Description of maxima_unicode_display in reference manual,
[maxima.git] / share / lapack / eigensys.lisp
blobc641dc52886e438702c0c0ef61d0f5d476c8fad0
1 (in-package :maxima)
3 (defun maxima-matrix-dims (a)
4 (let ((row (second a)))
5 ;; Should we check that all rows have the same length?
6 (values (length (cdr a)) (length (cdr row)))))
8 (defun complex-maxima-matrix-p (a)
9 (dolist (row (cdr a))
10 (dolist (col (cdr row))
11 (unless (eql ($imagpart col) 0)
12 (return-from complex-maxima-matrix-p t))))
13 nil)
15 (defun lapack-lispify-matrix (a nrow ncol &optional (assume-complex-maxima-matrix-p nil))
16 "Convert a Maxima matrix A of dimension NROW and NCOL to Lisp matrix
17 suitable for use with LAPACK"
18 (setq a ($float a))
19 (let* ((array-type (if (or assume-complex-maxima-matrix-p (complex-maxima-matrix-p a))
20 '(complex flonum)
21 'flonum))
22 (mat (make-array (* nrow ncol)
23 :element-type array-type))
24 (mat-2d (make-array (list ncol nrow)
25 :element-type array-type
26 :displaced-to mat))
27 (r 0))
28 (dolist (row (cdr a))
29 (let ((c 0))
30 (dolist (col (cdr row))
31 ;; Fortran matrices are in column-major order!
32 (setf (aref mat-2d c r) (if (eql array-type 'flonum)
33 (coerce col 'flonum)
34 (coerce (complex ($realpart col) ($imagpart col))
35 '(complex flonum))
37 (incf c)))
38 (incf r))
39 mat))
41 (defun lapack-maxify-matrix (nrow ncol a)
42 "Convert an LAPACK matrix of dimensions NROW and NCOL into a Maxima
43 matrix (list of lists)"
44 (let ((2d (make-array (list ncol nrow) :element-type (array-element-type a)
45 :displaced-to a)))
46 (let (res)
47 (dotimes (r nrow)
48 (let (row)
49 (dotimes (c ncol)
50 ;; Fortran arrays are column-major order!
51 (let ((v (aref 2d c r)))
52 (push (add (realpart v) (mul '$%i (imagpart v))) row)))
53 (push `((mlist) ,@(nreverse row)) res)))
54 `(($matrix) ,@(nreverse res)))))
56 (defun $dgeev (a &optional right-vec-p left-vec-p)
58 DGEEV computes for an N-by-N real nonsymmetric matrix A, the
59 eigenvalues and, optionally, the left and/or right eigenvectors.
61 The right eigenvector v(j) of A satisfies
62 A * v(j) = lambda(j) * v(j)
63 where lambda(j) is its eigenvalue.
64 The left eigenvector u(j) of A satisfies
65 u(j)**H * A = lambda(j) * u(j)**H
66 where u(j)**H denotes the conjugate transpose of u(j).
68 The computed eigenvectors are normalized to have Euclidean norm
69 equal to 1 and largest component real.
71 A list of three items is returned. The first item is a list of the
72 eigenvectors. The second item is false or the matrix of right
73 eigenvectors. The last itme is false or the matrix of left
74 eigenvectors."
75 (flet ((make-eigval (wr wi)
76 `((mlist) ,@(map 'list #'(lambda (r i)
77 (add r (mul '$%i i)))
78 wr wi)))
79 (make-eigvec (n vr wi)
80 ;; dgeev stores the eigen vectors in a special way. Undo
81 ;; that. For simplicity, we create a 2-D matrix and store
82 ;; the eigenvectors there. Then we convert that matrix
83 ;; into a form that maxima wants. Somewhat inefficient.
