descriptive.mac: declare local variable to avoid possibility of name collision.
[maxima.git] / src / trgred.lisp
blobdd70e2c272908452731f2301f6a592fb3a1f373d
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module trgred)
15 (declare-top (special var *schatc-ans* *trigred *noexpand *lin))
17 (load-macsyma-macros rzmac)
19 (defvar *trans-list-plus*
20 '((((mplus) ((coeffpt) (c true) ((mexpt) ((%tan) (x true)) 2))
21 (var* (uvar) c))
22 ((mtimes) c ((mexpt) ((%sec) x) 2)))
23 (((mplus) ((coeffpt) (c true) ((mexpt) ((%cot) (x true)) 2))
24 (var* (uvar) c))
25 ((mtimes) c ((mexpt) ((%csc) x) 2)))
26 (((mplus) ((coeffpt) (c true) ((mexpt) ((%tanh) (x true)) 2))
27 ((mtimes) -1 (var* (uvar) c)))
28 ((mtimes) -1 c ((mexpt) ((%sech) x) 2)))
29 (((mplus) ((coeffpt) (c true) ((mexpt) ((%coth) (x true)) 2))
30 ((mtimes) -1 (var* (uvar) c)))
31 ((mtimes) c ((mexpt) ((%csch) x) 2)))))
33 (defvar *triglaws*
34 '(* %sin (* %cot %cos %sec %tan) %cos (* %tan %sin %csc %cot)
35 %tan (* %cos %sin %csc %sec) %cot (* %sin %cos %sec %csc)
36 %sec (* %sin %tan %cot %csc) %csc (* %cos %cot %tan %sec)))
38 (defvar *hyperlaws*
39 '(* %sinh (* %coth %cosh %sech %tanh) %cosh (* %tanh %sinh %csch %coth)
40 %tanh (* %cosh %sinh %csch %sech) %coth (* %sinh %cosh %sech %csch)
41 %sech (* %sinh %tanh %coth %csch) %csch (* %cosh %coth %tanh %sech)))
43 (defvar *sc^ndisp* '((%sin . sin^n) (%cos . cos^n) (%sinh . sinh^n) (%cosh . cosh^n)))
45 (defvar *laws*)
46 (defvar *trigbuckets*)
47 (defvar *hyperbuckets*)
49 ;;The Trigreduce file contains a group of routines which can be used to
50 ;;make trigonometric simplifications of expressions. The bulk of the
51 ;;routines here involve the reductions of products of sin's and cos's.
53 ;; *TRIGRED indicates that the special simplifications for
54 ;; $TRIGREDUCE are to be used.
55 ;; *NOEXPAND indicates that trig functions of sums of
56 ;; angles are not to be used.
58 ;; Without the check for the value of $simp, trigreduce can enter an
59 ;; endless loop--for example trigreduce((-1)*x). There is at least one
60 ;; test in the testsuite that sets simp to false and then needs to compute
61 ;; a limit. But the limit code calls trigreduce and the test fails. The
62 ;; top level check for simp seems like the best way to prevent infinite
63 ;; loops when simp is false.
64 (defmfun ($trigreduce :properties ((evfun t))) (exp &optional (var '*novar))
65 (let ((*trigred t)
66 (*noexpand t)
67 $trigexpand $verbose $ratprint)
68 (declare (special $trigexpand *trigred))
69 (if $simp (gcdred (sp1 exp)) exp)))
71 ;; The first pass in power series expansion (used by $powerseries in
72 ;; series.lisp), but also used by $trigreduce. Expands / reduces the expression
73 ;; E as a function VAR, controlled by the *TRIGRED and *NOEXPAND flags.
74 (defun sp1 (e)
75 (cond
76 ((atom e) e)
78 ;; We recognise some special patterns that are expressed as sums, such as
79 ;; 1+tan(x)^2 => sec(x)^2. Rewrite using the first matching pattern (and
80 ;; recurse to try to simplify further). If no pattern matches, expand each
81 ;; term in the sum.
