descriptive.mac: declare local variable to avoid possibility of name collision.
[maxima.git] / src / result.lisp
blob8b09a4e798af04f33f714b0852729e1c8ca8f270
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module result)
15 (declare-top (special xv))
17 (load-macsyma-macros ratmac)
19 (defmfun $poly_discriminant (poly var)
20 (let* ((varlist (list var))
21 ($ratfac nil)
22 (genvar ())
23 (rform (rform poly))
24 (rvar (car (last genvar)))
25 (n (pdegree (setq poly (car rform)) rvar)))
27 (cond ((= n 1) 1)
28 ((or (= n 0) (not (atom (cdr rform))))
29 (merror (intl:gettext "poly_discriminant: first argument must be a polynomial in ~:M; found: ~M") var poly))
30 (t (pdis (presign
31 (ash (* n (1- n)) -1)
32 (pquotient (resultant poly (pderivative poly rvar))
33 (p-lc poly))))))))
35 (defmfun $resultant (a b mainvar)
36 (let ((varlist (list mainvar)) (genvar nil)
37 ($ratfac t) ($keepfloat nil)
38 formflag res (ans 1))
39 (when ($ratp a) (setf a ($ratdisrep a) formflag t))
40 (when ($ratp b) (setf b ($ratdisrep b) formflag t))
41 (newvar a)
42 (newvar b)
43 (setq a (lmake2 (cadr (ratrep* a)) nil))
44 (setq b (lmake2 (cadr (ratrep* b)) nil))
45 (setq mainvar (caadr (ratrep* mainvar)))
47 (dolist (a-term a)
48 (dolist (b-term b)
49 (setq res (result1 (car a-term) (car b-term) mainvar))
50 (setq ans (ptimes ans
51 (pexpt
52 (if (zerop (third res))
53 (first res)
54 (ptimeschk (first res)
55 (pexpt (makprod (second res) nil)
56 (third res))))
57 (* (cdr a-term) (cdr b-term)))))))
59 (if formflag (pdis* ans) (pdis ans))))
61 (defun result1 (p1 p2 var)
62 (cond ((or (pcoefp p1) (pointergp var (car p1)))
63 (list 1 p1 (pdegree p2 var)))
64 ((or (pcoefp p2) (pointergp var (car p2)))
65 (list 1 p2 (pdegree p1 var)))
66 ((null (cdddr p1))
67 (cond ((null (cdddr p2)) (list 0 0 1))
68 (t (list (pexpt (caddr p1) (cadr p2))
69 (pcsubsty 0 var p2)
70 (cadr p1)))))
71 ((null (cdddr p2))
72 (list (pexpt (caddr p2) (cadr p1))
73 (pcsubsty 0 var p1)
74 (cadr p2)))
75 ((> (setq var (gcd (pgcdexpon p1) (pgcdexpon p2))) 1)
76 (list 1 (resultant (pexpon*// p1 var nil)
77 (pexpon*// p2 var nil)) var))
78 (t (list 1 (resultant p1 p2) 1))))
80 ;; FIXME: This doesn't seem to be used anywhere.
81 (defvar *resultlist '($subres $mod $red))
83 (defun resultant (p1 p2) ;assumes same main var
84 (if (> (p-le p2) (p-le p1))
85 (presign (* (p-le p1) (p-le p2)) (resultant p2 p1))
86 (case $resultant
87 ($subres (subresult p1 p2))
88 #+broken ($mod (modresult p1 p2))
89 ($red (redresult p1 p2))
90 (t (merror (intl:gettext "resultant: no such algorithm: ~M") $resultant)))))
92 (defun presign (n p)
93 (if (oddp n) (pminus p) p))
95 ;; Computes resultant using subresultant PRS. See Brown, "The Subresultant PRS
96 ;; Algorithm" (TOMS Sept. 1978). This is Algorithm 1, as found on page 241.
98 ;; This routine will not work if the coefficients contain hidden copies of the
99 ;; main polynomial variable. For example, if P is x*sqrt(x^2-1) + 2 then, when
100 ;; encoded as a polynomial in x, it appears as x*c + 2 for some (opaque)
101 ;; c. While doing the PRS calculation, the SUBRESULT code will square c, causing
102 ;; extra x's to appear and making the degree of polynomials derived from P
103 ;; behave erratically. The code might error or, worse, return a wrong result.
105 ;; Write G[1] = P, G[2] = Q and write g[i] for the leading coefficient of
106 ;; G[i]. On the k'th iteration of the loop, we are computing G[k+2], which is
107 ;; given by the formula
109 ;; G[k+2] = (-1)^(delta[k]+1) prem(G[k], G[k+1]) / (g[k] h[k]^delta[k])
111 ;; except we set the denominator to 1 when k=1. Here, h[2] = g[2]^delta[1] and,
112 ;; for i >= 3, satisfies the recurrence:
114 ;; h[i] = g[i]^delta[i-1] h[i-1]^(1 - delta[i-1])
116 ;; Here, delta[i] = deg(G[i]) - deg(G[i+1]), which is non-negative.
