Remove some debugging prints and add comments
[maxima.git] / share / affine / modsimp.lisp
blob0bb4c25358585dcc6dd17ac29b441bcce99a99c3
1 ;;; -*- Mode: LISP; Package: cl-maxima; Syntax: Common-lisp -*-
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; ;;;;;
4 ;;; Copyright (c) 1984 by William Schelter,University of Texas ;;;;;
5 ;;; All rights reserved ;;;;;
6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
7 (in-package :maxima)
9 ;;then have a compiler optimizer which does the selection.
10 (defun nn+ (&rest l)
11 (cond ((null l) 0)
12 ((cddr l)
13 (n+ (car l) (apply 'nn+ (cdr l))))
14 (t (n+ (car l) (second l)))))
16 ;;a and b should be polynomials or rational-functions with the following
17 ;;restrictions: Any noncommutative variables or monomials occur with
18 ;;higher pointergp than any scalars. This will be the case with
19 ;;add-newvar if you stick to using a,b,%zeta, etc for the scalars and
20 ;;x,y,z,.. for the noncommutative variables. All the nc parts thus will
21 ;;come first so that a polynomial will be scalar if its main variable is
22 ;;scalar. General assumption is that nc polynomial will have all the nc
23 ;;parts before any of the nc parts and no non commutative denominators.
24 ;;We also assume that a noncommutative polynomial looks like
25 ;; ncprod-or-var*cof+ncpolynomial where cof is a scalar polynomial
26 ;;probably the default should be that variables are scalar, but
27 ;;at present the central variables must satisfy ($scalarp var) ==> t
29 (defun n. (a b)
30 (cond ((numberp a)
31 (n* a b))
32 ((numberp b) (n* a b))
33 ((atom b) (setq b (st-rat b))(n. a b))
34 ((affine-polynomialp a)
35 (cond ((affine-polynomialp b)
36 (let ((va (get (p-var a) 'disrep)) vb ncprod)
37 (cond (($scalarp va)
38 (ptimes a b))
39 (($scalarp (setq vb (get (p-var b) 'disrep)))
40 (ptimes a b))
41 (t (check-arg a (and (<= (length a) 5)
42 (<= (p-deg a) 1)) "an nc polynomial")
43 (check-arg b (and (<= (length b) 5)
44 (<= (p-deg b) 1)) "an nc polynomial")
45 (setq ncprod(add-newvar (ncmul* va vb)))
46 (nn+ (ptimes (list ncprod 1 1) (ptimes (p-cof a) (p-cof b)))
47 (cond ((cdddr a) (n. (fifth a) (subseq b 0 3)))
48 (t 0))
49 (cond ((cdddr b) (n. (subseq a 0 3) (fifth b) ))
50 (t 0))
51 (cond ((and (cdddr a) (cdddr b))
52 (n. (fifth a ) (fifth b)))
53 (t 0)))))))
54 ((rational-functionp b) (nred (n. a (num b)) (denom b)))
55 (t (n. a (st-rat b)))))
56 ((rational-functionp a)
57 (nred (n. (num a) b) (denom a)))
58 (t (setq a (st-rat a))
59 (n. a b)
60 )))
62 (defun $find_sygy (degn &aux monoms general-term eqns sols simp)
63 (setq monoms ($mono $current_variables (1- degn)))
64 (setq monoms
65 (cons '(mlist)
66 (loop for v in (cdr monoms)
67 collecting (ncmul* v '$x)
68 collecting (ncmul* v '$y))))
69 (mshow monoms)
70 (setq general-term ($general_sum monoms $aaaa))
71 (setq simp ($ratdisrep ($dotsimp general-term)))
72 (mshow simp)
73 (mshow ($list_nc_monomials simp))
74 (setq simp ($ratsimp ($numerator simp)))
75 (setq eqns ($extract_linear_equations `((mlist) ,simp)))
76 (setq sols ($fast_Linsolve eqns ($list_variables eqns "aa")))
77 (mshow eqns sols)
78 ($separate_parameters ($sublis sols general-term)))
81 (defun $find_sygy (degn matrix
82 &aux monoms eqns sols pref general-image general-from from-n to-n simp scal)
83 " find_sygy(2,matrix([x],[y]))===> pq"
84 (setq from-n ($length matrix))
85 (setq to-n ($length (second matrix)))
86 (setq monoms ($mono $current_variables degn))
87 (setq pref (loop for i
88 from 1 to from-n
89 collecting ($concat '$aa i)))
90 (setq general-from
91 (cons '(mlist) (loop for u in pref do
92 (setq scal (loop for i below ($length monoms)
93 collecting ($concat u i)))
94 ($declare_scalar_list (setq scal(cons '(mlist) scal)))
95 collecting ($general_sum monoms scal))))
96 (mshow general-from)
97 (setq general-image (ncmul* general-from matrix))
98 (mshow general-image)
99 (break t)
100 (setq simp ($ratdisrep ($dotsimp general-image)))
101 (displa simp)