82 ((eq (caar e) 'mplus)
83 (or (dolist (pair *trans-list-plus*)
84 (let ((match (m2 e (first pair))))
85 (when match
86 (return (sp1 (sch-replace match (second pair)))))))
87 (m+l (mapcar #'sp1 (cdr e)))))
89 ((eq (caar e) 'mtimes)
90 (sp1times e))
92 ((eq (caar e) 'mexpt)
93 (sp1expt (sp1 (cadr e)) (sp1 (caddr e))))
95 ((eq (caar e) '%log)
96 (sp1log (sp1 (cadr e))))
98 ((member (caar e) '(%cos %sin %tan %cot %sec %csc
99 %cosh %sinh %tanh %coth %sech %csch) :test #'eq)
100 (sp1trig (list (car e) (let* ((*noexpand t)) (sp1 (cadr e))))))
102 ((member (caar e) '(%asin %acos %atan %acot %asec %acsc
103 %asinh %acosh %atanh %acoth %asech %acsch) :test #'eq)
104 (sp1atrig (caar e) (let* ((*noexpand t)) (sp1 (cadr e)))))
106 ((eq (caar e) 'mrat) (sp1 (ratdisrep e)))
108 ((mbagp e)
109 (cons (list (caar e)) (mapcar #'(lambda (u)
110 (gcdred (sp1 u)))
111 (cdr e))))
112 ((eq (caar e) '%integrate)
113 (list* '(%integrate) (sp1 (cadr e)) (cddr e)))
115 (t (recur-apply #'sp1 e))))
117 (defun trigfp (e)
118 (or (and (not (atom e)) (trigp (caar e))) (equal e 1)))
120 (defun gcdred (e)
121 (cond ((atom e) e)
122 ((eq (caar e) 'mplus) (m+l (mapcar #'gcdred (cdr e))))
123 ((eq (caar e) 'mtimes)
124 (let* ((nn '(1))
125 (nd '(1))
126 (gcd nil))
127 (do ((e (cdr e) (cdr e)))
128 ((null e)
129 (setq nn (m*l nn) nd (m*l nd)))
130 (cond ((and (mexptp (car e))
131 (or (signp l (caddar e))
132 (and (mtimesp (caddar e))
133 (signp l (cadr (caddar e))))))
134 (setq nd (cons (m^ (cadar e) (m- (caddar e))) nd)))
135 ((ratnump (car e))
136 (setq nn (cons (cadar e) nn)
137 nd (cons (caddar e) nd)))
138 ((setq nn (cons (car e) nn)))))
139 (cond ((equal nd 1) nn)
140 ((equal (setq gcd ($gcd nn nd)) 1) e)
141 ((div* (cadr ($divide nn gcd))
142 (cadr ($divide nd gcd)))))))
143 (t (recur-apply #'gcdred e))))
145 (defun sp1times (e)
146 (let* ((fr nil)
147 (g '(1))
148 (*trigbuckets* nil)
149 (*hyperbuckets* nil)
150 (tr nil)
151 (hyp nil)
152 (*lin '(0)))
153 (dolist (factor (cdr e))
154 (cond ((or (mnump factor)
155 (and (not (eq var '*novar)) (free factor var)))
156 (push factor fr))
157 ((atom factor) (push factor g))
158 ((or (trigfp factor)
159 (and (eq (caar factor) 'mexpt)
160 (trigfp (cadr factor))))
161 (sp1add factor))
163 (push factor g))))
164 (setq g (mapcar #'sp1 g))
166 (mapc #'(lambda (q) (sp1sincos q t)) *trigbuckets*)
167 (mapc #'(lambda (q) (sp1sincos q nil)) *hyperbuckets*)
168 (setq fr (cons (m^ 1//2 (m+l *lin)) fr)
169 *lin nil)
170 (setq tr (cons '* (mapcan #'sp1untrep *trigbuckets*)))
171 (setq g (nconc (sp1tlin tr t) (sp1tplus *lin t) g)
172 *lin nil)
173 (setq hyp (cons '* (mapcan #'sp1untrep *hyperbuckets*)))
174 (setq g (nconc (sp1tlin hyp nil) (sp1tplus *lin nil) g))
175 (setq g ($expand (let* (($keepfloat t))
176 (declare (special $keepfloat))
177 ($ratsimp (cons '(mtimes) g)))))
178 (if (mtimesp g)
179 (setq g (mapcar #'sp1 (cdr g)))
180 (setq g (list (sp1 g))))