118 ;; Dictionary between program variables and values computed by the algorithm:
120 ;; - g is set to g[i-2]
121 ;; - h is set to g[i-2]^d / "h^1-d"
123 ;; Since d and h^1-d haven't yet been set on this iteration, they get their
124 ;; previous values, which turn out to give:
126 ;; - h is set to g[i-2]^delta[i-3] h[i-3]^[1-delta[i-3]] which, substituting
127 ;; above, is h[i-2].
129 ;; Continuing:
131 ;; - degq is set to deg(G[i-1])
132 ;; - d is set to delta[i-2]
133 ;; - h^1-d is (confusingly!) set to h[i-2]^(delta[i-2] - 1).
135 (defun subresult (p q)
136 (loop for g = 1 then (p-lc p)
137 for h = 1 then (pquotient (pexpt g d) h^1-d)
138 for degq = (pdegree q (p-var p))
139 for d = (- (p-le p) degq)
140 for h^1-d = (if (equal h 1) 1 (pexpt h (1- d)))
141 if (zerop degq) return (if (pzerop q) q (pquotient (pexpt q d) h^1-d))
142 do (psetq p q
143 q (presign (1+ d) (pquotient (prem p q)
144 (ptimes g (ptimes h h^1-d)))))))
146 ;; PACKAGE FOR CALCULATING MULTIVARIATE POLYNOMIAL RESULTANTS
147 ;; USING MODIFIED REDUCED P.R.S.
149 (defun redresult (u v)
150 (prog (a r sigma c)
151 (setq a 1)
152 (setq sigma 0)
153 (setq c 1)
154 a (if (pzerop (setq r (prem u v))) (return (pzero)))
155 (setq c (ptimeschk c (pexpt (p-lc v)
156 (* (- (p-le u) (p-le v))
157 (- (p-le v) (pdegree r (p-var u))
158 1)))))
159 (setq sigma (+ sigma (* (p-le u) (p-le v))))
160 (if (zerop (pdegree r (p-var u)))
161 (return
162 (presign sigma
163 (pquotient (pexpt (pquotientchk r a) (p-le v)) c))))
164 (psetq u v
165 v (pquotientchk r a)
166 a (pexpt (p-lc v) (+ (p-le u) 1 (- (p-le v)))))
167 (go a)))
170 ;; PACKAGE FOR CALCULATING MULTIVARIATE POLYNOMIAL RESULTANTS
171 ;; USING MODULAR AND EVALUATION HOMOMORPHISMS.
172 ;; modresultant fails on the following example
173 ;;RESULTANT(((-4)*Z)^4+(Y+8*Z)^4+(X-5*Z)^4-1,
174 ;; ((-4)*Z)^4-(X-5*Z)^3*((-4)*Z)^3+(Y+8*Z)^3*((-4)*Z)^2
175 ;; +(-2)*(Y+8*Z)^4+((-4)*Z)^4+1,Z)
177 #+broken
178 (progn
179 (defun modresult (a b)
180 (modresult1 a b (sort (union* (listovars a) (listovars b))
181 (function pointergp))))
183 (defun modresult1 (x y varl)
184 (cond ((null modulus) (pres x y (car varl) (cdr varl)))
185 (t (cpres x y (car varl) (cdr varl))) ))
187 (defun pres (a b xr1 varl)
188 (prog (m n f a* b* c* p q c modulus)
189 (setq m (cadr a))
190 (setq n (cadr b))
191 (setq f (coefbound m n (maxnorm (cdr a)) (maxnorm (cdr b)) ))
192 (setq q 1)
193 (setq c 0)
194 (setq p *alpha)
195 (go step3)
196 step2 (setq p (newprime p))
197 step3 (set-modulus p)
198 (setq a* (pmod a))
199 (setq b* (pmod b))
200 (cond ((or (reject a* m xr1) (reject b* n xr1)) (go step2)))
201 (setq c* (cpres a* b* xr1 varl))
202 (set-modulus nil)
203 (setq c (lagrange3 c c* p q))
204 (setq q (* p q))
205 (cond ((> q f) (return c))
206 (t (go step2)) ) ))
208 (defun reject (a m xv)
209 (not (eqn (pdegree a xv) m)))
211 (defun coefbound (m n d e)
212 (* 2 (expt (1+ m) (ash n -1))
213 (expt (1+ n) (ash m -1))
214 (cond ((oddp n) (1+ ($isqrt (1+ m))))
215 (t 1))
216 (cond ((oddp m) (1+ ($isqrt (1+ n))))
217 (t 1))