102 (mshow simp)
103 (mshow ($list_nc_monomials simp))
104 (setq simp ($ratsimp ($numerator simp)))
105 (cond (($listp simp) nil)
106 (($matrixp simp)(setq simp ($list_matrix_entries simp)))
107 (t (setq simp (list '(mlist) simp))))
108 (setq eqns ($extract_linear_equations simp))
109 (setq sols ($fast_Linsolve eqns ($list_variables eqns "aa")))
110 (mshow eqns sols)
111 ($separate_parameters ($sublis sols general-from)))
113 (defmacro matrix-row (mat n)`(nth ,n ,mat))
115 (defun matrix-column (mat n)
116 (cons '(mlist) (loop for v in (cdr mat)
117 collecting (nth n v))))
119 (defvar $module_simp_for_kernel nil)
120 (defun $find_kernel (in-deg matrix &optional multiply-on-left
121 &aux first eqns sols general-image $general_from simp )
122 "if matrix is m x n then it finds the kernel of the MAPL on the right
123 multiplication B:A^m-->A^n v |---> vB or the kernel of the left
124 multiplication A^m <--- A^n:B Bv<----|v"
125 (cond (multiply-on-left (setq first (matrix-row matrix 1)))
127 (setq first (matrix-column matrix 1))))
129 ;;in-deg refers to degree of image in 1-1 position
130 (setq $general_from (cons '(mlist)
131 (loop for u in (cdr first)
132 for i from 1
133 collecting ($scalar_sum ($concat '$ff i)
134 ($mono $current_variables
135 (- in-deg ($nc_degree u)))))))
136 (mshow $general_from)
137 (cond (multiply-on-left
138 (setq general-image (ncmul* matrix ($transpose $general_from) )))
139 (t (setq general-image (ncmul* $general_from matrix))))
140 (mshow general-image)
141 (setq simp ($ratdisrep ($dotsimp general-image)))
142 (cond ($module_simp_for_kernel (format t "~%Simplifying by ~A" $module_simp_for_kernel)
143 (setq simp($totaldisrep (funcall $module_simp_for_kernel simp)))))
144 (mshow simp)
145 (setq simp ($ratsimp ($numerator simp)))
146 (cond (($listp simp) nil)
147 (($matrixp simp)(setq simp ($list_matrix_entries simp)))
148 (t (setq simp (list '(mlist) simp))))
149 (setq eqns ($extract_linear_equations simp))
150 (setq sols ($fast_Linsolve eqns ($list_variables eqns "ff")))
151 (mshow eqns sols)
152 ($separate_parameters ($sublis sols $general_from) "par" "ff"))
154 (defun $find_basis (list-vectors &aux sum eqns sols rk)
155 (setq sum ($scalar_sum '$aa list-vectors))
156 (setq eqns ($ratsimp ($numerator ($ratdisrep ($dotsimp sum)))))
157 (setq eqns ($extract_linear_equations eqns))
158 (setq sols ($fast_Linsolve eqns ($list_variables eqns "aa")))
159 (setq rk (sp-number-of-pivots (pv-the-sparse-matrix $poly_vector)))
160 ($separate_parameters ($sublis sols sum) "par" "aa"))
162 (defun $scalar_sum (prefix monoms &aux scal )
163 ; (declare (values general-sum scalars))
164 (setq scal (loop for i below ($length monoms)
165 collecting ($concat prefix i)))
166 ($declare_scalar_list (setq scal(cons '(mlist) scal)))
167 (values ($general_sum monoms scal) scal))
169 (defun replace-parameters-by (expr prefix &aux olds pars tem )
170 (setq pars (cdr ($list_variables expr "par")))
171 (setq olds ($list_variables expr prefix))
172 (loop for i from 0 while pars
173 when (not (member (setq tem ($concat prefix i)) olds :test #'equal))
174 collecting (cons (car pars) tem) into repl
176 do (setq pars (cdr pars))
177 finally (cond (repl
178 (loop for v in repl do (format t "~%Replacing ~A by ~A" (car v) (cdr v)))
179 (return (sublis repl expr)))
180 (t (return expr)))))
182 (defun $leftsocle (in-degree module-relations rad &aux h newh relats allrelats
183 monoms eqns vari solns hh condition tem)
184 "currently the modulue is a cyclic left module M=A/A.module-relations and
185 we test to find solutions for h of v.h-A.module-relations for v in rad
186 everything is supposed to be homogeneous"
187 (setq h ($scalar_sum '$bbb ($mono $current_variables in-degree)))
188 (setq relats
189 (loop for v in (cdr module-relations)
190 for i from 0
192 (setq tem ($scalar_sum ($concat '$ccc i)
193 ($mono $current_variables
194 (1+ (- in-degree ($nc_degree v))))))
195 collecting (ncmul* tem v)))