181 (m*l (cons 1 (nconc g fr (cdr tr) (cdr hyp))))))
183 (defun sp1tlin (l trig)
184 (cond ((null (cdr l)) nil)
185 ((and (eq (caaadr l) 'mexpt)
186 (integerp (caddr (cadr l)))
187 (member (caaadr (cadr l))
188 (if trig '(%sin %cos) '(%sinh %cosh)) :test #'eq))
189 (cons (funcall (cdr (assoc (caaadr (cadr l)) *sc^ndisp* :test #'eq))
190 (caddr (cadr l)) (cadadr (cadr l)))
191 (sp1tlin (rplacd l (cddr l)) trig)))
192 ((member (caaadr l) (if trig '(%sin %cos) '(%sinh %cosh)) :test #'eq)
193 (push (cadr l) *lin)
194 (sp1tlin (rplacd l (cddr l)) trig))
195 ((sp1tlin (cdr l) trig))))
197 ;; Rewrite a product of sines and cosines as a sum
199 ;; L is a list of sines and cosines. For example, consider the list
201 ;; sin(x), sin(2*x), sin(3*x)
203 ;; This represents the product sin(x)*sin(2*x)*sin(3*x).
205 ;; ANS starts as sin(x). Then for each term in the rest of the list, we multiply
206 ;; the answer that we have found so far by that term. The result will be a sum
207 ;; of sines. In this example, sin(x)*sin(2*x) gives us
209 ;; 1/2 * (cos(x) - cos(3*x))
211 ;; In fact we don't calculate the 1/2 coefficient in sp1sintcos: you always get
212 ;; a factor of 2^(k-1), where k is the length of the list, so this is calculated
213 ;; at the bottom of sp1tplus. Anyway, next we calculate cos(x)*sin(3*x) and
214 ;; -cos(3*x)*sin(3*x) and sum the answers. Note that -cos(3*x) will crop up
215 ;; represented as ((mtimes) -1 ((%cos) ((mtimes) 3 $x))). See note in the let
216 ;; form for info on what form ANS must take.
217 (defun sp1tplus (l trig)
218 (if (or (null l) (null (cdr l)))
220 ;; ANS is a list containing the terms in a sum for the expanded
221 ;; expression. Each element in this list is either of the form sc(x),
222 ;; where sc is sin or cos, or of the form ((mtimes) coeff ((sc) $x)),
223 ;; where coeff is some coefficient.
225 ;; multiply-sc-terms rewrites a*sc as a sum of sines and cosines. The
226 ;; result is a list containing the terms in a sum which is
227 ;; mathematically equal to a*sc. Assuming that term is of one of the
228 ;; forms described for ANS below and that SC is of the form sc(x), the
229 ;; elements of the resulting list will all be of suitable form for
230 ;; inclusion into ANS.
231 (flet ((multiply-sc-terms (term sc)
232 (let* ((coefficient (when (mtimesp term) (cadr term)))
233 (term-sc (if (mtimesp term) (caddr term) term))
234 (expanded (sp1sintcos term-sc sc trig)))
235 ;; expanded will now either be sin(foo) or cos(foo) OR it
236 ;; will be a sum of such terms.
237 (cond
238 ((not coefficient) (list expanded))
239 ((or (atom expanded)
240 (member (caar expanded) '(%sin %cos %sinh %cosh)
241 :test 'eq))
242 (list (m* coefficient expanded)))
243 ((mplusp expanded)
244 (mapcar (lambda (summand) (m* coefficient summand))
245 (cdr expanded)))
247 ;; SP1SINTCOS can also return numbers and constant expressions.
248 ;; Assume that's the case here.
