multibernstein_poly verb)
145 (defprop %multibernstein_poly $multibernstein_poly reversealias)
146 (defprop %multibernstein_poly $multibernstein_poly noun)
148 (defun multi-bernstein-poly-simp (e y z)
149 (declare (ignore y))
150 (let*
151 ((fn (car (pop e)))
152 (k (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
153 (n (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
154 (x (if (consp e) (simpcheck (pop e) z) (wna-err fn))))
155 (if (consp e) (wna-err fn))
157 (if (or (not (and ($listp k) ($listp n) ($listp x))) (/= ($length k) ($length n)) (/= ($length n) ($length x)))
158 (merror "Each argument to multibernstein_poly must be an equal length list"))
160 (muln (mapcar #'(lambda (a b z) (opcons '%bernstein_poly a b z)) (margs k) (margs n) (margs x)) t)))
162 (setf (get '%multibernstein_poly 'operators) 'multi-bernstein-poly-simp)