196 (setq allrelats (meval* (cons '(mplus) relats)))
197 (mshow allrelats)
198 (setq monoms ($mono $current_variables in-degree))
199 ;;impose condition x.h-general-sum module-relations
200 (loop for v in (cdr rad)
201 with all-rel = (num (new-rat allrelats))
202 do (setq v (st-rat v))
203 (setq hh (n. v (num (new-rat h))))
204 (setq condition (n- hh all-rel))
205 ; (setq condition (sub* (ncmul* v h)
206 ; allrelats))
207 ; (setq conditon (num (new-rat
208 ; (setq condition ($numerator condition))
209 ; (setq condition ($ratdisrep ($numerator ($dotsimp condition))))
210 (setq condition (new-rat-dotsimp (cons condition 1)))
211 (displa condition)
212 (setq condition ($totaldisrep ($numerator condition)))
213 (setq eqns ($extract_linear_equations (list '(mlist) condition)))
214 (setq vari ($list_variables eqns "bbb" "ccc" ))
215 (setq solns ($fast_linsolve eqns vari))
216 (setq newh ($ratsimp($sublis solns h)))
217 (cond (($zerop newh)
218 (return '((mlist)))))
219 (setq h (replace-parameters-by newh '$bbb))
220 (displa h)
221 finally (return ($separate_parameters newh "bbb" "par"))))
223 (defun $try_bezout( f g &optional (linears #$[z-a*x,y-b*x]$) &aux (deg ($nc_degree f)) eqns cofs cof-eqns answ det tem)
224 "solve f=f1*(z-a*x)+f2*(z-b*x),g=g1*(z-a*x)+g2*(z-b*x)"
225 (setq cofs (loop for v in '(f1 f2 g1 g2)
226 do (setq tem
227 ($scalar_sum ($concat '$ccc v)
228 ($mono $current_variables (- deg 1))))
229 collecting tem))
230 (setq eqns
231 (loop for (aa bb) on cofs by #'cddr
232 for ff in (list f g)
233 collecting
234 (loop for lin in (cdr linears)
235 for acof in (list aa bb)
236 with eqn = ff
237 do (setq eqn (sub* eqn (ncmul* acof lin)))
238 finally (return eqn))))
239 (setq eqns (loop for v in eqns collecting ($ratdisrep ($dotsimp v))))
240 (setq cof-eqns ($extract_linear_equations (cons '(mlist) eqns) ($mono $current_variables deg)))
241 (mshow cof-eqns)
242 (setq answ ($fast_linsolve cof-eqns ($list_variables cof-eqns "cc")))
243 (setq det (sp-determinant (pv-the-sparse-matrix $poly_vector)))
244 (list '(mlist) answ (new-disrep det)))
246 (defun $intersect_principals_variety ($f1 $f2 in-deg &optional in-free-ring
247 &aux $g1 $g2 eqn eqns )
248 "Af1 intersect f2A yielding g1.f1=f2.g2, and returns a equations.."
249 (declare (special $g1 $g2 $f1 $f2))
250 (setq $g1 ($scalar_sum '$gg1 ($mono $current_variables (- in-deg ($nc_degree $f1)))))
251 (setq $g2 ($scalar_sum '$gg2 ($mono $current_variables (- in-deg ($nc_degree $f2)))))
252 (setq eqn #$[g1.f1-f2.g2]$)
253 (cond (in-free-ring nil)
254 (t (setq eqn ($totaldisrep ($dotsimp eqn)))))
255 (setq eqns ($extract_linear_equations eqn)))
257 (defun $intersect_principals ($f1 $f2 in-deg &optional modulo-free-ring
258 &aux free-result result $g1 $g2 eqn eqns solns)
259 "Af1 intersect f2A yielding g1.f1=f2.g2, and returns a matrix([g1,g2],[g1p,g2p],...)"
260 (declare (special $g1 $g2 $f1 $f2 $eqns))
261 (cond (modulo-free-ring
262 (let ($dot_simplifications )
263 (setq free-result ($intersect_principals $f1 $f2 in-deg)))
264 (setq free-result ($totaldisrep ($dotsimp free-result)))
265 (setq result ($intersect_principals $f1 $f2 in-deg))
266 ($nc_matrix_quotient result free-result))
268 (setq $g1 ($scalar_sum '$gg1 ($mono $current_variables (- in-deg ($nc_degree $f1)))))
269 (setq $g2 ($scalar_sum '$gg2 ($mono $current_variables (- in-deg ($nc_degree $f2)))))
270 (setq eqn #$totaldisrep(dotsimp([g1.f1-f2.g2]))$)
271 (mshow eqn)
272 (setq $eqns (setq eqns ($extract_linear_equations eqn)))
273 (setq solns ($fast_linsolve eqns ($list_variables eqns "gg")))
274 (setq result ($sublis solns #$[g1,g2]$))
275 (cons '($matrix) (cdr ($separate_parameters result "par" "gg")))
278 ;(defun $find_basis_module (in-deg matrix-relations &optional right)
279 ; "given matrix([[f1,f2,..,fr],[g1,g2,..,gr],...]) compute a basis
280 ; for the free module A^r modulo the left(resp right) submodule generated by the
281 ; rows of matrix. Each row must satisfy nc_degree(fi)= nc_degree(fj)."