249 (list (m* coefficient expanded))))))
250 ;; Treat EXPR as a sum and return a list of its terms
251 (terms-of-sum (expr)
252 (if (mplusp expr) (cdr expr) (ncons expr))))
254 (let ((ans (list (first l))))
255 (dolist (sc (rest l))
256 (setq ans (terms-of-sum
257 (m+l (mapcan (lambda (q)
258 (multiply-sc-terms q sc)) ans)))))
259 (list (list '(rat) 1 (expt 2 (1- (length l))))
260 (m+l ans))))))
262 ;; The core of trigreduce. Performs transformations like sin(x)*cos(x) =>
263 ;; sin(2*x)
265 ;; This function only does something non-trivial if both a and b have one of
266 ;; sin, cos, sinh and cosh as top-level operators. (Note the first term in the
267 ;; cond: we assume that if a,b are non-atomic and not both of them are
268 ;; hyperbolic/trigonometric then we can just multiply the two terms)
269 (defun sp1sintcos (a b trig)
270 (let* ((x nil)
271 (y nil))
272 (cond ((or (atom a) (atom b)
273 (not (member (caar a) '(%sin %cos %sinh %cosh) :test #'eq))
274 (not (member (caar b) '(%sin %cos %sinh %cosh) :test #'eq)))
275 (mul3 2 a b))
276 ((prog2 (setq x (m+ (cadr a) (cadr b)) y (m- (cadr a) (cadr b)))
277 (null (eq (caar a) (caar b))))
278 (setq b (if trig '(%sin) '(%sinh)))
279 (or (eq (caar a) '%sin) (eq (caar a) '%sinh)
280 (setq y (m- y)))
281 (m+ (list b x) (list b y)))
282 ((member (caar a) '(%cos %cosh) :test #'eq)
283 (m+ (list (list (caar a)) x)
284 (list (list (caar a)) y)))
285 (trig
286 (m- (list '(%cos) y) (list '(%cos) x)))
287 ((m- (list '(%cosh) x) (list '(%cosh) y))))))
289 ;; For COS(X)^2, TRIGBUCKET is (X (1 (COS . 2))) or, more generally,
290 ;; (arg (numfactor-of-arg (operator . exponent)))
292 (defun sp1add (e)
293 (let* ((n (cond ((eq (caar e) 'mexpt)
294 (cond ((= (signum1 (caddr e)) -1)
295 (prog1 (m- (caddr e))
296 (setq e (cons (list (zl-get (caaadr e) 'recip)) (cdadr e)))))
297 ((prog1 (caddr e) (setq e (cadr e))))))
298 ( 1 )))
299 (arg (sp1kget (cadr e)))
300 (buc nil)
301 (*laws* *hyperlaws*))
302 (cond ((member (caar e) '(%sin %cos %tan %cot %sec %csc) :test #'eq)
303 (cond ((setq buc (assoc (cdr arg) *trigbuckets* :test #'equal))
304 (setq *laws* *triglaws*)
305 (sp1addbuc (caar e) (car arg) n buc))
306 ((setq *trigbuckets*
307 (cons (list (cdr arg) (list (car arg) (cons (caar e) n)))
308 *trigbuckets*)))))
309 ((setq buc (assoc (cdr arg) *hyperbuckets* :test #'equal))
310 (sp1addbuc (caar e) (car arg) n buc))
311 ((setq *hyperbuckets*
312 (cons (list (cdr arg) (list (car arg) (cons (caar e) n)))
313 *hyperbuckets*))))))
315 (defun sp1addbuc (f arg n b) ;FUNCTION, ARGUMENT, EXPONENT, BUCKET LIST
316 (cond ((and (cdr b) (alike1 arg (caadr b))) ;GOES IN THIS BUCKET
317 (sp1putbuc f n (cadr b)))
318 ((or (null (cdr b)) (great (caadr b) arg))
319 (rplacd b (cons (list arg (cons f n)) (cdr b))))
320 ((sp1addbuc f arg n (cdr b)))))
322 (defun sp1putbuc (f n *buc) ;PUT IT IN THERE
323 (do ((buc *buc (cdr buc)))
324 ((null (cdr buc))
325 (rplacd buc (list (cons f n))))
326 (cond ((eq f (caadr buc)) ;SAME FUNCTION
