1 ;;; Airy functions Ai(z) and Bi(z) - A&S 10.4
3 ;;; airy_ai(z) - Airy function Ai(z)
4 ;;; airy_dai(z) - Derivative of Airy function Ai(z)
5 ;;; airy_bi(z) - Airy function Bi(z)
6 ;;; airy_dbi(z) - Derivative of Airy function Bi(z)
8 ;;;; Copyright (C) 2005 David Billinghurst
10 ;;;; airy.lisp is free software; you can redistribute it
11 ;;;; and/or modify it under the terms of the GNU General Public
12 ;;;; License as published by the Free Software Foundation; either
13 ;;;; version 2, or (at your option) any later version.
15 ;;;; airy.lisp is distributed in the hope that it will be
16 ;;;; useful, but WITHOUT ANY WARRANTY; without even the implied
17 ;;;; warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
18 ;;;; See the GNU General Public License for more details.
20 ;;;; You should have received a copy of the GNU General Public License
21 ;;;; along with command-line.lisp; see the file COPYING. If not,
22 ;;;; write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
28 (defprop %airy_ai simplim%airy_ai simplim%function
)
29 (defprop %airy_ai
((z) ((%airy_dai
) z
)) grad
)
31 ;; airy_ai distributes over lists, matrices, and equations
32 (defprop %airy_ai
(mlist $matrix mequal
) distribute_over
)
34 ;; airy_ai has mirror symmetry
35 (defprop %airy_ai t commutes-with-conjugate
)
38 ;; http://functions.wolfram.com/03.05.21.0002.01
39 ;; (z/(3^(2/3)*gamma(2/3)))*hypergeometric([1/3],[2/3,4/3],z^3/9)
40 ;; - (3^(1/6)/(4*%pi))*z^2*gamma(2/3)*hypergeometric([2/3],[4/3,5/3],z^3/9);
45 ((mexpt) 3 ((rat) -
2 3))
46 ((mexpt) ((%gamma
) ((rat) 2 3)) -
1)
49 ((mlist) ((rat) 2 3) ((rat) 4 3))
50 ((mtimes) ((rat) 1 9) ((mexpt) z
3)))
53 ((rat) -
1 4) ((mexpt) 3 ((rat) 1 6)) ((mexpt) $%pi -
1) ((%gamma
) ((rat) 2 3))
56 ((mlist) ((rat) 4 3) ((rat) 5 3))
57 ((mtimes) ((rat) 1 9) ((mexpt) z
3)))
62 (cond ((floatp z
) (airy-ai-real z
))
63 ((complexp z
) (airy-ai-complex z
))))
65 (setf (gethash '%airy_ai
*flonum-op
*) 'airy-ai
)
67 (defun simplim%airy_ai
(expr var val
)
68 ; Look for the limit of the argument
69 (let ((z (limit (cadr expr
) var val
'think
)))
70 (cond ((or (eq z
'$inf
) ; A&S 10.4.59
71 (eq z
'$minf
)) ; A&S 10.4.60
74 ; Handle other cases with the function simplifier
75 (simplify (list '(%airy_ai
) z
))))))
77 (defun airy-ai-hypergeometric (z)
78 "Returns the hypergeometric representation of Airy Ai"
79 ;; See http://functions.wolfram.com/03.05.26.0001.01 and
80 ;; https://fungrim.org/entry/01bbb6/:
82 ;; Ai(z) = Ai(0)*hypergeometric([],[2/3],z^3/9)
83 ;; + z*Ai'(0)*hypergeometric([],[4/3],z^3/9)
84 (add (mul (ftake '%airy_ai
0)
85 (ftake '%hypergeometric
87 (list '(mlist) (div 2 3))
92 (ftake '%hypergeometric
94 (list '(mlist) (div 4 3))
98 (def-simplifier airy_ai
(z)
99 (cond ((equal z
0) ; A&S 10.4.4: Ai(0) = 3^(-2/3)/gamma(2/3)
100 (div (power 3 (div -
2 3))
101 (take '(%gamma
) (div 2 3))))
102 ((flonum-eval (mop form
) z
))
103 ((or (bigfloat-numerical-eval-p z
)
104 (complex-bigfloat-numerical-eval-p z
))
106 ($bfloat
(airy-ai-hypergeometric z
))))
107 ($hypergeometric_representation
108 (airy-ai-hypergeometric z