283 (defvar $module_simplifications nil)
285 (defun module-monom-must-replacep (monom &aux repl)
286 (cond ((atom monom)
287 (setq repl (member monom (cdr $module_simplifications) :test #'eq))
288 (cond (repl (list monom (second repl)))))
290 (loop for v on (cdr $module_simplifications) by #'cddr
291 with leng = (length monom)
292 with leng-first-v
293 when
294 (or (and (listp (car v))
295 (>= leng (setq leng-first-v(length (car v))))
296 (equal (nthcdr (- leng leng-first-v) (cdr monom)) (cdar v)))
297 (eql (car v) (nth (1- (length monom)) monom)))
298 do (return (list (first v) (cond ((numberp (second v)) (second v))
299 (t (cdr (second v))))))))))
300 ;(defun module-must-replacep (poly)
301 ; (*catch 'found-replace
302 ; (mod-must-replace1 poly)))
304 (defun module-must-replacep (poly &aux monom)
305 (loop while poly
307 (cond ((atom poly) (return nil))
308 ((module-monom-must-replacep (setq monom (get (car poly) 'disrep)))
309 (return (cons (car poly) (module-monom-must-replacep monom))))
310 (t (setq poly (fifth poly))))))
312 (defun rat-simplifications (simps)
313 (cons '(mlist) (loop for (mon rep) on (cdr simps ) by #'cddr
314 collecting mon
315 collecting (cons *fake-rat* (new-rat rep)))))
317 (defun module-simp (fun &aux did-replace num-fun den-fun
318 mon actual-repl repl den prev-mon lft symbo num-repl repl-data )
319 "argument satisfies rational-functionp"
320 (cond ((affine-polynomialp fun)(setq num-fun fun)(setq den-fun 1))
321 ((rational-functionp fun)(desetq (num-fun . den-fun) fun))
322 (t (fsignal "takes poly or rat'l function for argument")))
323 ; (show $module_simplifications)
324 (loop while (setq repl-data (module-must-replacep num-fun)) do
325 (desetq (symbo mon repl) repl-data)
326 (setq prev-mon (get symbo 'disrep))
327 (setq did-replace t)
328 (setq lft (dot-right-quotient prev-mon mon))
329 (setq actual-repl (n. (st-rat lft) repl))
330 (cond ((affine-polynomialp actual-repl) (setq num-repl actual-repl) (setq den 1))
331 ((rational-functionp actual-repl)(desetq (num-repl . den) actual-repl))
332 (t (fsignal "bad repl")))
333 (format t "~%Module simp replacing ~A" (get symbo 'disrep))
334 (setq num-fun (psublis(list (cons symbo num-repl)) den num-fun))
335 (setq den-fun (n* den den-fun))
336 finally (return (cond (did-replace (ratreduce num-fun den-fun))
337 (t fun)))))
339 (defun delete-from-simps (simps mon repl)
340 (loop for v on (cdr simps) by #'cdr
341 when (and (equal (car v) mon)
342 (equal (second v) repl))
343 do (return (cons '(mlist)(nconc tem (cddr v))))
344 else
345 nconc (subseq v 0 2) into tem))
348 ;;;needs work:note that we have not been using new-rat-dotsimp and we need to!
349 ;;;maybe the best plan is to sort the simps in increasing order of degree,
350 ;;;then to (let the modsimps be just one term and one replacement and check
351 ;;;alll remaining ones for subs. Any replacement will be further down the
352 ;;;list. Also if you do a replacement you could not get earlier in the list
353 ;;;if they are sorted by degree, and within degree by worst monom
354 ;(defun simplify-module-simplifications ()
355 ; (loop named sue for (mon rep) on (cdr $dot_simplifications) by #'cddr
356 ; do
357 ; (let (($module_simplifications (delete-from-simps $module_simplifications mon repl)))
358 ; (loop for (mon1 rep1) on (cdr $dot_simplifications) by #'cddr
359 ; when (or (module-monom-must-replacep mon1)
360 ; (module-must-replacep rep1))
361 ; do
362 ; (setq relat (function-numerator (module-simp (make-relation mon1 rep1))))
363 ; (setq relat (module-simp relat))
364 ; (setq changed t)
365 ; (return-from sue 'start-over))
366 ; (setq new (plain-add-to-module-simps relat)))))
368 (defun make-relation (monom repl)
369 ; (iassert (or (numberp repl) (eql (caar repl) 'mrat)))
370 (cond ((numberp repl) nil)
371 ((affine-polynomialp repl)(setq repl (cons repl 1)))
372 ((rational-functionp repl) nil)
373 ((eql (caar repl) 'mrat) (setq repl (cdr repl)))
374 (t (fsignal "bad repl")))
375 (function-numerator (n- monom repl)))
378 (defun sort-simps-by-degree (simps)
379 (cons (car simps) (sort-grouped-list (cdr simps) 2 #'(lambda (u v)
380 (cond ((atom u))
381 ((atom v) nil)
382 ((< (length u) (length v)) )
383 ((> (length u) (length v)) nil)
384 (( funcall $order_function v u)))))))
387 (defun module-and-dot-simp (pol &aux (changed t))
388 (loop
390 (cond ((module-must-replacep pol)
391 (setq pol (module-simp pol)) (setq changed t)))
392 (cond (($must_replacep pol)
393 (setq pol (cdr (new-rat-dotsimp pol)))
394 (setq changed t)))
395 while changed
396 finally (return pol)))