327 (return
328 (rplacd (cadr buc) (m+ n (cdadr buc))))) ;SO BOOST EXPONENT
329 ((eq (caadr buc) (zl-get f 'recip)) ;RECIPROCAL FUNCTIONS
330 (setq n (m- (cdadr buc) n))
331 (return
332 (cond ((signp e n) (rplacd buc (cddr buc)))
333 ((= (signum1 n) -1)
334 (rplaca (cadr buc) f)
335 (rplacd (cadr buc) (neg n)))
336 (t (rplacd (cadr buc) n)))))
337 (t (let* ((nf (zl-get (zl-get *laws* (caadr buc)) f))
338 (m nil))
339 (cond ((null nf)) ;NO SIMPLIFICATIONS HERE
340 ((equal n (cdadr buc)) ;EXPONENTS MATCH
341 (rplacd buc (cddr buc))
342 (return
343 (sp1putbuc1 nf n *buc))) ;TO MAKE SURE IT DOESN'T OCCUR TWICE
344 ((eq (setq m (sp1great n (cdadr buc))) 'nomatch))
345 (m (setq m (cdadr buc))
346 (rplacd buc (cddr buc))
347 (sp1putbuc1 nf m *buc)
348 (sp1putbuc1 f (m- n m) *buc)
349 (return t))
350 (t (rplacd (cadr buc) (m- (cdadr buc) n))
351 (return (sp1putbuc1 nf n *buc)))))))))
353 (defun sp1putbuc1 (f n buc)
354 (cond ((null (cdr buc))
355 (rplacd buc (list (cons f n))))
356 ((eq f (caadr buc))
357 (rplacd (cadr buc) (m+ n (cdadr buc))))
358 ((sp1putbuc1 f n (cdr buc)))))
360 (defun sp1great (x y)
361 (let* ((a nil)
362 (b nil))
363 (cond ((mnump x)
364 (cond ((mnump y) (great x y)) (t 'nomatch)))
365 ((or (atom x) (atom y)) 'nomatch)
366 ((and (eq (caar x) (caar y))
367 (alike (cond ((mnump (cadr x))
368 (setq a (cadr x)) (cddr x))
369 (t (setq a 1) (cdr x)))
370 (cond ((mnump (cadr y))
371 (setq b (cadr y)) (cddr y))
372 (t (setq b 1) (cdr y)))))
373 (great a b))
374 (t 'nomatch))))
376 (defun sp1untrep (b)
377 (mapcan
378 #'(lambda (buc)
379 (mapcar #'(lambda (term)
380 (let* ((bas (simplifya (list (list (car term))
381 (m* (car b) (car buc)))
382 t)))
383 (cond ((equal (cdr term) 1) bas)
384 ((m^ bas (cdr term))))))
385 (cdr buc)))
386 (cdr b)))
388 (defun sp1kget (e) ;FINDS NUMERIC COEFFICIENTS
389 (or (and (mtimesp e) (numberp (cadr e))
390 (cons (cadr e) (m*l (cddr e))))
391 (cons 1 e)))
393 (defun sp1sincos (l trig)
394 (mapcar #'(lambda (q) (sp1sincos2 (m* (car l) (car q)) q trig)) (cdr l)))
396 (defun sp1sincos2 (arg l trig)
397 (let* ((a nil))
398 (cond ((null (cdr l)))
399 ((and
400 (setq a (member (caadr l)
401 (if (null trig)
402 '(%sinh %cosh %sinh %csch %sech %csch)
403 '(%sin %cos %sin %csc %sec %csc)) :test #'eq))
404 (cddr l)) ;THERE MUST BE SOMETHING TO MATCH TO.
405 (sp1sincos1 (cadr a) l arg trig))
406 ((sp1sincos2 arg (cdr l) trig)))))
408 (defun sp1sincos1 (s l arg trig)
409 (let* ((g nil)
410 (e 1))
411 (do ((ll (cdr l) (cdr ll)))
412 ((null (cdr ll)) t)
413 (cond ((eq s (caadr ll))
414 (setq arg (m* 2 arg))
415 (cond (trig
416 (cond ((member s '(%sin %cos) :test #'eq)
417 (setq s '%sin))
418 ((setq s '%csc e -1))))
420 (cond ((member s '(%sinh %cosh) :test #'eq)
421 (setq s '%sinh))
422 ((setq s '%csch e -1)))))
423 (cond ((alike1 (cdadr ll) (cdadr l))
424 (sp1addto s arg (cdadr l))
425 (setq *lin (cons (m* e (cdadr l)) *lin))
426 (rplacd ll (cddr ll)) ;;;MUST BE IN THIS ORDER!!
