2 @c versao pt_BR baseada no md5sum abaixo:
3 @c 0ca72bd067ec8cfe8ebf26f085a9a6eb Introduction.texi
5 Inicie o Maxima com o comando "maxima" em uma janela de shell. Maxima ir@'{a} mostrar informa@,{c}@~{o}es
6 de vers@~{a}o e um prompt. Termine cada comando do Maxima com um ponto e v@'{i}rgula.
7 Encerre a utiliza@,{c}@~{a}o do Maxima com o comando "quit();". Adiante temos uma amostra de sess@~{a}o:
10 [wfs@@chromium]$ maxima
11 Maxima 5.9.1 http://maxima.sourceforge.net
12 Using Lisp CMU Common Lisp 19a
13 Distributed under the GNU Public License. See the file COPYING.
14 Dedicated to the memory of William Schelter.
15 This is a development version of Maxima. The function bug_report()
16 provides bug reporting information.
20 (%i2) expand ((x + y)^6);
22 (%o2) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
23 (%i3) factor (x^6 - 1);
25 (%o3) (x - 1) (x + 1) (x - x + 1) (x + x + 1)
30 Maxima pode buscar p@'{a}ginas de manual no formato info. Use o comando @mref{describe}
32 informa@,{c}@~{a}o sotre o comando ou todos os comandos e vari@'{a}veis contendo
33 uma sequ@^{e}ncia de caracteres.
34 O ponto de interroga@,{c}@~{a}o simples @mref{?}
35 (busca exata) e a dupla interroga@,{c}@~{a}o @mref{??}
36 @w{} (busca inexata) s@~{a}o abrevia@,{c}@~{o}es para @code{describe}:
41 0: Exponential Integrals
42 1: Functions and Variables for Elliptic Integrals
43 2: Functions and Variables for Integration
44 3: Introduction to Elliptic Functions and Integrals
45 4: Introduction to Integration
46 5: askinteger (Functions and Variables for Facts)
47 6: beta_args_sum_to_integer (Gamma and factorial Functions)
48 7: expintegral_chi (Exponential Integrals)
49 8: expintegral_ci (Exponential Integrals)
50 9: expintegral_e (Exponential Integrals)
51 10: expintegral_e1 (Exponential Integrals)
52 11: expintegral_ei (Exponential Integrals)
53 12: expintegral_li (Exponential Integrals)
54 13: expintegral_shi (Exponential Integrals)
55 14: expintegral_si (Exponential Integrals)
56 15: integerp (Functions and Variables for Numbers)
57 16: integer_partitions (Functions and Variables for Sets)
58 17: integrate (Functions and Variables for Integration)
59 18: integrate_use_rootsof (Functions and Variables for Integration)
60 19: integration_constant (Functions and Variables for Integration)
61 20: integration_constant_counter (Functions and Variables for Integration)
62 21: nonnegintegerp (Functions and Variables for Numbers)
63 Enter space-separated numbers, `all' or `none': 15 5
64 -- Function: integerp (<expr>)
65 Returns `true' if <expr> is a literal numeric integer, otherwise
68 `integerp' returns false if its argument is a symbol, even if the
69 argument is declared integer.
87 (%i8) declare (n, integer);
92 -- Function: askinteger (<expr>, integer)
93 -- Function: askinteger (<expr>)
94 -- Function: askinteger (<expr>, even)
95 -- Function: askinteger (<expr>, odd)
96 `askinteger (<expr>, integer)' attempts to determine from the
97 `assume' database whether <expr> is an integer. `askinteger'
98 prompts the user if it cannot tell otherwise, and attempt to
99 install the information in the database if possible. `askinteger
100 (<expr>)' is equivalent to `askinteger (<expr>, integer)'.
102 `askinteger (<expr>, even)' and `askinteger (<expr>, odd)'
103 likewise attempt to determine if <expr> is an even integer or odd
104 integer, respectively.
109 Para usar um resultado em c@'{a}lculos posteriores, voc@^{e} pode atribuir esse resultado a uma vari@'{a}vel ou
110 fazer uma refer@^{e}ncia a exxe c@'{a}lculo anterior por meio de seu r@'{o}tulo fornecido automaticamente. Adicionalmente, @mref{%}
111 @w{}(sinal de porcentagem) refere-se ao resultado calculado mais recentemente:
114 (%i1) u: expand ((x + y)^6);
116 (%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
119 (%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
125 Maxima conhece n@'{u}meros complexos e constantes matem@'{a}ticas:
134 Maxima pode fazer c@'{a}lculos difereciais e integrais:
137 (%i1) u: expand ((x + y)^6);
139 (%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
142 (%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
143 (%i3) integrate (1/(1 + x^3), x);
146 log(x - x + 1) sqrt(3) log(x + 1)
147 (%o3) - --------------- + ------------- + ----------
151 Maxima pode resolver sistemas lineares e equa@,{c}@~{o}es c@'{u}bicas:
154 (%i1) linsolve ([3*x + 4*y = 7, 2*x + a*y = 13], [x, y]);
156 (%o1) [x = --------, y = -------]
158 (%i2) solve (x^3 - 3*x^2 + 5*x = 15, x);
159 (%o2) [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]
162 Maxima pode resolver conjuntos de equa@,{c}@~{o}es n@~{a}o lineares. Note que se voc@^{e} n@~{a}o
163 deseja que um resultado seja mostrado, voc@^{e} pode terminar seu comando com @kbd{$} ao inv@'{e}s de
164 terminar com @kbd{;}.
167 (%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
168 (%i2) eq_2: 3*x + y = 1$
169 (%i3) solve ([eq_1, eq_2]);
170 3 sqrt(5) + 7 sqrt(5) + 3
171 (%o3) [[y = - -------------, x = -----------],
174 3 sqrt(5) - 7 sqrt(5) - 3
175 [y = -------------, x = - -----------]]
179 Maxima pode gerar gr@'{a}ficos gen@'{e}ricos de uma ou mais fun@,{c}@~{o}es:
182 (%i1) plot2d (sin(x)/x, [x, -20, 20])$
185 @image{figures/introduction1, 10cm}
188 (%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5], [y, -1.5, 2])$
191 @image{figures/introduction2, 10cm}
195 (%i3) plot3d (sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2),
196 [x, -12, 12], [y, -12, 12])$
200 @image{figures/introduction3, 12cm}
203 @c FOLLOWING TEXT DESCRIBES THE TCL/TK PLOT WINDOW WHICH IS NO LONGER THE DEFAULT
204 @c Moving the cursor to the top left corner of the plot window will pop up
205 @c a menu that will, among other things, let you generate a PostScript file
206 @c of the plot. (By default, the file is placed in your home directory.)
207 @c You can rotate a 3D plot.