398 (defun gen-dot-check-associative (a b c &optional (simplifier 'module-and-dot-simp) &aux answ)
399 "simplifier should return a polynomial or rational function"
400 (setq answ (n- (n. (funcall simplifier (n. a b)) c)
401 (n. a (funcall simplifier a b))))
402 (cond ((pzerop answ) (format t "~%It was associative"))
403 (t answ)))
406 ;(defun find-right-overlap (left right &aux answ)
407 ; (setq answ
408 ; (cond ((atom left)
410 ; (cond ((eql left right)(list nil left nil))
411 ; ((equal left (car (last right)))
412 ; (list (butlast right) left nil))
413 ; (t nil)))
414 ; ((atom right)
415 ; (cond ((equal right (car (last left)))
416 ; (list (butlast left) right nil))
417 ; (t nil)))
418 ; (t
419 ; (multiple-value-bind (lap right-excess)
420 ; (find-lap1 (cdr left) (cdr right))
421 ; (cond (lap (list (firstn (- (length left) 1 (length lap)) (cdr left)) lap right-excess)))))))
422 ; (show answ)
423 ; (and answ
426 ; (loop for v on answ
427 ; for a in answ
428 ; do
430 ; finally (return answ))))
432 (defun coerce-nctimes (a)
433 "nil-->1, '(a) -->a '(x y z) --> x.y.z , x.y--> x.y"
434 (cond ((null a)
436 ((listp a)
437 (cond ((listp (car a))
438 (cond ((eql (caar a) 'mnctimes)
439 (cond ((null (cdr a)) 1)
440 ((cddr a) a)
441 (t (second a))))
442 (t (fsignal "what am i like?"))))
443 ((not (cdr a))
444 (first a))
445 (t (cons '(mnctimes) a))))
446 (t a)))
448 (defun $lastn_ncdegree (mon n)
449 "Returns an final segment of mon of degree n if possible, otherwise nil"
450 (cond ((zerop n) 1)
451 ((atom mon)
452 (and (equal ($nc_degree mon) n)
453 mon))
454 (t (loop
455 for i downfrom (1- (length mon)) to 1
456 for u = (nth i mon)
457 summing ($nc_degree u) into tot
458 when (>= tot n)
460 (cond ((eql tot n)
461 (return (coerce-nctimes (nthcdr i mon))))
462 (t (return nil)))))))
464 (defun $firstn_ncdegree (mon n)
465 "Returns an initial segment of mon of degree n if possible, otherwise nil"
466 (cond ((zerop n) 1)
467 ((atom mon)
468 (and (equal ($nc_degree mon) n)
469 mon))
470 (t (loop for u in (cdr mon)
471 for i from 2
472 summing ($nc_degree u) into tot
473 when (>= tot n)
475 (cond ((eql tot n)
476 (return (coerce-nctimes (subseq mon 0 i))))
477 (t (return nil)))))))
481 (defun $find_right_lap (left right tot-deg &aux size-lap a-lap )
482 "tot-deg is the degree of the lapped left and right. It will not catch left a subset
483 of right since it is presumed the right is in reduced form "
484 (let ((ld ($nc_degree left))
485 (rd ($nc_degree right)))
486 (setq size-lap (- (+ ld rd) tot-deg))
487 (cond ((<= size-lap 0) nil)
488 (t (setq a-lap ($lastn_ncdegree left size-lap))
489 (cond((and a-lap
491 (equal a-lap right)
492 (cond ((listp right)
493 (cond ((listp a-lap)
494 (initial-seg (cdr a-lap) (cdr right)))
495 (t (equal (second right) a-lap)))))))
496 (list ($firstn_ncdegree left (- ld size-lap))
497 a-lap
498 ($lastn_ncdegree right (- rd size-lap)))))))))
500 (defun $find_right_lap (left right tot-deg &aux size-lap a-lap )
501 "tot-deg is the degree of the lapped left and right. It will not catch left a subset
502 of right since it is presumed the right is in reduced form "
503 (let ((ld ($nc_degree left))
504 (rd ($nc_degree right)))
505 (setq size-lap (- (+ ld rd) tot-deg))
506 (cond ((<= size-lap 0) nil)
507 (t (setq a-lap ($lastn_ncdegree left size-lap))
508 (cond ((and a-lap ;;have match
509 (cond ((equal a-lap right))
510 ((and (listp a-lap) (listp right)
511 (initial-seg (cdr a-lap) (cdr right))))
512 ((and (atom a-lap) (listp right)
513 (equal (second right) a-lap)))))
514 (list ($firstn_ncdegree left (- ld size-lap))
515 a-lap
516 ($lastn_ncdegree right (- rd size-lap)))))))))
519 ;(defun $find_right_lap (left right tot-deg &aux size-lap a-lap )
520 ; "tot-deg is the degree of the lapped left and right. It will not catch left a subset
521 ; of right since it is presumed the right is in reduced form "
522 ; (let ((ld ($nc_degree left))
523 ; (rd ($nc_degree right)))
524 ; (setq size-lap (- (+ ld rd) tot-deg ))
525 ; (cond ((<= size-lap 0) nil)
526 ; (t (setq a-lap ($lastn_ncdegree left size-lap))
527 ;; (cond( a-lap
528 ;; (setq b-lap ($firstn_ncdegree right size-lap))))
529 ; (cond
530 ; ((and a-lap
531 ; (or (equal a-lap right)
532 ; (and (listp a-lap) (listp right)
533 ; (initial-seg (cdr a-lap) (cdr right)))
534 ; (listp right) (equal (second right) a-lap))
536 ;; (equal (cdr a-lap) (cdr b-lap)))))
537 ; (list ($firstn_ncdegree left (- ld size-lap))
538 ; a-lap
539 ; ($lastn_ncdegree right (- rd size-lap)))))))))
541 (defun initial-seg (seg lis)
542 "'(1 2) '(1 2 3) --> values: t '(3), '(1 2) '(0 1 2 3) --> nil, '(1 2) '(1) --> nil"