427 (rplacd l (cddr l))
428 (return t))
429 ((eq (setq g (sp1great (cdadr l) (cdadr ll))) 'nomatch))
430 ((null g)
431 (rplacd (cadr ll) (m- (cdadr ll) (cdadr l)))
432 (sp1addto s arg (cdadr l))
433 (setq *lin (cons (m* e (cdadr l)) *lin))
434 (rplacd l (cddr l))
435 (return t))
437 (rplacd (cadr l) (m- (cdadr l) (cdadr ll)))
438 (sp1addto s arg (cdadr ll))
439 (push (m* e (cdadr ll)) *lin)
440 (rplacd ll (cddr ll))
441 (return t))))))))
443 (defun sp1addto (fn arg exp)
444 (setq arg (list (list fn) arg))
445 (sp1add (if (equal exp 1) arg (m^ arg exp))))
447 (defun sp1expt (b e)
448 (cond ((mexptp b)
449 (power (sp1 b) (sp1 e)))
450 ((and (null (trigfp b)) (free e var))
451 (m^ b e))
452 ((equal b '$%e)
453 (sp1expt2 e))
454 ((and (null (eq var '*novar)) (free b var))
455 (sp1expt2 (m* (list '(%log) b) e)))
456 ((and (consp b) (consp (car b)) (member (caar b) '(%sin %cos %tan %cot %sec %csc
457 %sinh %cosh %tanh %coth %sech %csch) :test #'eq))
458 (cond ((= (signum1 e) -1)
459 (sp1expt (list (list (zl-get (caar b) 'recip)) (cadr b))
460 (neg e)))
461 ((and (signp g e)
462 (member (caar b) '(%sin %cos %sinh %cosh) :test #'eq))
463 (funcall (cdr (assoc (caar b) *sc^ndisp* :test #'eq)) e (cadr b)))
464 ((m^ b e))))
465 ((m^ b e))))
467 (defun sp1expt2 (e)
468 (let* ((*schatc-ans* (m2 e '((mplus) ((coeffpp) (fr freevar)) ((coeffpp) (exp true)))))
469 (fr (cdr (assoc 'fr *schatc-ans* :test #'eq)))
470 (exp (cdr (assoc 'exp *schatc-ans* :test #'eq))))
471 (cond ((equal fr 0)
472 (m^ '$%e exp))
473 ((m* (m^ '$%e fr) (m^ '$%e exp))))))
475 ;; Split TERMS into (VALUES NON-NEG OTHER) where NON-NEG and OTHER are a
476 ;; partition of the elements of TERMS. Expressions that are known not to be
477 ;; negative are placed in NON-NEG and all others end up in OTHER.
479 ;; This function is used to safely split products when expanding logarithms to
480 ;; avoid accidentally ending up with something like
482 ;; log(1 - x) => log(-1) + log(x-1).
484 ;; Note that we don't check a term is strictly positive: if it was actually
485 ;; zero, the logarithm was bogus in the first place.
486 (defun non-negative-split (terms)
487 (let ((non-neg) (other))
488 (dolist (term terms)
489 (if (memq ($sign term) '($pos $pz $zero))
490 (push term non-neg)
491 (push term other)))
492 (values non-neg other)))
494 ;; Try to expand a logarithm for use in a power series in VAR by splitting up
495 ;; products.
496 (defun sp1log (e &optional no-recurse)
497 (cond
498 ;; If E is free of VAR, is an atom, or we're supposed to be reducing rather
499 ;; than expanding, then just return E.
