Dropping more non-ASCII characters from a comment in ifactor.lisp
[maxima.git] / share / contrib / cgrind.lisp
bloba258c32e5cd690c26ec576f257d933bff94e1d21
1 (in-package :maxima)
3 (macsyma-module cgrind)
5 ;; This is heavily lifted from grind.lisp and fortra.lisp, and should have the
6 ;; same features as the fortran command. In order to work it needs to be compiled and
7 ;; then loaded, as in (for the case of cmucl):
8 ;; :lisp (compile-file "cgrind.lisp"), copy cgrind.sse2f to ~/.maxima
9 ;; load(cgrind)
10 ;; Then one can run cgrind(expression) or cgrind(matrix).
11 ;; M. Talon (2011)
14 (declare-top ($loadprint ;If NIL, no load message gets printed.
17 ;; This function is called from Macsyma toplevel. First the arguments is
18 ;; checked to be a single expression. Then if the argument is a
19 ;; symbol, and the symbol is bound to a matrix, the matrix is printed
20 ;; using an array assignment notation.
22 (defmspec $cgrind (l)
23 (setq l (fexprcheck l))
24 (let ((value (strmeval l)))
25 (cond ((msetqp l) (setq value `((mequal) ,(cadr l) ,(meval l)))))
26 (cond ((and (symbolp l) ($matrixp value))
27 ($cgrindmx l value))
28 ((and (not (atom value)) (eq (caar value) 'mequal)
29 (symbolp (cadr value)) ($matrixp (caddr value)))
30 ($cgrindmx (cadr value) (caddr value)))
31 (t (c-print value)))))
33 (defun c-print (x &optional (stream *standard-output*))
34 ;; Restructure the expression for displaying.
35 ;; Mainly sanitizes exponentials, notably exp(2/3) becomes
36 ;; exp(2.0/3.0)
38 (setq x (scanforc x))
40 ;; Protects the modifications to mexpt from creeping out.
42 (unwind-protect
44 (progn
45 (defprop mexpt msz-cmexpt grind)
47 ;; This means basic printing for atoms, grind does fancy things.
48 (setq *fortran-print* t)
50 ;; Prints using the usual grind mechanisms
51 (mgrind x stream)(write-char #\; stream)(write-char #\Newline stream))
53 ;; Restore usual mexpt property etc. before exiting this frame.
54 (defprop mexpt msz-mexpt grind)
55 (setq *fortran-print* nil))
56 '$done)
59 ;; The only modification to grind, converts a^b to pow(a,b), but taking
60 ;; care of appropriate bracketing. The argument l to the left of (MEXPT)
61 ;; has to be composed backwards. Finally a^-b has special treatment.
63 (defun msz-cmexpt (x l r)
64 (setq l (msize (cadr x) (revappend '(#\p #\o #\w #\() l) (list #\,) 'mparen 'mparen)
65 r (if (mmminusp (setq x (nformat (caddr x))))
66 (msize (cadr x) (list #\-) (cons #\) r) 'mexpt rop)
67 (msize x nil (cons #\) r ) 'mparen 'mparen)))
68 (list (+ (car l) (car r)) l r))
74 ;; Takes a name and a matrix and prints a sequence of C assignment
75 ;; statements of the form
76 ;; NAME[I][J] = <corresponding matrix element>
77 ;; This requires some formatting work unnecessary for the fortran case.
79 (defmfun $cgrindmx (name mat &optional (stream *standard-output*) &aux ($loadprint nil))
80 (cond ((not (symbolp name))
81 (merror (intl:gettext "cgrindmx: first argument must be a symbol; found: ~M") name))
82 ((not ($matrixp mat))
83 (merror (intl:gettext "cgrindmx: second argument must be a matrix; found: ~M") mat)))
84 (do ((mat (cdr mat) (cdr mat)) (i 1 (1+ i)))
85 ((null mat))
86 (do ((m (cdar mat) (cdr m)) (j 1 (1+ j)))
87 ((null m))
88 (format stream "~a[~a][~a] = " (string-left-trim "$" name) (1- i) (1- j) )
89 (c-print (car m) stream)))
90 '$done)
96 ;; This C scanning function is similar to fortscan. Prepare an expression
97 ;; for printing by converting x^(1/2) to sqrt(x), etc. Since C has no
98 ;; support for complex numbers, contrary to Fortran, ban them.
100 (defun scanforc (e)
101 (cond ((atom e) (cond ((eq e '$%i) ;; ban complex numbers
102 (merror (intl:gettext "Take real and imaginary parts")))
103 (t e)))
104 ;; %e^a -> exp(a)
105 ((and (eq (caar e) 'mexpt) (eq (cadr e) '$%e))
106 (list '(%exp simp) (scanforc (caddr e))))
107 ;; a^1/2 -> sqrt(a) 1//2 is defined as ((rat simp) 1 2)
108 ((and (eq (caar e) 'mexpt) (alike1 (caddr e) 1//2))
109 (list '(%sqrt simp) (scanforc (cadr e))))
110 ;; a^-1/2 -> 1/sqrt(a)
111 ((and (eq (caar e) 'mexpt) (alike1 (caddr e) -1//2))
112 (list '(mquotient simp) 1 (list '(%sqrt simp) (scanforc (cadr e)))))
113 ;; (1/3)*b -> b/3.0 and (-1/3)*b -> -b/3.0
114 ((and (eq (caar e) 'mtimes) (ratnump (cadr e))
115 (member (cadadr e) '(1 -1) :test #'equal))
116 (cond ((equal (cadadr e) 1) (scanforc-mtimes e))
117 (t (list '(mminus simp) (scanforc-mtimes e)))))
118 ;; 1/3 -> 1.0/3.0
119 ((eq (caar e) 'rat)
120 (list '(mquotient simp) (float (cadr e)) (float (caddr e))))
121 ;; rat(a/b) -> a/b via ratdisrep
122 ((eq (caar e) 'mrat) (scanforc (ratdisrep e)))
123 ;; ban complex numbers
124 ((and (member (caar e) '(mtimes mplus) :test #'eq)
125 (let ((a (simplify ($bothcoef e '$%i))))
126 (and (numberp (cadr a))
127 (numberp (caddr a))
128 (not (zerop1 (cadr a)))
129 (merror (intl:gettext "Take real and imaginary parts"))))))
130 ;; in general do nothing, recurse
131 (t (cons (car e) (mapcar 'scanforc (cdr e))))))
133 ;; This is used above 1/3*b*c -> b*c/3.0
134 (defun scanforc-mtimes (e)
135 (list '(mquotient simp)
136 (cond ((null (cdddr e)) (scanforc (caddr e)))
137 (t (cons (car e) (mapcar 'scanforc (cddr e)))))
138 (float (caddr (cadr e)))))