Remove some debugging prints and add comments
[maxima.git] / share / linearalgebra / mring.lisp
blob4460a361b871e0d6b1d5dd108db4553b732f5116
1 ;; A Maxima ring structure
2 ;; Copyright (C) 2005, 2007, 2021, 2022 Barton Willis
4 ;; Barton Willis
5 ;; Department of Mathematics
6 ;; University of Nebraska at Kearney
7 ;; Kearney NE 68847
8 ;; willisb@unk.edu
10 ;; This source code is licensed under the terms of the Lisp Lesser
11 ;; GNU Public License (LLGPL). The LLGPL consists of a preamble, published
12 ;; by Franz Inc. (http://opensource.franz.com/preamble.html), and the GNU
13 ;; Library General Public License (LGPL), version 2, or (at your option)
14 ;; any later version. When the preamble conflicts with the LGPL,
15 ;; the preamble takes precedence.
17 ;; This library is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 ;; Library General Public License for details.
22 ;; You should have received a copy of the GNU Library General Public
23 ;; License along with this library; if not, write to the
24 ;; Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
25 ;; Boston, MA 02110-1301, USA.
27 (in-package :maxima)
29 ;; Let's have version numbers 1,2,3,...
30 (eval-when (:compile-toplevel :load-toplevel :execute)
31 ($put '$mring 1 '$version))
33 ;; (1) In maxima-grobner.lisp, there is a structure 'ring.'
35 ;; (2) Some functions in this structure, for example 'great' might
36 ;; not be defined for a ring; when this is the case, a function
37 ;; can signal an error.
39 ;; (3) Floating point addition isn't associative; so a mring needn't
40 ;; be a ring. But a mring is 'close' to being a ring.
42 ;; Description of the mring fields:
44 ;; For floating point numbers (both real and complex), the lu_factor code uses
45 ;; partial pivoting. Thus lu_factor needs to be able to compare the magnitudes.
46 ;; Thus we include a function `great` in the mring structure. The function 'great`
47 ;; is always supposed be be called on the magnitude of a ring element.
49 ;; For nonordered fields (such as generalring) where partial pivoting isn't needed,
50 ;; we can define
51 ;; :great #'(lambda (a b) (declare (ignore a)) (eq t (meqp b 0)))
52 ;; This inhibits row swapping unless it is absolutely needed to avoid dividing
53 ;; by zero.
55 ;; The function coerce-to-lisp-float is only used by lu_factor to estimate the
56 ;; matrix condition number. This is only important for the floating point case.
57 ;; Setting :coerce-to-lisp-float to nil inhibits estimating the matrix condition
58 ;; number. Except for matrices of floating point numbers, it's best to set
59 ;;coerce-to-lisp-float to nil.
60 (defstruct mring
61 name
62 coerce-to-lisp-float
63 abs
64 great
65 add
66 div
67 rdiv
68 reciprocal
69 mult
70 sub
71 negate
72 psqrt
73 add-id
74 mult-id
75 fzerop
76 adjoint
77 maxima-to-mring
78 mring-to-maxima)
80 (eval-when
81 (:compile-toplevel :load-toplevel :execute)
82 (defmvar $%mrings `((mlist) $floatfield $complexfield $rationalfield $crering
83 $generalring $bigfloatfield $runningerror $noncommutingring ))
84 (defvar *gf-rings* '(gf-coeff-ring gf-ring ef-ring)) )
86 (defun $require_ring (ringname pos fun)
87 (if (or ($member ringname $%mrings) (member ringname *gf-rings*))
88 (get ringname 'ring)
89 (merror (intl:gettext "The ~:M argument of the function '~:M' must be the name of a ring") pos fun)))
91 ;; flonum-epsilon is defined in clmacs
92 (defparameter *floatfield*
93 (make-mring
94 :name '$floatfield
95 :coerce-to-lisp-float #'cl:identity
