Remove some debugging prints and add comments
[maxima.git] / share / linearalgebra / matrixexp.lisp
blobfc70a550011344e46b1ef275ac991d8fbc57fad3
1 ;; Copyright 2004 by Barton Willis
3 ;; This is free software; you can redistribute it and/or
4 ;; modify it under the terms of the GNU General Public License,
5 ;; http://www.gnu.org/copyleft/gpl.html.
7 ;; This software has NO WARRANTY, not even the implied warranty of
8 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
10 ;; Innocent looking problems, such as matrixexp(matrix([x,1,0],[1,1,1],[0,1,1])),
11 ;; generate huge (and most likely worthless) expressions. These huge
12 ;; expressions strain Maxima's rational function code; to avoid errors
13 ;; such as "..quotient by polynomial of higher degree" I found it necessary to
15 ;; (1) set gcd == spmod and algebraic == true,
17 ;; (2) always give ratsimp and fullratsimp a value (even if nil) for its
18 ;; optional second argument,
20 ;; (3) set ratvars to an empty list at the start of most functions.
22 ;; I didn't try to find the real cause for these bugs. The function
23 ;; spectral_rep does check its output. Although these checks are slow,
24 ;; I recommend that they stay.
26 ;; Map the CL function f over the elements of a Maxima matrix mat and
27 ;; return a Maxima matrix. The first argument should be a CL function.
29 ($put '$matrixexp 1 '$version)
31 ;; When mat is a square matrix, return exp(mat * x). The second
32 ;; argument is optional and it defaults to 1.
34 (defun $matrixexp (mat &optional (x 1))
35 (let ((sp) (d) (p) (id) (n ($length ($args mat))) (f))
36 ($ratvars)
37 ($require_square_matrix mat '$first '$matrixexp)
38 (setq mat ($spectral_rep mat))
39 (setq sp ($first mat))
40 (setq p ($second mat))
41 (setq sp (cons '(mlist simp)
42 (mapcar #'(lambda (s) ($exp (mult s x))) (cdr sp))))
43 (setq d (mult x ($third mat)))
44 (setq id ($ident n))
45 (setq f id)
46 (setq n (+ n 1))
47 (dotimes (i n)
48 (setq f (add id (div (ncmul2 d f) (- n i)))))
49 ($fullratsimp (ncmul2 (ncmul2 sp p) f) nil)))
51 ;; Let f(var) = expr. This function returns f(mat), where 'mat' is a
52 ;; square matrix. Here expr is an expression---it isn't a function!
54 (defun require-lambda (e n pos fun-name)
55 (let ((var))
56 (if (and (consp e) (consp (car e)) (eq 'lambda (mop e)) (= 3 (length e))
57 ($listp (nth 1 e)) (setq var (cdr (nth 1 e))) (= n (length var))
58 (every #'(lambda (s) (or (symbolp s) ($subvarp s))) var))
59 (list var (nth 2 e))
60 (merror "The ~:M argument to `~:M' must be a lambda form with ~:M variable(s)" pos fun-name n))))
62 (defun $matrixfun (lamexpr mat)
63 (let ((z (gensym)) (expr) (var) (sp) (d) (p) (di)
64 (n ($length ($args mat))) (f 0))
66 ($require_square_matrix mat '$second '$matrixexp)
67 (setq expr (require-lambda lamexpr 1 '$first '$matrixfun))
68 (setq var (nth 0 (nth 0 expr)))
69 (setq expr (nth 1 expr))
70 ($ratvars)
71 (setq expr ($substitute z var expr))
72 (setq mat ($spectral_rep mat))
73 (setq sp ($first mat))
74 (setq p ($second mat))
75 (setq d ($third mat))
76 (setq di ($ident n))
77 (setq sp (cdr sp))
78 (dotimes (i (+ n 1))
79 (setq f (add
81 (ncmul2 di (ncmul2
82 (cons '(mlist simp)
83 (mapcar #'(lambda (s)
84 ($substitute s z expr)) sp)) p))))
85 (setq di (ncmul2 di d))
86 (setq expr (div ($diff expr z) (factorial (+ i 1)))))
87 ($fullratsimp (simplify f) nil)))
89 ;; Return the residue of the rational expression e with respect to the
90 ;; variable var at the point pt. Assumptions:
92 ;; (1) the denominator of e divides ker,
93 ;; (2) e is a rational expression,
94 ;; (3) ker is a polynomial,
95 ;; (4) pt is z zero of ker and ord is its order.