))
112 ;; Derivative dAi/dz of Airy function Ai(z)
113 (defprop %airy_dai simplim%airy_dai simplim%function
)
114 (defprop %airy_dai
((z) ((mtimes) z
((%airy_ai
) z
))) grad
)
115 (defprop %airy_dai
((z) ((%airy_ai
) z
)) integral
)
117 ;; airy_dai distributes over lists, matrices, and equations
118 (defprop %airy_dai
(mlist $matrix mequal
) distribute_over
)
120 ;; airy_dai has mirror symmetry
121 (defprop %airy_dai t commutes-with-conjugate
)
124 (cond ((floatp z
) (airy-dai-real z
))
125 ((complexp z
) (airy-dai-complex z
))))
127 (setf (gethash '%airy_dai
*flonum-op
*) 'airy-dai
)
129 (defun simplim%airy_dai
(expr var val
)
130 ; Look for the limit of the argument
131 (let ((z (limit (cadr expr
) var val
'think
)))
132 (cond ((eq z
'$inf
) ; A&S 10.4.61
134 ((eq z
'$minf
) ; A&S 10.4.62
137 ; Handle other cases with the function simplifier
138 (simplify (list '(%airy_dai
) z
))))))
140 (defun airy-dai-hypergeometric (z)
141 "Returns the hypergeometric representation of Ai'(x), the derivative
142 of the Airy function Ai(x)"
143 ;; See http://functions.wolfram.com/03.07.26.0001.01 and
144 ;; https://fungrim.org/entry/20e530/.
147 ;; Ai'(z) = Ai'(0)*hypergeometric([],[1/3],z^3/9)
148 ;; + z^2/2*Ai(0)*hypergeometric([],[5/3],z^3/9)
149 (add (mul (ftake '%airy_dai
0)
150 (ftake '%hypergeometric
152 (list '(mlist) (div 1 3))
157 (ftake '%hypergeometric
159 (list '(mlist) (div 5 3))
163 (def-simplifier airy_dai
(z)
164 (cond ((equal z
0) ; A&S 10.4.5: Ai'(0) = -3^(-1/3)/gamma(1/3)
166 (mul (power 3 (div 1 3))
167 (take '(%gamma
) (div 1 3)))))
168 ((flonum-eval (mop form
) z
))
169 ((or (bigfloat-numerical-eval-p z
)
170 (complex-bigfloat-numerical-eval-p z
))
172 ($bfloat
(airy-dai-hypergeometric z
))))
173 ($hypergeometric_representation
174 (airy-dai-hypergeometric z
))
177 (defprop %airy_bi simplim%airy_bi simplim%function
)
178 (defprop %airy_bi
((z) ((%airy_dbi
) z
)) grad
)
180 ;; airy_bi distributes over lists, matrices, and equations
181 (defprop %airy_bi
(mlist $matrix mequal
) distribute_over
)
183 ;; airy_bi has mirror symmetry
184 (defprop %airy_bi t commutes-with-conjugate
)
187 ;; http://functions.wolfram.com/03.06.21.0002.01
188 ;; (z/(3^(1/6)*gamma(2/3)))*hypergeometric([1/3],[2/3,4/3],z^3/9)
189 ;; + (3^(2/3)/(4*%pi))*z^2*gamma(2/3)*hypergeometric([2/3],[4/3,5/3],z^3/9);
194 ((mexpt) 3 ((rat) -
1 6))
195 ((mexpt) ((%gamma
) ((rat) 2 3)) -
1)
197 ((mlist) ((rat) 1 3))
198 ((mlist) ((rat) 2 3) ((rat) 4 3))
199 ((mtimes) ((rat) 1 9) ((mexpt) z
3)))
202 ((rat) 1 4) ((mexpt) 3 ((rat) 2 3)) ((mexpt) $%pi -
1) ((%gamma
) ((rat) 2 3))
204 ((mlist) ((rat) 2 3))
205 ((mlist) ((rat) 4 3) ((rat) 5 3))
206 ((mtimes) ((rat) 1 9) ((mexpt) z
3)))
211 (cond ((floatp z
) (airy-bi-real z
))
212 ((complexp z
) (airy-bi-complex z
))))
214 (setf (gethash '%airy_bi
*flonum-op
*) 'airy-bi
)
216 (defun simplim%airy_bi
(expr var val
)
217 ; Look for the limit of the argument
218 (let ((z (limit (cadr expr
) var val
'think
)))
219 (cond ((eq z
'$inf
) ; A&S 10.4.63
221 ((eq z
'$minf
) ; A&S 10.4.64
224 ; Handle other cases with the function simplifier