96 :abs #'abs
97 :great #'>
98 :add #'+
99 :div #'/
100 :rdiv #'/
101 :reciprocal #'/
102 :mult #'*
103 :sub #'-
104 :negate #'-
105 :psqrt #'(lambda (s) (if (>= s 0) (cl:sqrt s) nil))
106 :add-id #'(lambda () 0.0)
107 :mult-id #'(lambda () 1.0)
108 :fzerop #'(lambda (s) (< (abs s) (* 4 +flonum-epsilon+)))
109 :adjoint #'cl:identity
110 :mring-to-maxima #'cl:identity
111 :maxima-to-mring #'(lambda (s)
112 (setq s ($float s))
113 (if (floatp s) s (merror (intl:gettext "Unable to convert ~:M to a float") s)))))
115 (setf (get '$floatfield 'ring) *floatfield*)
117 (defun coerce-expr-to-clcomplex (ex)
118 (let* (($numer t)
119 ($float t)
120 (split (risplit ex))
121 ;; convert int, rat, and bfloat to float
122 (re ($float (car split)))
123 (im ($float (cdr split))))
124 (declare (special $numer $float))
125 (if (and (floatp re) (floatp im))
126 (complex re im)
127 (merror (intl:gettext "Unable to convert ~:M to a complex float") ex))))
129 (defparameter *complexfield*
130 (make-mring
131 :name '$complexfield
132 :coerce-to-lisp-float #'cl:identity
133 :abs #'cl:abs
134 :great #'>
135 :add #'+
136 :div #'/
137 :rdiv #'/
138 :reciprocal #'/
139 :mult #'*
140 :sub #'-
141 :negate #'-
142 :psqrt #'(lambda (s) (if (and (= 0 (imagpart s)) (>= (realpart s) 0)) (cl:sqrt s) nil))
143 :add-id #'(lambda () 0.0)
144 :mult-id #'(lambda () 1.0)
145 :fzerop #'(lambda (s) (< (abs s) (* 4 +flonum-epsilon+)))
146 :adjoint #'cl:conjugate
147 :mring-to-maxima #'(lambda (s) (add (realpart s) (mul '$%i (imagpart s)))) ;; was complexify
148 :maxima-to-mring #'coerce-expr-to-clcomplex))
150 (setf (get '$complexfield 'ring) *complexfield*)
152 (defun rational-square-root (z)
153 (let ((re (realpart z)) (im (imagpart z)) (q))
154 (setq re (div ($num re) ($denom re)))
155 (setq im (div ($num im) ($denom im)))
156 (setq q (risplit (ftake '%sqrt (add re (mul '$%i im)))))
157 (setq re (car q)
158 im (cdr q))
159 (cond ((and ($ratnump re) ($ratnump im))
160 (complex (/ ($num re) ($denom re))
161 (/ ($num im) ($denom im))))
162 (t nil))))
164 ;; We allow both real and complex rational numbers.
165 (defparameter *rationalfield*
166 (make-mring
167 :name '$rationalfield
168 :coerce-to-lisp-float nil
169 :abs #'cl:abs
170 :great #'(lambda (a b) (declare (ignore a)) (eql b 0))
171 :add #'+
172 :div #'/
173 :rdiv #'/
174 :reciprocal #'/
175 :mult #'*
176 :sub #'-
177 :negate #'-
178 :psqrt #'rational-square-root
179 :add-id #'(lambda () 0)
180 :mult-id #'(lambda () 1)
181 :fzerop #'(lambda (s) (eql s 0))
182 :adjoint #'cl:identity
183 :mring-to-maxima #'(lambda (s)
184 (let ((re (realpart s))
185 (im (imagpart s)))
186 (add (div (numerator re) (denominator re))
187 (mul '$%i (div (numerator im) (denominator im))))))
188 :maxima-to-mring
189 #'(lambda (s)
190 (setq s ($rationalize s))
191 (let* ((z (trisplit s))
192 (re (car z))
193 (im (cdr z)))
194 (if (and ($ratnump re) ($ratnump im))
195 (complex (/ ($num re) ($denom re))
196 (/ ($num im) ($denom im)))
197 (merror (intl:gettext "Unable to convert ~:M to a rational number") s))))))
198 (setf (get '$rationalfield 'ring) *rationalfield*)
200 (defparameter *crering*
201 (make-mring
202 :name '$crering
203 :coerce-to-lisp-float nil
204 :abs #'$cabs
205 :great #'(lambda (a b) (declare (ignore a)) (eq t (meqp b 0)))
206 :add #'add
207 :div #'div
208 :rdiv #'div
209 :reciprocal #'(lambda (s) (div 1 s))
210 :mult #'mult
211 :sub #'sub
212 :negate #'(lambda (s) (mul -1 s))
213 :psqrt #'(lambda (s) (ftake 'mexpt s (div 1 2)))