543 (prog ()
545 (or (eql (car seg) (car lis)) (return nil))
546 (setq lis (cdr lis))
547 (setq seg (cdr seg))
548 (cond ((null seg) (return (values t lis))))
549 (and (null lis) (return nil))
550 (go a)))
555 (defun plain-add-to-module-simps (poly)
556 (cond ($module_simplifications nil)
557 (t (setq $module_simplifications '((mlist)))))
558 (setq $module_simplifications
559 (append $module_simplifications (make-simp (function-numerator poly)))))
562 ;;must do two things
563 ;;I reduce module-simps leading terms wrt themselves.
564 ;;II If M is a leading term of f and DM is a dotsimp replacement,
565 ;; and there is a dotsimp repl R and the tail of R overlaps the left side of M
566 ;;then we have two ways of simplifying and need to add the difference.
567 ;;add in the simp dotsimp(Df). Note this is essentially checking for overlaps
568 ;;between the module simps and the dotsimps.
569 ;;Have two functions: I one which checks for type I and if finds, returns the (changed list of simps , t)
570 ;;else returns simps,nil
571 ;;II one which checks for the II type and returns the new list of simps ,t or just old list of simps.
574 (defun make-simp (relat &aux answ)
575 "inverse of make-relation, except that constants will be cancelled."
576 (setq answ (cond ((numberp relat)
577 (cond ((zerop relat) nil)
578 (t (list 1 0))))
579 (t (list (get (car relat) 'disrep)
580 (cond ((fifth relat)
581 (cons *fake-rat* (ratreduce (pminus (fifth relat)) (third relat))))
582 (t 0))))))
584 answ)
586 (defun dot-right-quotient (a b &aux tem answ )
587 "a.b^^-1 with error if b not final segment"
588 (cond ((atom b)
589 (cond ((atom a)
590 (cond ((eql a b) 1)
591 (t (fsignal "doesn't divide evenly"))))
592 ((equal (car (last a)) b)
593 (setq answ (butlast a)))
594 (t (fsignal "not tail"))))
596 (loop for v in (cdr b)
597 for w in (nthcdr (setq tem (1+ (- (length a) (length b)))) a)
598 ; do ;(show v w tem)
599 when (not (equal v w))
600 do (fsignal "b is not a tail of a"))
601 (setq answ (subseq a 0 tem))))
602 (cond ((cddr answ) answ)
603 ((cdr answ) (second answ))
604 (t 1)))
606 (defvar *module-overlaps-checked* nil)
608 (defun simplify-module-simps (to-deg &aux changed new-simps ( present-deg 0))
609 (declare (special present-deg))
610 (user-supply *module-overlaps-checked*)
611 (loop do (setq changed nil)
612 (loop for f in '(type-i-simp type-ii-simp) do
613 (multiple-value-setq
614 (new-simps changed)
615 (funcall f present-deg to-deg ))
616 (setq $module_simplifications new-simps)
617 (cond (changed (return 'try-again))))
618 while changed
619 finally (return $module_simplifications)))
621 (defun type-i-simp (&rest ignore &aux old-simps relat new-relat)
622 (declare (ignore ignore))
623 "eliminate simps such that one leading term is a left multiple of another, ie common right overlap"
624 (setq old-simps (setq $module_simplifications (sort-simps-by-degree $module_simplifications)))
625 (loop named sue for tail-simps on (cdr old-simps) by #'cddr
626 for i from 3 by 2
628 (let (($module_simplifications (cons '(mlist) (subseq tail-simps 0 2))))
629 (loop for (mon repl) on (cddr tail-simps) by #'cddr
630 for jj from (+ i 2) by 2
631 when (or (module-monom-must-replacep mon)
632 (and (listp repl)
633 (module-must-replacep (function-numerator (cdr repl)))))
634 do (setq relat (make-relation mon repl))
635 (setq new-relat (module-simp relat))
636 (setq new-relat (new-rat-dotsimp new-relat))
637 (cond ((numberp new-relat)
638 (cond ((zerop new-relat) nil)))
639 (t (setq new-relat (cdr new-relat))
640 (iassert (rational-functionp new-relat))
641 (setq new-relat (num new-relat))))
642 (return-from sue (values (nconc (subseq old-simps 0 (- jj 2))
643 (make-simp new-relat)
644 (nthcdr jj old-simps))
646 finally (return-from sue (values old-simps nil))))))
648 (defun dotsimp (ratl-or-poly)
649 ; (declare (values ratl-function))
650 (new-rat (new-rat-dotsimp ratl-or-poly)))
652 (defun ratl-function-id (number-or-rational-function &aux tem)
653 (cond ((affine-polynomialp number-or-rational-function)
654 number-or-rational-function)
655 ((rational-functionp number-or-rational-function)
656 number-or-rational-function)
657 ((and (listp number-or-rational-function)
658 (listp (setq tem (car number-or-rational-function)))
659 (eql (car tem) 'mrat))
660 (cdr number-or-rational-function))
661 (t (fsignal "not right type"))))
663 (defun type-ii-simp (from-deg to-deg &aux old-simps new-repl tem tem1 a b c)
664 "checks overlaps of type (a b c) where a.b is a dotsimp and b.c is a modsimp and deg(a.b.c)<=i
665 then replacement(a.b).c is a module relation to be added."
