Rename *ll* and *ul* to ll and ul in method-by-limits
[maxima.git] / src / nfloat.lisp
blobbb084c1b03c3b571739b142a3476665753c52c44
1 ;; Copyright 2009 by Barton Willis
3 ;; This is free software; you can redistribute it and/or
4 ;; modify it under the terms of the GNU General Public License,
5 ;; http://www.gnu.org/copyleft/gpl.html.
7 ;; This software has NO WARRANTY, not even the implied warranty of
8 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
10 ;; The last time I tried, the file "hypergeometric.lisp" must be loaded before compiling nfloat; so
12 ;(eval-when (compile)
13 ; ($load "hypergeometric.lisp"))
15 (in-package :maxima)
18 (in-package #:bigfloat)
20 ;; Each member of the CL list l is a two member list (running error form).
21 (defun running-error-plus (l)
22 (let ((acc 0) (err 0))
23 (dolist (lk l)
24 (setq acc (+ acc (first lk)))
25 (setq err (+ err (second lk) (abs acc))))
26 (list acc err)))
28 ;;(%i20) ah * lh * (1 + eps);
29 ;;(%o20) ah*(eps+1)*lh
30 ;;(%i21) %-a*l;
31 ;;(%o21) ah*(eps+1)*lh-a*l
32 ;;(%i22) subst([a = ah-e,l = lh-w],%);
33 ;;(%o22) ah*(eps+1)*lh-(ah-e)*(lh-w)
34 ;;(%i23) expand(%);
35 ;;(%o23) -e*w+ah*w+ah*eps*lh+e*lh
37 (defun running-error-prod (l)
38 (let ((acc 1) (err 0) (z))
39 (dolist (lk l)
40 (setq z acc)
41 (setq acc (* acc (first lk)))
42 (setq err (+ (* err (abs (first lk))) (* (abs z) (abs (second lk))))))
43 (list acc err)))
45 ;; (%i1) (a+ae*eps)*(1+eps)/(b+be*eps)-a/b$
46 ;; (%i2) expand(limit(%/eps,eps,0))$
47 ;; (%i3) expand(ratsubst(Q,a/b,%))$
48 ;; (%i4) map('abs,%)$
49 ;; (%i5) facsum(%,abs(Q));
50 ;; (%o5) ((abs(be)+abs(b))*abs(Q)+abs(ae))/abs(b)
52 (defun running-error-quotient (l)
53 (let* ((a (first l)) (b (second l)) (s))
54 (setq s (/ (first a) (first b)))
55 (list s (+ (* (abs s) (+ 1 (abs (/ (second b) (first b))))) (abs (/ (second a) (first b)))))))
57 ;; unary negation.
58 (defun running-error-negate (x)
59 (setq x (first x))
60 (list (- (first x)) (second x)))
62 ;;(%i46) (x*(1+ex))^(n *(1+en));
63 ;;(%o46) ((ex+1)*x)^((en+1)*n)
64 ;;(%i47) taylor(%,[ex,en],0,1);
65 ;;(%o47) x^n+(x^n*n*ex+x^n*n*log(x)*en)+...
66 ;;(%i48) factor(%);
67 ;;(%o48) x^n*(en*n*log(x)+ex*n+1)
69 (defun running-error-expt (l)
70 (let* ((s) (x (first l)) (n (second l)) (ex) (en))
71 (setq ex (second x))
72 (setq en (second n))
73 (setq x (first x))
74 (setq n (first n))
75 (setq s (bigfloat::expt x n))
76 (list s (+ (abs (* s en n (log x))) (abs (* s ex n))))))
78 ;; sqrt(x + ex) = sqrt(x)+(sqrt(x)*ex)/(2*x)+... = sqrt(x) + ex / (2 * sqrt(x)) + ...
79 (defun running-error-sqrt (x)
80 (setq x (first x))
81 (let ((s (sqrt (first x))))
82 (list s (abs (/ (second x) (* 2 s))))))
84 ;; log(x + ex) = log(x) + ex / x + ...
85 (defun running-error-log (x)
86 (setq x (first x))
87 (list (log (first x)) (abs (/ (second x) (first x)))))
89 (defun psi0 (x)
90 (bigfloat (maxima::$rectform (maxima::mfuncall 'maxima::$bfpsi0 (maxima::$bfloat (maxima::to x))
91 maxima::$fpprec))))
93 (defun gamma (x)
94 (bigfloat (maxima::$bfloat (maxima::take '(maxima::%gamma) (maxima::to x)))))
96 ;; gamma(x + ex) = gamma(x) + ex * gamma(x) * psi[0](x) + ..