218 ;; (FACTORIAL (PLUS M N)) USED TO REPLACE PREV. 4 LINES. KNU II P. 375
219 (expt d n)
220 (expt e m) ))
222 (defun main2 (a var exp tot)
223 (cond ((null a) (cons exp tot))
224 (t (main2 (cddr a) var
225 (max (setq var (pdegree (cadr a) var)) exp)
226 (max (+ (car a) var) tot))) ))
228 (defun cpres (a b xr1 varl) ;XR1 IS MAIN VAR WHICH
229 (cond ((null varl) (cpres1 (cdr a) (cdr b))) ;RESULTANT ELIMINATES
230 (t (prog ( m2 ( m1 (cadr a))
231 ( n1 (cadr b)) n2 (k 0) c d a* b* c* bp xv) ;XV IS INTERPOLATED VAR
232 (declare (fixnum m1 n1 k))
234 step2
235 (setq xv (car varl))
236 (setq varl (cdr varl))
237 (setq m2 (main2 (cdr a) xv 0 0)) ;<XV DEG . TOTAL DEG>
238 (setq n2 (main2 (cdr b) xv 0 0))
239 (cond ((zerop (+ (car m2) (car n2)))
240 (cond ((null varl) (return (cpres1 (cdr a) (cdr b))))
241 (t (go step2)) ) ))
242 (setq k (1+ (min (+ (* m1 (car n2)) (* n1 (car m2)))
243 (+ (* m1 (cdr n2)) (* n1 (cdr m2))
244 (- (* m1 n1))) )))
245 (setq c 0)
246 (setq d 1)
247 (setq m2 (car m2) n2 (car n2))
248 (setq bp (- 1))
249 step3
250 (cond ((equal (setq bp (1+ bp)) modulus)
251 (merror "CPRES: resultant primes too small."))
252 ((zerop m2) (setq a* a))
253 (t (setq a* (pcsubst a bp xv))
254 (cond ((reject a* m1 xr1)(go step3)) )) )
255 (cond ((zerop n2) (setq b* b))
256 (t (setq b* (pcsubst b bp xv))
257 (cond ((reject b* n1 xr1) (go step3))) ))
258 (setq c* (cpres a* b* xr1 varl))
259 (setq c (lagrange33 c c* d bp))
260 (setq d (ptimeschk d (list xv 1 1 0 (cminus bp))))
261 (cond ((> (cadr d) k) (return c))
262 (t (go step3))))))))
265 ;; *** NOTE THAT MATRIX PRODUCED IS ALWAYS SYMETRIC
266 ;; *** ABOUT THE MINOR DIAGONAL.
268 (defmfun $bezout (p q var)
269 (let ((varlist (list var)) genvar)
270 (newvar p)
271 (newvar q)
272 (setq p (cadr (ratrep* p))
273 q (cadr (ratrep* q)))
274 (setq p (cond ((> (cadr q) (cadr p)) (bezout q p))
275 (t (bezout p q))))
276 (cons '($matrix)
277 (mapcar #'(lambda (l) (cons '(mlist) (mapcar 'pdis l)))
278 p))))
280 (defun vmake (poly n *l)
281 (do ((i (1- n) (1- i))) ((minusp i))
282 (cond ((or (null poly) (< (car poly) i))
283 (setq *l (cons 0 *l)))
284 (t (setq *l (cons (cadr poly) *l))
285 (setq poly (cddr poly)))))
286 (nreverse *l))
288 (defun bezout (p q)
289 (let* ((n (1+ (p-le p)))
290 (n2 (- n (p-le q)))
291 (a (vmake (p-terms p) n nil))
292 (b (vmake (p-terms q) n nil))
293 (ar (reverse (nthcdr n2 a)))
294 (br (reverse (nthcdr n2 b)))
295 (l (make-list n :initial-element 0)))
296 (rplacd (nthcdr (1- (p-le p)) a) nil)
297 (rplacd (nthcdr (1- (p-le p)) b) nil)
298 (nconc
299 (mapcar
300 #'(lambda (ar br)
301 (setq l (mapcar #'(lambda (a b l)
302 (ppluschk l (pdifference
303 (ptimes br a) (ptimes ar b))))
304 a b (cons 0 l))))
305 ar br)
306 (and (pzerop (car b))
307 (do ((b (vmake (cdr q) (cadr p) nil) (rot* b))
308 (m nil (cons b m)))
309 ((not (pzerop (car b))) (cons b m))))) ))
311 (defun rot* (b)
312 (setq b (copy-list b))
313 (prog2
314 (nconc b b)
315 (cdr b)
316 (rplacd b nil)))
319 (defun ppluschk (p q)
320 (cond ((pzerop p) q)
321 (t (pplus p q))))