666 (declare (special present-deg))
667 (setq old-simps (setq $module_simplifications (sort-simps-by-degree $module_simplifications)))
668 (loop for i from from-deg to to-deg do
669 (block sue
670 (setq present-deg i)
671 (loop for (mon repl) on (cdr $dot_simplifications) by #'cddr do
672 (loop for (monmod repmod) on (cdr old-simps) by #'cddr
673 when (setq tem ($find_right_lap mon monmod i))
675 ;;(show (list mon monmod))
676 ;;should really use
677 ;;(setq tem (list mon monmod i)) ;but only maximal overlaps need to be checked and since we go up in degree
678 (setq tem1 (cons mon monmod))
679 (cond ((not (member tem1 *module-overlaps-checked* :test #'equal))
680 (push tem1 *module-overlaps-checked*)
681 (iassert (nc-equal (ncmul* (first tem) (second tem)) mon))
682 (iassert (nc-equal (ncmul* (second tem) (third tem)) monmod))
683 (iassert (nc-equal ($nc_degree (ncmul* mon (third tem))) i))
684 (iassert (not (numberp (second tem))))
685 ;;(setq mod-prod (n. (first tem)(function-numerator repmod)))
686 ;;(setq new-repl (n- (n. (function-numerator repl) (third tem)) mod-prod))
687 ;; rep.c - a.repmod is in the ideal defining the module!
688 (desetq (a b c) tem)
689 (setq new-repl (n- (n. (ratl-function-id repl) c)
690 (n. a (ratl-function-id repmod))))
691 (setq new-repl (dotsimp new-repl))
692 (setq new-repl (function-numerator new-repl))
693 (setq new-repl (function-numerator (module-simp new-repl)))
694 (mshow new-repl)
695 (mapcar #'displa (make-simp new-repl))
696 (cond ((pzerop new-repl) nil)
697 (t (return-from sue (values (append old-simps (make-simp new-repl)) t)))))))))
698 finally (return (values old-simps nil))))
700 ;(defun type-II-simp ( to-deg &aux old-simps new-repl repl-data tem)
701 ; (setq old-simps (setq $module_simplifications (sort-simps-by-degree $module_simplifications)))
702 ; (loop for (mon repl) on (cdr $dot_simplifications) by #'cddr
703 ; when (setq repl-data (module-monom-must-replacep mon))
704 ; do (cond ((not (member (setq tem (cons mon (car repl-data))) *module-overlaps-checked*))
705 ; (push tem *module-overlaps-checked*)
706 ; (setq new-repl (n. (dot-right-quotient mon (car repl-data)) (apply 'make-relation repl-data)))
707 ; (setq new-repl (cadr (new-rat-dotsimp new-repl)))
708 ; (return (values (append old-simps (make-simp new-repl))
709 ; t))))
710 ; finally (return (values old-simps nil))))
712 ;(let (($module_simplifications)(*module-overlaps-checked*))
713 ; (loop for v in (st-rat #$[x,-(y.z+x.x)]$)
714 ; do (plain-add-to-module-simps v))
715 ; ( simplify-module-simps))
717 (defun fake-header (form)
718 (cond
719 ((affine-polynomialp form)(cons *fake-rat* (cons form 1)))
720 ((rational-functionp form) (cons *fake-rat* form))
721 (t (fsignal "not poly or rat'l fun"))))
722 (defun $modsimp(form)
723 (cond ((atom form)(fake-header (module-simp (new-rat form))))
724 ((or (affine-polynomialp form)
725 (rational-functionp form))
726 (fake-header (module-simp form)))
727 ((mbagp form)(cons (car form) (mapcar '$modsimp (cdr form))))
728 (t (fake-header (module-simp (new-rat form))))))
730 (defun $cyclic_module_basis (degree &optional (variables $current_variables) )
731 (cyclic-module-basis variables degree ($replacements) ($module_replacements)))
733 (defun $module_replacements( &optional (module-simps $module_simplifications))
734 (cons '(mlist) (loop for (mon rep) on (cdr module-simps) by #'cddr
735 collecting mon)))
737 (defremember cyclic-module-basis (variables deg dot-replacements module-replacements &aux tem)
738 (cond ((eql deg 0)
739 (cond ((not (or (member 1 dot-replacements :test #'equal)
740 (member 1 module-replacements :test #'equal)))
741 '((mlist) 1))
742 (t '((mlist)))))
744 (cons '(mlist)
745 (loop for v in (cdr variables)
746 appending