97 (defun running-error-gamma (x)
98 (setq x (first x))
99 (let ((s (gamma (first x))))
100 (list s (abs (* s (second x) (psi0 (first x)))))))
102 (defun running-error-hypergeometric (a b x subs bits)
103 (let ((dig) (d) (f))
105 ;; To do this correctly, we'd need the partial derivatives of the hypergeometric functions
106 ;; with respect the the parameters. Ouch!
108 (setq a (mapcar #'(lambda (s) (car (running-error-eval s subs bits))) (maxima::margs a)))
109 (setq b (mapcar #'(lambda (s) (car (running-error-eval s subs bits))) (maxima::margs b)))
110 (setq x (car (running-error-eval x subs bits)))
111 (cond ((< (abs x) 0.99)
112 (multiple-value-setq (f d) (hypergeometric-by-series a b x))
113 (list f (* (abs f) (expt 10 (- d)))))
115 (setq dig (ceiling (* bits #.(/ (log 2.0) (log 10.0)))))
116 (setq a (mapcar 'maxima::to a))
117 (setq b (mapcar 'maxima::to b))
118 (setq x (maxima::to x))
119 (multiple-value-setq (f d) (hypergeometric-float-eval a b x dig t))
120 (list f (* (abs f) (expt 10 (- d))))))))
122 (defun running-error-sum (l subs bits)
123 (let ((sumand (first l))
124 (v (second l))
125 (lo (third l))
126 (hi (fourth l))
127 (acc 0) (err 0) (x) (q))
129 (cond ((and (integerp lo) (integerp hi))
130 (maxima::while (<= lo hi)
131 (setq q (maxima::$sublis `((maxima::mlist) ((maxima::mequal) ,v ,lo)) sumand))
132 (setq q (maxima::simplify q))
133 (setq x (running-error-eval q subs bits))
134 (incf lo)
135 (setq acc (+ acc (first x)))
136 (setq err (+ err (second x) (abs acc))))
137 (list acc err))
138 (t (throw 'maxima::nfloat-nounform-return 'return-nounform)))))
140 (defun running-error-product (l subs bits)
141 (let ((prodand (first l)) ;; a sum has a summand, so a product has a ...
142 (v (second l))
143 (lo (third l))
144 (hi (fourth l))
145 (acc 1) (err 0) (x))
147 (cond ((and (integerp lo) (integerp hi))
148 (maxima::while (<= lo hi)
149 (setq x (maxima::$sublis `((maxima::mlist) ((maxima::mequal) ,v ,lo)) prodand))
150 (setq x (maxima::simplify x))
151 (setq x (running-error-eval x subs bits))
152 (incf lo)
153 (setq acc (* acc (first x)))
154 (setq err (+ err (second x) (abs acc))))
155 (list acc err))
156 (t (throw 'maxima::nfloat-nounform-return 'return-nounform)))))
158 (defun running-error-abs (l)
159 (setq l (first l))
160 (list (abs (first l)) (second l)))
162 (defun running-error-conjugate (l)
163 (setq l (first l))
164 (list (conjugate (first l)) (second l)))
166 ;; untested!!!!!
167 (defun running-error-factorial (l)
168 (setq l (first l))
169 (if (integerp l)
170 (list (maxima::take (list 'maxima::mfactorial) l) 0)
171 (running-error-gamma (list (list (+ 1 (first l)) (second l))))))
173 (defun running-error-atan2 (l)
174 (let* ((y (first l))
175 (x (second l))
176 (d (/ 1 (+ (* (first x) (first x)) (* (first y) (first y))))))
177 (list (atan (first y) (first x))
178 (* (+ (* (abs (second y)) (first x)) (* (abs (second x)) (first y))) d))))
180 (defun running-error-realpart (l)
181 (setq l (first l))
182 (list (realpart (first l)) (second l)))
184 (defun running-error-imagpart (l)
185 (setq l (first l))
186 (list (imagpart (first l)) (second l)))
189 ;; For a similar hashtable mechanism, see trig.lisp.
190 (defvar *running-error-op* (make-hash-table :size 16)
191 "Hash table mapping a maxima function to a corresponding Lisp
192 function to evaluate the maxima function numerically using a running error.")