84 (let ((evec (make-array (list n n))))
85 (do ((col 0 (incf col))
86 (posn 0))
87 ((>= col n))
88 (cond ((zerop (aref wi col))
89 (dotimes (row n)
90 (setf (aref evec row col) (aref vr posn))
91 (incf posn)))
93 (dotimes (row n)
94 (let* ((next-posn (+ posn n))
95 (val+ (add (aref vr posn)
96 (mul '$%i (aref vr next-posn))))
97 (val- (sub (aref vr posn)
98 (mul '$%i (aref vr next-posn)))))
99 (setf (aref evec row col) val+)
100 (setf (aref evec row (1+ col)) val-)
101 (incf posn)))
102 ;; Skip over the next column, which we've already used
103 (incf col)
104 (incf posn n))))
105 ;; Now convert this 2-D Lisp matrix into a maxima matrix
106 (let (res)
107 (dotimes (r n)
108 (let (row)
109 (dotimes (c n)
110 (push (aref evec r c) row))
111 (push `((mlist) ,@(nreverse row)) res)))
112 `(($matrix) ,@(nreverse res)))
115 (let* ((n (maxima-matrix-dims a))
116 (a-mat (lapack-lispify-matrix a n n))
117 (wr (make-array n :element-type 'flonum))
118 (wi (make-array n :element-type 'flonum))
119 (vl (make-array (if left-vec-p (* n n) 0)
120 :element-type 'flonum))
121 (vr (make-array (if right-vec-p (* n n) 0)
122 :element-type 'flonum)))
123 ;; XXX: FIXME: We need to do more error checking in the calls to
124 ;; dgeev!
125 (multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
126 z-ldvl z-vr z-ldvr z-work z-lwork info)
127 ;; Figure out how much space we need in the work array.
128 (lapack:dgeev (if left-vec-p "V" "N")
129 (if right-vec-p "V" "N")
130 n a-mat n wr wi vl n vr n wr -1 0)
131 (declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
132 z-ldvl z-vr z-ldvr z-work z-lwork info))
133 (let* ((opt-lwork (truncate (aref wr 0)))
134 (work (make-array opt-lwork :element-type 'flonum)))
135 ;; Now do the work with the optimum size of the work space.
136 (multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
137 z-ldvl z-vr z-ldvr z-work z-lwork info)
138 (lapack:dgeev (if left-vec-p "V" "N")
139 (if right-vec-p "V" "N")
140 n a-mat n wr wi vl n vr n work opt-lwork 0)
141 (declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
142 z-ldvl z-vr z-ldvr z-work z-lwork))
143 (cond ((< info 0)
144 (merror "DGEEV: invalid arguments: ~D" info))
145 ((> info 0)
146 (merror "DGEEV: failed to converge: ~D" info)))
147 ;; Convert wr+%i*wi to maxima form
148 #+nil
149 (progn
150 (format t "info = ~A~%" info)
151 (format t "lwork = ~A~%" (aref work 0))
152 (format t "vr = ~A~%" vr))
153 (let ((e-val (make-eigval wr wi))
154 (e-vec-right (if right-vec-p
155 (make-eigvec n vr wi)
156 nil))
157 (e-vec-left (if left-vec-p
158 (make-eigvec n vl wi)
159 nil)))
160 `((mlist) ,e-val ,e-vec-right ,e-vec-left))))))))
162 (defun $dgesvd (a &optional jobu jobvt)
164 DGESVD computes the singular value decomposition (SVD) of a real
165 M-by-N matrix A, optionally computing the left and/or right singular
166 vectors. The SVD is written
168 A = U * SIGMA * transpose(V)
170 where SIGMA is an M-by-N matrix which is zero except for its
171 min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
172 V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
173 are the singular values of A; they are real and non-negative, and
174 are returned in descending order. The first min(m,n) columns of
175 U and V are the left and right singular vectors of A.
177 Note that the routine returns V**T, not V.
179 A list of three items is returned. The first is a list containing the
180 non-zero elements of SIGMA. If jobu is not false, The second element
181 is the matrix U. Otherwise it is false. Similarly, the third element
182 is V**T or false, depending on jobvt."