500 ((or *trigred (atom e) (free e var))
501 (list '(%log) e))
503 ;; The logarithm of a sum doesn't simplify very nicely, but call $factor to
504 ;; see if we can pull out one or more terms and then recurse (setting
505 ;; NO-RECURSE to make sure we don't end up in a loop)
506 ((eq (caar e) 'mplus)
507 (let* ((exp (m1- e)) *a *n)
508 (declare (special *n *a))
509 (cond
510 ((smono exp var)
511 (list '(%log) e))
512 ((not no-recurse)
513 (sp1log ($factor e) t))
514 (t (sp1log2 e)))))
516 ;; A product is much more promising. Do the transformation log(ab) =>
517 ;; log(a)+log(b) and pass it to SP1 for further simplification.
519 ;; We need to be a little careful here because eg. factor(1-x) gives
520 ;; -(x-1). We don't want to end up with a log(-1) term! So check the sign of
521 ;; terms and only pull out the terms we know to be non-negative. If the
522 ;; argument was a negative real in the first place then we'd already got
523 ;; rubbish, but otherwise we won't pull out anything we don't want.
524 ((eq (caar e) 'mtimes)
525 (multiple-value-bind (non-neg other) (non-negative-split (cdr e))
526 (cond
527 ((null non-neg) (sp1log2 e))
529 (sp1 (m+l (mapcar #'sp1log (append other non-neg))))))))
531 ;; Similarly, transform log(a^b) => b log(a) and pass back to SP1.
532 ((eq (caar e) 'mexpt)
533 (sp1 (m* (caddr e) (list '(%log) (cadr e)))))
535 ;; If we can't find any other expansions, pass the result to SP1LOG2, which
536 ;; tries again after expressing E as integrate(diff(e)/e).
537 ((sp1log2 e))))
539 ;; We didn't manage to expand the expression, so make use of the fact that
540 ;; diff(log(f(x)), x) = f'(x)/f(x) and return integrate(f'(x)/f(x), x), hoping
541 ;; that a later stage will be able to do something useful with it.
543 ;; We have to be a little bit careful because an indefinite integral might have
544 ;; the wrong constant term. Instead, rewrite as
546 ;; log(f(x0+h)) = log(f(x0+h)) - log(f(x0)) + log(f(x0))
547 ;; = integrate(diff(log(f(x0+k)), k), k, 0, h) + log(f(x0))
548 ;; = integrate(diff(f(x0+k))/f(x0+k), k, 0, h) + log(f(x0))
550 ;; The "x0" about which we expand is always zero (see the code in $powerseries)
551 (defun sp1log2 (e)
552 (when $verbose
553 (mtell (intl:gettext "trigreduce: failed to expand.~%~%"))
554 (show-exp (list '(%log) e))
555 (mtell (intl:gettext "trigreduce: try again after applying rule:~2%~M~%~%")
556 (list '(mlabel) nil
557 (out-of
558 `((mequal)
559 ((%log) ,e)
560 ((%integrate)
561 ((mquotient) ((%derivative) ,e ,var 1) ,e) ,var))))))
562 (let* ((dummy-sym ($gensym)))
563 (m+ (list '(%log) ($limit e var 0))
564 (list '(%integrate)
565 (maxima-substitute dummy-sym var
566 (sp1 (m// (sdiff e var) e)))
567 dummy-sym 0 var))))
569 (defun sp1trig (e)
570 (cond ((atom (cadr e)) (simplify e))
571 ((eq (caaadr e) (zl-get (caar e) '$inverse)) (sp1 (cadadr e)))
572 ((eq (caaadr e) (zl-get (zl-get (caar e) 'recip) '$inverse))
573 (sp1 (m// (cadadr e))))
574 ((and (null *trigred) (null *noexpand) (eq (caaadr e) 'mplus))
575 (sp1trigex e))
576 ( e )))
578 ;; Return the expansion of ((trigfun) ((mplus) a b)). For example sin(a+b) =
579 ;; sin(a)cos(b) + cos(a)sin(b).
580 (defun expand-trig-of-sum (trigfun a b)
581 (flet ((expand-it (op f1 f2 f3 f4)
582 (funcall op
583 (m* (sp1trig (list f1 a)) (sp1trig (list f2 b)))
584 (m* (sp1trig (list f3 a)) (sp1trig (list f4 b))))))
585 (ecase trigfun
586 (%sin (expand-it #'add2* '(%sin) '(%cos) '(%cos) '(%sin)))
587 (%cos (expand-it #'sub* '(%cos) '(%cos) '(%sin) '(%sin)))
588 (%sinh (expand-it #'add2* '(%sinh) '(%cosh) '(%cosh) '(%sinh)))
589 (%cosh (expand-it #'sub* '(%cosh) '(%cosh) '(%sinh) '(%sinh))))))
591 ;; Try to expand f(a+b) where f is sin, cos, sinh or cosh.