194 (setf (gethash 'maxima::mplus *running-error-op*) 'running-error-plus)
195 (setf (gethash 'maxima::mtimes *running-error-op*) 'running-error-prod)
196 (setf (gethash 'maxima::mquotient *running-error-op*) 'running-error-quotient)
197 (setf (gethash 'maxima::mminus *running-error-op*) 'running-error-negate)
198 (setf (gethash 'maxima::mexpt *running-error-op*) 'running-error-expt)
199 (setf (gethash 'maxima::%sqrt *running-error-op*) 'running-error-sqrt)
200 (setf (gethash 'maxima::%log *running-error-op*) 'running-error-log)
201 (setf (gethash 'maxima::%gamma *running-error-op*) 'running-error-gamma)
202 (setf (gethash 'maxima::mabs *running-error-op*) 'running-error-abs)
203 (setf (gethash 'maxima::$cabs *running-error-op*) 'running-error-abs)
204 (setf (gethash 'maxima::$conjugate *running-error-op*) 'running-error-conjugate)
205 (setf (gethash 'maxima::mfactorial *running-error-op*) 'running-error-factorial)
206 (setf (gethash 'maxima::%atan2 *running-error-op*) 'running-error-atan2)
207 (setf (gethash 'maxima::$realpart *running-error-op*) 'running-error-realpart)
208 (setf (gethash 'maxima::$imagpart *running-error-op*) 'running-error-imagpart)
210 (defun running-error-eval (e subs bits)
211 (let ((f))
213 (cond ((eq e 'maxima::$%i)
214 (setq e (bigfloat::to (if (> bits #.(float-digits 1.0e0)) (maxima::$bfloat 1) (maxima::$float 1))))
215 (list (bigfloat::to 0 e) (abs e)))
217 ((maxima::complex-number-p e #'(lambda (s) (or (maxima::$ratnump s) (maxima::$numberp s))))
218 (setq e (bigfloat::to (if (> bits #.(float-digits 1.0e0)) (maxima::$bfloat e) (maxima::$float e))))
219 (list e (abs e)))
221 ((and (atom e) (maxima::mget e '$numer))
222 (running-error-eval (maxima::mget e 'maxima::$numer) '((mlist)) bits))
224 ((and (atom e) (get e 'maxima::sysconst))
225 (running-error-eval (maxima::$bfloat e) '((mlist)) bits))
227 ((atom e)
228 (setq e (maxima::$sublis subs e))
229 (if (maxima::complex-number-p e 'maxima::bigfloat-or-number-p)
230 (running-error-eval e nil bits)
231 (throw 'maxima::nfloat-nounform-return 'return-nounform)))
233 ;; Return a nounform for expressions (arrays, CRE expressions) that don't
234 ;; appear to be Maxima expressions of the form ((op) a1 a2 ...).
235 ((not (and (consp e) (consp (car e))))
236 (throw 'maxima::nfloat-nounform-return 'return-nounform))
238 ;; Special case exp(x) (more efficient & accurate than sending this through mexpt).
239 ((and (eq 'maxima::mexpt (caar e)) (eq (second e) 'maxima::$%e))
240 (setq e (running-error-eval (third e) subs bits))
241 (let ((z (exp (first e))))
242 (list z (abs (* (second e) z)))))
244 ;; Special case x^n, where n is an integer. For this case, we do not want to
245 ;; convert the integer to a float. This prevents some, but not all, semi-spurious
246 ;; nonzero imaginary parts for (negative real)^integer.
247 ((and (eq 'maxima::mexpt (caar e)) (integerp (third e)))
248 (running-error-expt (list (running-error-eval (second e) subs bits) (list (third e) 0))))
250 ;; main function dispatch.
251 ((setq f (gethash (maxima::mop e) *running-error-op*))
252 ;(print `(e = ,e mop = ,(maxima::mop e)))
253 (setq e (mapcar #'(lambda (s) (running-error-eval s subs bits)) (maxima::margs e)))
254 (funcall f e))
256 ;; f(x + ex) = f(x) + ex * f'(x) + ... Functions without bigfloat
257 ;; evaluation, for example the Bessel functions, need to be excluded.
258 ;; For now, this code rejects functions of two or more variables.
259 ((and (get (caar e) 'maxima::grad) (null (cdr (maxima::margs e)))
260 (or (gethash (caar e) maxima::*big-float-op*) (maxima::trigp (caar e))
261 (maxima::arcp (caar e))))
263 (let ((x (running-error-eval (cadr e) subs bits)) (f) (df))
264 (setq f (maxima::take (list (caar e)) (maxima::to (first x))))
265 (setq df (get (caar e) 'maxima::grad))
266 (setq df (maxima::$rectform (maxima::$substitute f (caar df) (cadr df))))
267 (setq df (bigfloat::to df))
268 (list (bigfloat::to f) (* (second x) (abs df)))))
270 ;; special case hypergeometric
271 ((eq (caar e) 'maxima::%hypergeometric)
272 (running-error-hypergeometric (second e) (third e) (fourth e) subs bits))
274 ;; special case sum.