214 :add-id #'(lambda () 0)
215 :mult-id #'(lambda () 1)
216 :fzerop #'(lambda (s) (eq t (meqp s 0)))
217 :adjoint #'(lambda (s) (ftake '$conjugate s))
218 :mring-to-maxima #'cl:identity
219 :maxima-to-mring #'(lambda (s) ($rat s))))
221 (setf (get '$crering 'ring) *crering*)
223 (defparameter *generalring*
224 (make-mring
225 :name '$generalring
226 :coerce-to-lisp-float nil
227 :abs #'$cabs
228 :great #'(lambda (a b) (declare (ignore a)) (eq t (meqp b 0)))
229 :add #'(lambda (a b) (add a b))
230 :div #'(lambda (a b) (div a b))
231 :rdiv #'(lambda (a b) (div a b))
232 :reciprocal #'(lambda (s) (div 1 s))
233 :mult #'(lambda (a b) (mul a b))
234 :sub #'(lambda (a b) (sub a b))
235 :negate #'(lambda (a) (mul -1 a))
236 :psqrt #'(lambda (s) (ftake 'mexpt s (div 1 2)))
237 :add-id #'(lambda () 0)
238 :mult-id #'(lambda () 1)
239 :fzerop #'(lambda (s) (eq t (meqp s 0)))
240 :adjoint #'(lambda (s) (ftake '$conjugate s))
241 :mring-to-maxima #'cl:identity
242 :maxima-to-mring #'cl:identity))
244 (setf (get '$generalring 'ring) *generalring*)
246 (defparameter *bigfloatfield*
247 (make-mring
248 :name '$bigfloatfield
249 :coerce-to-lisp-float #'(lambda (s)
250 (setq s ($rectform ($float s)))
251 (complex ($realpart s) ($imagpart s)))
253 :abs #'$cabs
254 :great #'mgrp
255 :add #'(lambda (a b) ($rectform (add a b)))
256 :div #'(lambda (a b) ($rectform (div a b)))
257 :rdiv #'(lambda (a b) ($rectform (div a b)))
258 :reciprocal #'(lambda (s) (div 1 s))
259 :mult #'(lambda (a b) ($rectform (mul a b)))
260 :sub #'(lambda (a b) ($rectform (sub a b)))
261 :negate #'(lambda (a) (mul -1 a))
262 :psqrt #'(lambda (s) (if (mlsp s 0) nil (ftake '%sqrt s)))
263 :add-id #'(lambda () bigfloatzero)
264 :mult-id #'(lambda () bigfloatone)
265 :fzerop #'(lambda (s) (like s bigfloatzero))
266 :adjoint #'cl:identity
267 :mring-to-maxima #'cl:identity
268 :maxima-to-mring #'(lambda (s)
269 (setq s ($rectform ($bfloat s)))
270 (if (complex-number-p s #'bigfloat-or-number-p) s
271 (merror (intl:gettext "Unable to convert matrix entry to a big float"))))))
273 (setf (get '$bigfloatfield 'ring) *bigfloatfield*)
275 ;; --- *gf-rings* --- (used by src/numth.lisp) ------------------------------ ;;
276 ;; ;;
277 (defparameter *gf-coeff-ring*
278 (make-mring
279 :name 'gf-coeff-ring
280 :coerce-to-lisp-float nil
281 :abs #'gf-cmod
282 :great #'(lambda (a b) (declare (ignore a)) (= 0 b))
283 :add #'gf-cplus-b
284 :div #'(lambda (a b) (gf-ctimes a (gf-cinv b)))
285 :rdiv #'(lambda (a b) (gf-ctimes a (gf-cinv b)))
286 :reciprocal #'gf-cinv
287 :mult #'gf-ctimes
288 :sub #'(lambda (a b) (gf-cplus-b a (gf-cminus-b b)))
289 :negate #'gf-cminus-b
290 :psqrt #'(lambda (a) (let ((rs (zn-nrt a 2 *gf-char*))) (when rs (car rs))))
291 :add-id #'(lambda () 0)
292 :mult-id #'(lambda () 1)
293 :fzerop #'(lambda (s) (= 0 s))
294 :adjoint nil
295 :mring-to-maxima #'cl:identity
296 :maxima-to-mring #'cl:identity ))
298 (setf (get 'gf-coeff-ring 'ring) *gf-coeff-ring*)
300 (defparameter *gf-ring*
301 (make-mring
302 :name 'gf-ring
303 :coerce-to-lisp-float nil
304 :abs #'gf-mod
305 :great #'(lambda (a b) (declare (ignore a)) (null b))
306 :add #'gf-plus
307 :div #'(lambda (a b) (gf-times a (gf-inv b *gf-red*) *gf-red*))
308 :rdiv #'(lambda (a b) (gf-times a (gf-inv b *gf-red*) *gf-red*))
309 :reciprocal #'(lambda (a) (gf-inv a *gf-red*))
310 :mult #'(lambda (a b) (gf-times a b *gf-red*))
311 :sub #'(lambda (a b) (gf-plus a (gf-minus b)))
312 :negate #'gf-minus