592 (defun sp1trigex (e)
593 (schatchen-cond w
594 ;; Ideally, we'd like to split the argument of the trig function into terms
595 ;; that involve VAR and those that are free of it.
596 ((m2 (cadr e) '((mplus) ((coeffpp) (a freevar)) ((coeffpp) (b true))))
597 (a b)
599 ;; Make sure that if B is zero then so is A (to simplify the cond)
600 (when (signp e b) (rotatef a b))
602 ;; Assuming we didn't just swap them, A will be free of VAR and B will
603 ;; contain any other terms. If A is zero (because the argument of trig
604 ;; function is a sum of terms, all of which involve VAR), then fall back on
605 ;; a different splitting, by terms of taking the first term of B.
606 (cond
607 ((and (signp e a)
608 (not (atom b))
609 (eq (caar b) 'mplus))
610 (expand-trig-of-sum (caar e)
611 (cadr b)
612 (if (cdddr b)
613 (cons (car b) (cddr b))
614 (caddr b))))
616 ;; For some weird reason, B isn't a sum. Give up.
617 ((signp e a) e)
619 ;; Do the splitting we intended in the first place.
621 (expand-trig-of-sum (caar e) a b))))
623 ;; E doesn't match f(a+b). Return it unmodified.
624 (t nil e)))
626 (defun sp1atrig (fn exp)
627 (cond ((atom exp)
628 (sp1atrig2 fn exp))
629 ((eq fn (zl-get (caar exp) '$inverse))
630 (sp1 (cadr exp)))
631 (t (sp1atrig2 fn exp))))
633 (defun sp1atrig2 (fn exp)
634 (cond ((member fn '(%cot %sec %csc %coth %sech %csch) :test #'eq)
635 (setq exp (sp1 (m// exp))
636 fn (cdr (assoc fn '((%acot . %atan) (%asec . %acos) (%acsc . %asin)
637 (%acoth . %atanh) (%asech . %acosh) (%acsch . %asinh)) :test #'eq)))))
638 (cond ((and (null *trigred)
639 (member fn '(%acos %acosh) :test #'eq))
640 (m+ half%pi (list
641 (list (cdr (assoc fn '((%acos . %asin) (%acosh . %asinh)) :test #'eq)))
642 exp)))
643 ((list (list fn) exp))))
645 (defun sin^n (%n v)
646 (sc^n %n v (if (oddp %n) '(%sin) '(%cos)) (not (oddp %n))
647 (m^ -1 (m+ (ash %n -1) 'k))))
649 (defun sinh^n (%n v)
650 (if (oddp %n)
651 (sc^n %n v '(%sinh) nil (m^ -1 'k))
652 (if (zerop (mod %n 4))
653 (sc^n %n v '(%cosh) t (m^ -1 'k))
654 (m- (sc^n %n v '(%cosh) t (m- (m^ -1 'k)))))))
656 (defun cos^n (%n v)
657 (sc^n %n v '(%cos) (not (oddp %n)) 1))
659 (defun cosh^n (%n v)
660 (sc^n %n v '(%cosh) (not (oddp %n)) 1))
662 (defun sc^n (%n v fn fl coef)
663 (when (minusp %n)
664 (merror "trigreduce: internal error; %N must be nonnegative, found: ~M") %n)
665 (m* (list '(rat) 1 (expt 2 %n))
666 (m+ (if fl
667 (list '(%binomial) %n (ash %n -1))
669 (maxima-substitute v 'trig-var
670 (dosum (m+ (m* 2
671 (list '(%binomial) %n 'k)
672 coef
673 (list fn (m* 'trig-var
674 (m+ %n (m* -2 'k))))))
675 'k 0 (ash (1- %n) -1) t)))))