184 (flet ((maxify-vector (v)
185 `((mlist) ,@(coerce v 'list)))
186 (fixup-jobu (arg)
187 (if arg "All columns of U" "No columns of U"))
188 (fixup-jobvt (arg)
189 (if arg "All columns of V^T" "No columns of V^T")))
190 (multiple-value-bind (nrow ncol)
191 (maxima-matrix-dims a)
192 (let* ((a-mat (lapack-lispify-matrix a nrow ncol))
193 (s (make-array (min nrow ncol) :element-type 'flonum))
194 (u (make-array (* nrow nrow) :element-type 'flonum))
195 (u1 (make-array (list nrow nrow) :element-type 'flonum
196 :displaced-to u))
197 (vt (make-array (* ncol ncol)
198 :element-type 'flonum))
199 (vt1 (make-array (list ncol ncol) :element-type 'flonum
200 :displaced-to vt))
201 (wr (make-array 1 :element-type 'flonum)))
202 ;; XXX: FIXME: We need to do more error checking in the calls to
203 ;; dgesvd!
204 (multiple-value-bind (z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u z-ldu
205 z-vt z-ldvt z-work z-lwork info)
206 ;; Figure out the optimum size for the work array
207 (lapack::dgesvd (fixup-jobu jobu)
208 (fixup-jobvt jobvt)
209 nrow ncol a-mat nrow
210 s u nrow
211 vt ncol
212 wr -1
214 (declare (ignore z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u z-ldu
215 z-vt z-ldvt z-work z-lwork info))
216 (let* ((opt-lwork (truncate (aref wr 0)))
217 (work (make-array opt-lwork :element-type 'flonum)))
218 ;; Allocate the optimum work array and do the requested
219 ;; computation.
220 (multiple-value-bind (z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u
221 z-ldu z-vt z-ldvt z-work z-lwork info)
222 (lapack::dgesvd (fixup-jobu jobu)
223 (fixup-jobvt jobvt)
224 nrow ncol a-mat nrow
225 s u nrow
226 vt ncol
227 work opt-lwork
229 (declare (ignore z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u z-ldu
230 z-vt z-ldvt z-work z-lwork))
231 (cond ((< info 0)
232 (merror "DGESVD: invalid arguments: ~D" info))
233 ((> info 0)
234 (merror "DGESVD: failed to converge: ~D" info)))
235 (let ((u-max (if jobu
236 (lapack-maxify-matrix nrow nrow u1)
237 nil))
238 (vt-max (if jobvt
239 (lapack-maxify-matrix ncol ncol vt1)
240 nil))
241 (s-max (maxify-vector s)))
242 `((mlist) ,s-max ,u-max ,vt-max)))))))))
246 (defun $dlange (norm a)
248 DLANGE returns the value
250 DLANGE = ( max(abs(A(i,j))), NORM = '$max
252 ( norm1(A), NORM = '$one_norm
254 ( normI(A), NORM = '$inf_norm
256 ( normF(A), NORM = '$frobenius
258 where norm1 denotes the one norm of a matrix (maximum column sum),
259 normI denotes the infinity norm of a matrix (maximum row sum) and
260 normF denotes the Frobenius norm of a matrix (square root of sum of
261 squares). Note that max(abs(A(i,j))) is not a matrix norm."
