Dropping more non-ASCII characters from a comment in ifactor.lisp
[maxima.git] / share / contrib / rand / composit.mac
blobc1e2ddb31e1644ac27aa877b894850b90bf80184
1 /* Filename composit.mac
3    ***************************************************************
4    *                                                             *
5    *                     <package name>                          *
6    *                <functionality description>                  *
7    *                                                             *
8    *          from: "The Use of Symbolic Computation             *
9    *                 in Perturbation Analysis"                   *
10    *                 by Rand in Symbolic Computation             *
11    *                 in Fluid Mechanics and Heat Transfer        *
12    *                 ed H.H.Bau (ASME 1988)                      *
13    *                Programmed by Richard Rand                   *
14    *      These files are released to the public domain          *
15    *                                                             *
16    ***************************************************************
17 */ 
19 /* method of composite expansions */
20 composite():=(
21 /* input problem from keyboard */
22 print("The d.e. is: ey''+a(x)y'+b(x)y=0"),
23 print("with b.c. y(0)=y0 and y(1)=y1"),
24 a:read("enter a(x) > 0 on [0,1]"),
25 b:read("enter b(x)"),
26 y0:read("enter y0"),
27 y1:read("enter y1"),
28 print("The d.e. is: ey''+(",a,")y'+(",b,")y=0"),
29 print("with b.c. y(0)=",y0,"and y(1)=",y1),
30 trunc:read("enter truncation order"),
31 /* set up basic form of solution */
32 y:sum(f[n](x)*e^n,n,0,trunc)+
33   %e^(-g(x)/e)*sum(h[n](x)*e^n,n,0,trunc),
34 /* substitute into d.e. */
35 de1:e*diff(y,x,2)+a*diff(y,x)+b*y,
36 /* expand and collect terms */
37 de2:expand(e*de1),
38 gstuff:coeff(de2,%e^(-g(x)/e)),
39 other:expand(de2-gstuff*%e^(-g(x)/e)),
40 gstuff2:taylor(gstuff,e,0,trunc+1),
41 other2:taylor(other,e,0,trunc+1),
42 for i:0 thru trunc+1 do
43    geq[i]:coeff(gstuff2,e,i),
44 for i:1 thru trunc+1 do
45    otheq[i]:coeff(other2,e,i),
46 /* find g(x) */
47 /* assume a(x) coeff of y' is >0 st bl occurs at x=0 */
48 geq:geq[0]/h[0](x)/diff(g(x),x),
49 gsol:ode2(geq,g(x),x),
50 resultlist:[g(x)=ev(rhs(gsol),%c=0)],
51 /* find h[i](x)'s */
52 for i:0 thru trunc do(
53    heq[i]:ev(geq[i+1],resultlist,diff),
54    hsol[i]:ode2(heq[i],h[i](x),x),
55    hsol[i]:ev(hsol[i],%c=hh[i]),
56    resultlist:append(resultlist,[hsol[i]])),
57 /* find f[i](x)'s */
58 /* ff[i] = constant of integration */
59 for i:0 thru trunc do(
60    feq[i]:ev(otheq[i+1],resultlist,diff),
61    fsol[i]:ode2(feq[i],f[i](x),x),
62    fsol[i]:ev(fsol[i],%c=ff[i]),
63    resultlist:append(resultlist,[fsol[i]])),
64 /* boundary conditions */
65 /* y(0)=y0 and y(1)=y1 */
66 bc1:ev(y=y0,resultlist,x=0),
67 bc2:ev(y=y1,resultlist,x=1),
68 /* kill exponentially small %e terms since taylor won't */
69 bc2:subst(0,%e,bc2),
70 for i:0 thru trunc do
71    (bc1[i]:ratcoef(bc1,e,i),
72     bc2[i]:ratcoef(bc2,e,i)),
73 /* solve for unknown consts */
74 bceqs:makelist(bc1[i],i,0,trunc),
75 bceqs:append(bceqs,makelist(bc2[i],i,0,trunc)),
76 bcunk:makelist(hh[i],i,0,trunc),
77 bcunk:append(bcunk,makelist(ff[i],i,0,trunc)),
78 const:solve(bceqs,bcunk),
79 resultlist:ratsimp(ev(resultlist,const)),
80 ysol:ev(y,resultlist))$