275 ((or (eq (caar e) 'maxima::%sum) (eq (caar e) 'maxima::$sum))
276 (running-error-sum (cdr e) subs bits))
278 ;; special case product
279 ((or (eq (caar e) 'maxima::$product) (eq (caar e) 'maxima::%product))
280 (running-error-product (cdr e) subs bits))
282 ;; special case assignment
283 ((eq (caar e) 'maxima::msetq)
284 (maxima::mset (car e) (car (running-error-eval (cadr e) subs bits))))
286 ;; Yes, via nformat, this can happen. Try, for example, nfloat('(a,b),[a=3,b=7]).
287 ((eq (caar e) 'maxima::mprogn)
288 (let ((q))
289 (setq e (cdr e))
290 (dolist (ek e q)
291 (setq q (running-error-eval ek subs bits)))))
293 (t (throw 'maxima::nfloat-nounform-return 'return-nounform)))))
295 ;; d * eps is a upper bound for how much e differs from its true value, where eps is
296 ;; the machine epsilon.
298 ;; First (log = natural log)
300 ;; log10(x) = log(x) / log(10) and log2(x) = log(x) / log(2).
301 ;; So
302 ;; log10(x) = log2(x) * (log(2) / log(10)).
304 ;; Second
305 ;; -log10(abs(d * eps / e)) = log10(abs(e)) - log10(abs(d)) - log10(eps),
306 ;; = (log2(abs(e)) - log2(abs(d)) - log2(eps)) * (log(2) / log(10).
308 ;; For log2 we use the binary exponent of the number. Common Lisp gives
309 ;; (decode-float 0.0) --> 0.0 0 1.0, by the way.
311 (defun log10-relative-error (d e)
313 (if (rationalp d) (setq d (bigfloat (maxima::$bfloat (maxima::to d)))))
314 (if (rationalp e) (setq e (bigfloat (maxima::$bfloat (maxima::to e)))))
316 (floor (*
318 (second (multiple-value-list (decode-float (abs e))))
320 (second (multiple-value-list (decode-float (abs d))))
321 (second (multiple-value-list (decode-float (epsilon (abs d)))))))
322 #.(/ (log 2.0) (log 10.0)))))
324 (defun not-done (err f eps machine-eps)
325 (> (* machine-eps err) (* eps (max (abs f) 1))))
327 ;;(defmethod epsilon ((x integer)) 0)
329 (in-package :maxima)
331 (defun nfloat (e subs digits max-digits)
332 (let ((z (list nil nil)) (dig digits) (eps) (machine-epsilon nil))
333 (cond ((or (mbagp e) (mrelationp e) ($setp e))
334 (simplify (cons (list (caar e))
335 (mapcar #'(lambda (s) (nfloat s subs digits max-digits)) (margs e)))))
338 (catch 'nfloat-nounform-return
339 (setq e (nformat e))
340 (setq eps (expt 10.0 (- digits)))
341 (setq eps (/ eps (- 1 eps)))
342 (while (and (or (null (first z)) (bigfloat::not-done (second z) (first z) eps machine-epsilon))
343 (< digits max-digits))
344 (bind-fpprec digits
345 (setq z (bigfloat::running-error-eval e subs fpprec))
346 (setq machine-epsilon
347 (cond ((not (second z)) nil)
348 ((integerp (second z)) 0)
349 (t (bigfloat::epsilon (second z)))))
351 (setq digits (* 2 digits))))
353 (if (or (null (first z)) (>= digits max-digits))
354 (merror "Unable to evaluate to requested number of digits")
355 (maxima::bind-fpprec dig (values (maxima::to (first z)) (maxima::to (second z))))))))))
357 (setf (get '$nfloat 'operators) 'simp-nfloat)
359 (defun simp-nfloat (x yy z)
360 (declare (ignore yy))
361 (declare (special $max_fpprec))
362 (pop x) ;; remove ($nfloat)
363 (let* ((e (if x (simpcheck (pop x) z) (wna-err '$nfloat)))
364 (subs (if x (simpcheck (pop x) z) (take '(mlist))))
365 (digits (if x (simpcheck (pop x) z) $fpprec))
366 (max-digits (if x (simpcheck (pop x) z) $max_fpprec))
367 (f))
369 (cond ((and ($listp subs)
370 (every #'(lambda (s) (and (mequalp s) (symbolp ($lhs s)) (complex-number-p ($rhs s) 'mnump)))
371 (cdr subs)))
372 (cond ((or (mbagp e) (mrelationp e) ($setp e))
373 (simplify (cons (list (caar e))
374 (mapcar #'(lambda (s) (take '($nfloat) s subs digits max-digits))
375 (margs e)))))
377 (setq f (nfloat e subs digits max-digits))
378 (if (complex-number-p f 'bigfloat-or-number-p) f
379 `(($nfloat simp) ,e ,subs ,digits ,$max_fpprec)))))
380 (t `(($nfloat simp) ,e ,subs ,digits ,$max_fpprec)))))