225 (simplify (list '(%airy_bi
) z
))))))
227 (defun airy-bi-hypergeometric (z)
228 "Returns the hypergeometric representation of Airy Bi"
229 ;; See http://functions.wolfram.com/03.06.26.0001.01 and https://fungrim.org/entry/bd319e/
231 ;; Bi(z) = Bi(0)*hypergeometric([],[2/3],z^3/9)
232 ;; + z*Bi'(0)*hypergeometric([],[4/2],z^3/9)
233 (add (mul (ftake '%airy_bi
0)
234 (ftake '%hypergeometric
236 (list '(mlist) (div 2 3))
241 (ftake '%hypergeometric
243 (list '(mlist) (div 4 3))
247 (def-simplifier airy_bi
(z)
248 (cond ((equal z
0) ; A&S 10.4.4: Bi(0) = sqrt(3) 3^(-2/3)/gamma(2/3)
249 (div (mul (power 3 1//2)
250 (power 3 (div -
2 3)))
251 (take '(%gamma
) (div 2 3))))
252 ((flonum-eval (mop form
) z
))
253 ((or (bigfloat-numerical-eval-p z
)
254 (complex-bigfloat-numerical-eval-p z
))
256 ($bfloat
(airy-bi-hypergeometric z
))))
257 ($hypergeometric_representation
258 (airy-bi-hypergeometric z
))
262 ;; Derivative dBi/dz of Airy function Bi(z)
263 (defprop %airy_dbi simplim%airy_dbi simplim%function
)
264 (defprop %airy_dbi
((z) ((mtimes) z
((%airy_bi
) z
))) grad
)
265 (defprop %airy_dbi
((z) ((%airy_bi
) z
)) integral
)
267 ;; airy_dbi distributes over lists, matrices, and equations
268 (defprop %airy_dbi
(mlist $matrix mequal
) distribute_over
)
270 ;; airy_dbi has mirror symmetry
271 (defprop %airy_dbi t commutes-with-conjugate
)
274 (cond ((floatp z
) (airy-dbi-real z
))
275 ((complexp z
) (airy-dbi-complex z
))))
277 (setf (gethash '%airy_dbi
*flonum-op
*) 'airy-dbi
)
279 (defun simplim%airy_dbi
(expr var val
)
280 ; Look for the limit of the argument
281 (let ((z (limit (cadr expr
) var val
'think
)))
282 (cond ((eq z
'$inf
) ; A&S 10.4.66
284 ((eq z
'$minf
) ; A&S 10.4.67
287 ; Handle other cases with the function simplifier
288 (simplify (list '(%airy_dbi
) z
))))))
290 (defun airy-dbi-hypergeometric (z)
291 "Returns the hypergeometric representation of Bi'(z), the derivative
293 ;; See http://functions.wolfram.com/03.08.26.0001.01 and
294 ;; https://fungrim.org/entry/4d65e5/.
296 ;; Bi'(z) = Bi'(0)*hypergeometric([],[1/3],z^3/9)
297 ;; + z^2/2*Bi(0)*hypergeometric([],[5/3],z^3/9)
298 (add (mul (ftake '%airy_dbi
0)
299 (ftake '%hypergeometric
301 (list '(mlist) (div 1 3))
306 (ftake '%hypergeometric
308 (list '(mlist) (div 5 3))
312 (def-simplifier airy_dbi
(z)
313 (cond ((equal z
0) ; A&S 10.4.5: Bi'(0) = sqrt(3) 3^(-1/3)/gamma(1/3)
314 (div (mul (power 3 1//2)
315 (power 3 (div -
1 3)))
316 (take '(%gamma
) (div 1 3))))
317 ((flonum-eval (mop form
) z
))
318 ((or (bigfloat-numerical-eval-p z
)
319 (complex-bigfloat-numerical-eval-p z
))
321 ($bfloat
(airy-dbi-hypergeometric z
))))
322 ($hypergeometric_representation
323 (airy-dbi-hypergeometric z
))
326 ;; Numerical routines using slatec functions
328 (defun airy-ai-real (z)
329 " Airy function Ai(z) for real z"
330 (declare (type flonum z
))
331 ;; slatec:dai issues underflow warning for z > zmax. See dai.{f,lisp}
332 ;; This value is correct for IEEE double precision
333 (let ((zmax 92.5747007268))
334 (declare (type flonum zmax
))
335 (if (< z zmax