747 (loop for w in (cdr (cyclic-module-basis variables (1- deg) dot-replacements module-replacements))
748 do (setq tem (ncmul* v w ))
749 unless (or (module-monom-must-replacep tem) ($must_replacep tem))
750 collecting tem))))))
753 (defun $module_dimensions (to-n &optional (variables $current_variables) &aux tem)
754 (loop for i from 0 to to-n
755 collecting (setq tem ($length ($cyclic_module_basis i variables))) into dims
756 summing tem into tot
757 do (format t "~%The dimension of the cyclic module in deg ~A is ~A." i tem)
758 finally (format t "~%The total dimension through degree ~A is ~A." to-n tot)
759 (return (cons '(mlist) dims ))))
762 (defun $set_up_module_simplifications(relations &optional to-deg)
763 (setq $module_simplifications nil)
764 (setq *module-overlaps-checked* nil)
765 (loop for v in (st-rat relations) do
766 (plain-add-to-module-simps v))
767 (cond (to-deg
768 (simplify-module-simps to-deg)))
769 $module_simplifications)
771 (defun $cyclic_module_basis (deg &optional (variables $current_variables))
772 (cons '(mlist) (loop for v in (cdr ($mono variables deg))
773 when (not (module-monom-must-replacep v))
774 collecting v)))
776 (defun $shift_sequence (seq n &aux (tem (make-list (abs n) :initial-element 0)))
777 "shifts a sequence of degrees over by n to use for adding to check sums"
778 (cond ((zerop n) seq)
779 ((> n 0)
780 (append ($rest seq n) tem))
781 (t ($append (cons '(mlist) tem) ($rest seq n)))))
783 (defun $euler_sum (deg-seq size-of-module map-degs)
784 (loop for v in (reverse (cdr map-degs))
785 for s in (cdr size-of-module)
786 for i from 1
787 with ans = deg-seq
788 summing v into tot
789 do (mshow ans)
790 when (evenp i)
791 do (setq ans (add* ans (mul* s ($shift_sequence deg-seq (- tot)))))
792 else do (setq ans (sub* ans (mul* s ($shift_sequence deg-seq (- tot)))))
793 finally (return ans)))
795 (defun $solve_sp (try eqns &aux simp syst solns ld)
796 (setq eqns ($sublis try eqns))
797 (setq ld (make-ldata :eqns (mapcar 'function-numerator(st-rat eqns))))
798 (des ld)
799 (setq simp (simplify-ldata ld))
800 (des simp)
801 (setq syst (loop for u in simp collecting (cons '(mlist) (mapcar 'new-disrep (ldata-eqns u)))))
802 (setq solns (loop for v in syst collecting ($append try ($fast_linsolve v ($list_variables v)))))
803 (cons '(mlist) solns))
806 (defun $nc_linear_factor (pol &aux answ (deg ($nc_degree pol)) lin fac2 result eqns solns general)
807 (setq lin ($scalar_sum '$bb ($mono $current_variables 1)))
808 (setq fac2 ($scalar_sum '$cc ($mono $current_variables (- deg 1))))
809 (setq result (sub* pol (ncmul* lin fac2)))
810 (setq result ($dotsimp result))
811 (setq eqns ($extract_linear_equations (list '(mlist) result)))
812 (mshow eqns)
813 (setq answ
814 (loop
815 with try
817 (format t "~%Supply a macsyma list of possible solns")
818 (setq try (mread-noprompt))
819 (mshow try)
820 (setq solns ($solve_sp try eqns))
821 (mshow solns)
822 (setq solns ($ratsimp solns))
823 (cond ((null (y-or-n-p "Try again?"))
824 (setq general (list '(mlist) lin fac2))
825 (return (cons '(mlist) (loop for v in (cdr solns)
826 appending (cdr ($separate_parameters ($sublis v general) "bb" "cc" "par")))))))))
827 (cond((y-or-n-p "Verify factors:?")
828 (loop for v in (cdr answ)
829 for i from 1
830 with simp
831 do (setq simp ($dotsimp (sub* pol (ncmul* (meval*(second v)) (meval* (third v))))))
832 (cond ((pzerop simp)(format t "~%soln ~A is correct:" i)
833 (displa (list '(mequal) pol (cons '(mnctimes) (cdr v) ))))
834 (t(format t "~%soln ~A is not correct ****************"))))))
835 answ)
837 (defun $degless (u v &aux (u-deg ($nc_degree u)) (v-deg ($nc_degree v)))
838 (cond ((< u-deg v-deg))
839 ((eql u-deg v-deg) (funcall $order_function u v))
840 (t nil)))