97 (defun rational-residue (e var pt ker ord)
98 (let (($gcd '$spmod) ($algebraic t) ($ratfac nil) (p) (q) (f (sub var pt)))
99 ($ratvars)
100 (setq e ($fullratsimp e var))
101 (setq p ($num e))
102 (setq q ($denom e))
103 (setq p (mult p ($quotient ker q var)))
104 (setq e ($fullratsimp (div p ($quotient ker (power f ord) var)) var))
105 ($fullratsimp
106 ($substitute pt var (div ($diff e var (- ord 1)) (factorial (- ord 1))))
107 nil)))
110 (defun $spectral_rep (mat)
111 ($require_square_matrix mat '$first '$spectral_rep)
112 (let (($gcd '$spmod) ($algebraic t) ($resultant '$subres) (ord) (zi)
113 ($ratfac nil) (z (gensym)) (res) (m) (n ($length ($args mat)))
114 (p) (p1) (p2) (sp) (proj))
116 ($ratvars)
117 (setq p ($newdet (sub mat (mult z ($ident n)))))
118 (if (oddp n) (setq p (mult -1 p)))
120 ;; p1 = (z - z1)(z - z2) ... (z - zk), where z1 thru zk are
121 ;; the distinct zeros of p.
123 (setq p1 ($first ($divide p ($gcd p ($diff p z) z) z)))
124 (setq p2 ($resultant p1 ($diff p1 z) z))
126 (cond ((and (not ($constantp p2)) (not (like 0 p2)))
127 ($ratvars)
128 (setq p2 ($sqfr p2))
129 (if (mminusp p2) (setq p2 (mult -1 p2)))
130 (setq p2 (if (mtimesp p2) (margs p2) (list p2)))
131 (setq p2 (mapcar #'(lambda (s) (if (mexptp s) (nth 1 s) s)) p2))
132 (setq p2 `((mtimes simp) ,@p2))
133 (mtell "Proviso: assuming ~:M ~%" `((mnotequal simp) ,p2 0))))
135 (setq sp ($solve p z))
136 (setq sp (mapcar '$rhs (cdr sp)))
137 (cond ((not (eq n (apply #'+ (cdr $multiplicities))))
138 (print `(ratvars = ,$ratvars gcd = '$gcd algebraic = ,$algebraic))
139 (print `(ratfac = ,$ratfac))
140 (merror "Unable to find the spectrum")))
142 (setq res ($fullratsimp (ncpower (sub (mult z ($ident n)) mat) -1) z))
143 (setq m (length sp))
144 (dotimes (i m)
145 (setq zi (nth i sp))
146 (setq ord (nth (+ i 1) $multiplicities))
147 (push (matrix-map #'(lambda (e) (rational-residue e z zi p ord)) res)
148 proj))
150 (setq proj (nreverse proj))
151 (setq m (length proj))
152 (dotimes (i m)
153 (setq mat (sub mat (mult (nth i sp) (nth i proj)))))
155 (cond ((check-spectral-rep proj n)
156 (push `(mlist simp) proj)
157 (push `(mlist simp) sp)
158 `((mlist simp) ,sp ,proj, ($fullratsimp mat nil)))
160 (merror "Unable to find the spectral representation")))))
162 (defun check-spectral-rep (proj n)
163 (let* ((m (length proj)) (okay) (zip ($zeromatrix n n)) (qi)
164 ($gcd '$spmod) ($algebraic t) ($ratfac nil))
165 ($ratvars)
167 (setq proj (mapcar #'(lambda (s) ($fullratsimp s nil)) proj))
168 (setq okay (like ($ident n) ($fullratsimp (apply 'add proj) nil)))
170 (dotimes (i m)
171 (setq qi (nth i proj))
172 (setq qi ($fullratsimp (sub qi (ncmul2 qi qi)) nil))
173 (setq okay (and okay (like zip qi))))
175 (dotimes (i m)
176 (setq qi (nth i proj))
177 (dotimes (j i)
178 (setq okay (and okay (like zip ($fullratsimp
179 (ncmul2 qi (nth j proj)) nil))))
180 (setq okay (and okay (like zip ($fullratsimp
181 (ncmul2 (nth j proj) qi) nil))))))
182 okay))