) (slatec:dai z
) 0.0)))
337 (defun airy-ai-complex (z)
338 "Airy function Ai(z) for complex z"
339 (declare (type (complex flonum
) z
))
340 (multiple-value-bind (var-0 var-1 var-2 var-3 air aii nz ierr
)
341 (slatec:zairy
(realpart z
) (imagpart z
) 0 1 0.0 0.0 0 0)
342 (declare (type flonum air aii
)
343 (type f2cl-lib
:integer4 nz ierr
)
344 (ignore var-0 var-1 var-2 var-3
))
345 ;; Check nz and ierr for errors
346 (if (and (= nz
0) (= ierr
0)) (complex air aii
) nil
)))
348 (defun airy-dai-real (z)
349 "Derivative dAi/dz of Airy function Ai(z) for real z"
350 (declare (type flonum z
))
351 (let ((rz (sqrt (abs z
)))
352 (c (* 2/3 (expt (abs z
) 3/2))))
353 (declare (type flonum rz c
))
354 (multiple-value-bind (var-0 var-1 var-2 ai dai
)
355 (slatec:djairy z rz c
0.0 0.0)
356 (declare (ignore var-0 var-1 var-2 ai
))
359 (defun airy-dai-complex (z)
360 "Derivative dAi/dz of Airy function Ai(z) for complex z"
361 (declare (type (complex flonum
) z
))
362 (multiple-value-bind (var-0 var-1 var-2 var-3 air aii nz ierr
)
363 (slatec:zairy
(realpart z
) (imagpart z
) 1 1 0.0 0.0 0 0)
364 (declare (type flonum air aii
)
365 (type f2cl-lib
:integer4 nz ierr
)
366 (ignore var-0 var-1 var-2 var-3
))
367 ;; Check nz and ierr for errors
368 (if (and (= nz
0) (= ierr
0)) (complex air aii
) nil
)))
370 (defun airy-bi-real (z)
371 "Airy function Bi(z) for real z"
372 (declare (type flonum z
))
373 ;; slatec:dbi issues overflows for z > zmax. See dbi.{f,lisp}
374 ;; This value is correct for IEEE double precision
375 (let ((zmax 104.2179765192136))
376 (declare (type flonum zmax
))
377 (if (< z zmax
) (slatec:dbi z
) nil
)))
379 (defun airy-bi-complex (z)
380 "Airy function Bi(z) for complex z"
381 (declare (type (complex flonum
) z
))
382 (multiple-value-bind (var-0 var-1 var-2 var-3 bir bii ierr
)
383 (slatec:zbiry
(realpart z
) (imagpart z
) 0 1 0.0 0.0 0)
384 (declare (type flonum bir bii
)
385 (type f2cl-lib
:integer4 ierr
)
386 (ignore var-0 var-1 var-2 var-3
))
387 ;; Check ierr for errors
388 (if (= ierr
0) (complex bir bii
) nil
)))
390 (defun airy-dbi-real (z)
391 "Derivative dBi/dz of Airy function Bi(z) for real z"
392 (declare (type flonum z
))
393 ;; Overflows for z > zmax.
394 ;; This value is correct for IEEE double precision
395 (let ((zmax 104.1525))
396 (declare (type flonum zmax
))
398 (let ((rz (sqrt (abs z
)))
399 (c (* 2/3 (expt (abs z
) 3/2))))
400 (declare (type flonum rz c
))
401 (multiple-value-bind (var-0 var-1 var-2 bi dbi
)
402 (slatec:dyairy z rz c
0.0 0.0)
403 (declare (type flonum bi dbi
)
404 (ignore var-0 var-1 var-2 bi
))
406 ;; Will overflow. Return unevaluated.
409 (defun airy-dbi-complex (z)
410 "Derivative dBi/dz of Airy function Bi(z) for complex z"
411 (declare (type (complex flonum
) z
))
412 (multiple-value-bind (var-0 var-1 var-2 var-3 bir bii ierr
)
413 (slatec:zbiry
(realpart z
) (imagpart z
) 1 1 0.0 0.0 0)
414 (declare (type flonum bir bii
)
415 (type f2cl-lib
:integer4 ierr
)
416 (ignore var-0 var-1 var-2 var-3
))
417 ;; Check ierr for errors
418 (if (= ierr
0) (complex bir bii
) nil
)))