313 :psqrt #'(lambda (a)
314 (let ((rs (gf-nrt-exit (gf-nrt a 2 *gf-red* *gf-ord*))))
315 (when rs (cadr rs)) ))
316 :add-id #'(lambda () nil)
317 :mult-id #'(lambda () '(0 1))
318 :fzerop #'(lambda (s) (null s))
319 :adjoint nil
320 :mring-to-maxima #'gf-x2p
321 :maxima-to-mring #'gf-p2x ))
323 (setf (get 'gf-ring 'ring) *gf-ring*)
325 (defparameter *ef-ring*
326 (make-mring
327 :name 'ef-ring
328 :coerce-to-lisp-float nil
329 :abs #'gf-mod
330 :great #'(lambda (a b) (declare (ignore a)) (null b))
331 :add #'gf-plus
332 :div #'(lambda (a b) (gf-times a (gf-inv b *ef-red*) *ef-red*))
333 :rdiv #'(lambda (a b) (gf-times a (gf-inv b *ef-red*) *ef-red*))
334 :reciprocal #'(lambda (a) (gf-inv a *ef-red*))
335 :mult #'(lambda (a b) (gf-times a b *ef-red*))
336 :sub #'(lambda (a b) (gf-plus a (gf-minus b)))
337 :negate #'gf-minus
338 :psqrt #'(lambda (a)
339 (let ((rs (gf-nrt-exit (gf-nrt a 2 *ef-red* *ef-ord*))))
340 (when rs (cadr rs)) ))
341 :add-id #'(lambda () nil)
342 :mult-id #'(lambda () '(0 1))
343 :fzerop #'(lambda (s) (null s))
344 :adjoint nil
345 :mring-to-maxima #'gf-x2p
346 :maxima-to-mring #'gf-p2x ))
348 (setf (get 'ef-ring 'ring) *ef-ring*)
349 ;; ;;
350 ;; -------------------------------------------------------------------------- ;;
352 (defun fp-abs (a)
353 (list (abs (first a)) (second a)))
355 (defun fp+ (a b)
356 (cond ((= (first a) 0.0) b)
357 ((= (first b) 0.0) a)
359 (let ((s (+ (first a) (first b))))
360 (if (= 0.0 s) (merror (intl:gettext "floating point divide by zero")))
361 (list s (ceiling (+ 1
362 (abs (/ (* (first a) (second a)) s))
363 (abs (/ (* (first b) (second b)) s)))))))))
365 (defun fp- (a b)
366 (cond ((= (first a) 0.0) (list (- (first b)) (second b)))
367 ((= (first b) 0.0) a)
369 (let ((s (- (first a) (first b))))
370 (if (= 0.0 s) (merror (intl:gettext "floating point divide by zero")))
371 (list s (ceiling (+ 1
372 (abs (/ (* (first a) (second a)) s))
373 (abs (/ (* (first b) (second b)) s)))))))))
375 (defun fp* (a b)
376 (if (or (= (first a) 0.0) (= (first b) 0.0)) (list 0.0 0)
377 (list (* (first a) (first b)) (+ 1 (second a) (second b)))))
379 (defun fp/ (a b)
380 (if (= (first a) 0) (list 0.0 0)
381 (list (/ (first a) (first b)) (+ 1 (second a) (second b)))))
383 (defun $addmatrices(fn &rest m)
384 (mfuncall '$apply '$matrixmap `((mlist) ,fn ,@m)))
386 (defparameter *runningerror*
387 (make-mring
388 :name '$runningerror
389 :coerce-to-lisp-float #'(lambda (s) (if (consp s) (first s) s))
390 :abs #'fp-abs
391 :great #'(lambda (a b) (> (first a) (first b)))
392 :add #'fp+
393 :div #'fp/
394 :rdiv #'fp/
395 :reciprocal #'(lambda (s) (fp/ (list 1 0) s))
396 :mult #'fp*
397 :sub #'fp-
398 :negate #'(lambda (s) (list (- (first s)) (second s)))
399 :psqrt #'(lambda (s) (if (> (first s) 0) (list (cl:sqrt (first s)) (+ 1 (second s))) nil))
400 :add-id #'(lambda () (list 0 0))
401 :mult-id #'(lambda () (list 1 0))
402 :fzerop #'(lambda (s) (like (first s) 0))
403 :adjoint #'cl:identity
404 :mring-to-maxima #'(lambda (s) `((mlist) ,@s))
405 :maxima-to-mring #'(lambda (s) (if ($listp s) (cdr s) (list ($float s) 1)))))
407 (setf (get '$runningerror 'ring) *runningerror*)
409 (defparameter *noncommutingring*
410 (make-mring
411 :name '$noncommutingring
412 :coerce-to-lisp-float nil
413 :abs #'$cabs
414 :great #'(lambda (a b) (declare (ignore a)) (not (invertible-matrixp b '$noncommutingring)))
415 :add #'(lambda (a b) (add a b))
416 :div #'(lambda (a b) (progn
417 (let (($matrix_element_mult ".")
