3 ***************************************************************
6 * <functionality description> *
8 * from: Computer Algebra in Applied Math. *
9 * by Rand (Pitman,1984) *
10 * Programmed by Richard Rand *
11 * These files are released to the public domain *
13 ***************************************************************
14 */ /* This program uses recursive functions to find
15 the transition curves in Mathieu's equation. To call it,
20 tc():=(input(),sign:1,find(),IF n > 0 THEN (sign:-1,find()))$
21 input():=(n:read("ENTER TRANSITION CURVE NUMBER N"),
22 m:read("ENTER DEGREE OF TRUNCATION"))$
23 find():=(delta:n^2/4,for i thru m do delta:delta+d[i]*e^i,
24 print("delta=",delta),print(" "))$
25 a[j,k]:=IF j < 0 OR k < 0 THEN 0
26 ELSE (IF j = 0 AND k = n THEN 1
31 -sum(d[i]*a[j-i,0],i,1,j))
34 +a[j-1,k+2]+sign*a[j-1,2-k])
36 -sum(d[i]*a[j-i,k],i,1,j))
38 d[j]:=IF n = 0 THEN -a[j-1,2]/2
39 ELSE -(a[j-1,n-2]+a[j-1,n+2]+sign*a[j-1,2-n])/2$