418 ($matrix_element_transpose '$transpose))
419 (setq b (if ($matrixp b) ($invert_by_lu b '$noncommutingring)
420 (take '(mncexpt) b -1)))
421 (take '(mnctimes) a b))))
423 :rdiv #'(lambda (a b) (progn
424 (let (($matrix_element_mult ".")
425 ($matrix_element_transpose '$transpose))
426 (setq b (if ($matrixp b) ($invert_by_lu b '$noncommutingring)
427 (take '(mncexpt) b -1)))
428 (take '(mnctimes) b a))))
431 :reciprocal #'(lambda (s) (progn
432 (let (($matrix_element_mult ".")
433 ($matrix_element_transpose '$transpose))
434 (if ($matrixp s) ($invert_by_lu s '$noncommutingring)
435 (take '(mncexpt) s -1)))))
437 :mult #'(lambda (a b) (progn
438 (let (($matrix_element_mult ".")
439 ($matrix_element_transpose '$transpose))
440 (take '(mnctimes) a b))))
443 :sub #'(lambda (a b) (sub a b))
444 :negate #'(lambda (a) (mul -1 a))
445 :add-id #'(lambda () 0)
446 :psqrt #'(lambda (s) (take '(%sqrt) s))
447 :mult-id #'(lambda () 1)
448 :fzerop #'(lambda (s) (not (invertible-matrixp s '$noncommutingring)))
449 :adjoint #'(lambda (s) ($transpose (take '($conjugate) s)))
450 :mring-to-maxima #'cl:identity
451 :maxima-to-mring #'cl:identity))
453 (setf (get '$noncommutingring 'ring) *noncommutingring*)
455 (defun ring-eval (e fld)
456 (let ((fadd (mring-add fld))
457 (fnegate (mring-negate fld))
458 (fmult (mring-mult fld))
459 (fdiv (mring-div fld))
460 (fabs (mring-abs fld))
461 (fconvert (mring-maxima-to-mring fld)))
463 (cond ((or ($numberp e) (symbolp e))
464 (funcall fconvert (meval e)))
466 ;; I don't think an empty sum or product is possible here. If it is, append
467 ;; the appropriate initial-value to reduce. Using the :inital-value isn't
468 ;; a problem, but (fp* (a b) (1 0)) --> (a (+ b 1)). A better value is
469 ;; (fp* (a b) (1 0)) --> (a b).
471 ((op-equalp e 'mplus)
472 (reduce fadd (mapcar #'(lambda (s) (ring-eval s fld)) (margs e)) :from-end t))
474 ((op-equalp e 'mminus)
475 (funcall fnegate (ring-eval (first (margs e)) fld)))
477 ((op-equalp e 'mtimes)
478 (reduce fmult (mapcar #'(lambda (s) (ring-eval s fld)) (margs e)) :from-end t))
480 ((op-equalp e 'mquotient)
481 (funcall fdiv (ring-eval (first (margs e)) fld)(ring-eval (second (margs e)) fld)))
483 ((op-equalp e 'mabs) (funcall fabs (ring-eval (first (margs e)) fld)))
485 ((and (or (eq (mring-name fld) '$floatfield) (eq (mring-name fld) '$complexfield))
486 (consp e) (consp (car e)) (gethash (mop e) *flonum-op*))
487 (apply (gethash (mop e) *flonum-op*) (mapcar #'(lambda (s) (ring-eval s fld)) (margs e))))
489 (t (merror (intl:gettext "Unable to evaluate ~:M in the ring '~:M'") e (mring-name fld))))))
491 (defmspec $ringeval (e)
492 (let ((fld (get (or (car (member (meval (nth 2 e)) $%mrings)) '$generalring) 'ring)))
493 (funcall (mring-mring-to-maxima fld) (ring-eval (nth 1 e) fld))))