263 ;; Norm should be '$max, '$one_norm, '$inf_norm, '$frobenius
264 (multiple-value-bind (nrows ncols)
265 (maxima-matrix-dims a)
266 (let* ((a-mat (lapack-lispify-matrix a nrows ncols))
267 (norm-type (ecase norm
268 ($max "M")
269 ($one_norm "O")
270 ($inf_norm "I")
271 ($frobenius "F")))
272 (work (make-array (if (equal norm-type "I") nrows 0)
273 :element-type 'flonum)))
274 (lapack::dlange norm-type nrows ncols a-mat nrows work))))
277 (defun $zlange (norm a)
279 DLANGE returns the value
281 DLANGE = ( max(abs(A(i,j))), NORM = '$max
283 ( norm1(A), NORM = '$one_norm
285 ( normI(A), NORM = '$inf_norm
287 ( normF(A), NORM = '$frobenius
289 where norm1 denotes the one norm of a matrix (maximum column sum),
290 normI denotes the infinity norm of a matrix (maximum row sum) and
291 normF denotes the Frobenius norm of a matrix (square root of sum of
292 squares). Note that max(abs(A(i,j))) is not a matrix norm."
294 ;; Norm should be '$max, '$one_norm, '$inf_norm, '$frobenius
295 (multiple-value-bind (nrows ncols)
296 (maxima-matrix-dims a)
297 (let* ((a-mat (lapack-lispify-matrix a nrows ncols))
298 (norm-type (ecase norm
299 ($max "M")
300 ($one_norm "O")
301 ($inf_norm "I")
302 ($frobenius "F")))
303 (work (make-array (if (equal norm-type "I") nrows 0)
304 :element-type 'flonum)))
305 (lapack::zlange norm-type nrows ncols a-mat nrows work))))
307 (defun $zgeev (a &optional right-vec-p left-vec-p)
309 ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
310 eigenvalues and, optionally, the left and/or right eigenvectors.
312 The right eigenvector v(j) of A satisfies
313 A * v(j) = lambda(j) * v(j)
314 where lambda(j) is its eigenvalue.
315 The left eigenvector u(j) of A satisfies
316 u(j)**H * A = lambda(j) * u(j)**H
317 where u(j)**H denotes the conjugate transpose of u(j).
319 The computed eigenvectors are normalized to have Euclidean norm
320 equal to 1 and largest component real.
322 A list of three items is returned. The first item is a list of the
323 eigenvectors. The second item is false or the matrix of right
324 eigenvectors. The last itme is false or the matrix of left
325 eigenvectors."
326 (flet ((make-eigval (w)
327 `((mlist) ,@(map 'list #'(lambda (z)
328 (add (realpart z) (mul '$%i (imagpart z))))
329 w))))
331 (let* ((n (maxima-matrix-dims a))
332 (a-mat (lapack-lispify-matrix a n n t))
333 (w (make-array n :element-type '(complex flonum)))
334 (vl (make-array (if left-vec-p (* n n) 0)
335 :element-type '(complex flonum)))
336 (vr (make-array (if right-vec-p (* n n) 0)
337 :element-type '(complex flonum)))
338 (rwork (make-array 1 :element-type 'flonum)))
339 ;; XXX: FIXME: We need to do more error checking in the calls to
340 ;; zgeev!
341 (multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
342 z-ldvl z-vr z-ldvr z-work z-lwork info)
343 ;; Figure out how much space we need in the work array.
344 (lapack:zgeev (if left-vec-p "V" "N")
345 (if right-vec-p "V" "N")
346 n a-mat n w vl n vr n w -1 rwork 0)
347 (declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
348 z-ldvl z-vr z-ldvr z-work z-lwork info))
349 (let* ((opt-lwork (truncate (realpart (aref w 0))))
350 (work (make-array opt-lwork :element-type '(complex flonum)))
351 (rwork (make-array opt-lwork :element-type 'flonum)))
352 ;; Now do the work with the optimum size of the work space.
353 (multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
354 z-ldvl z-vr z-ldvr z-work z-lwork info)
355 (lapack:zgeev (if left-vec-p "V" "N")
356 (if right-vec-p "V" "N")
357 n a-mat n w vl n vr n work opt-lwork rwork 0)
358 (declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
359 z-ldvl z-vr z-ldvr z-work z-lwork))
360 (cond ((< info 0)
361 (merror "ZGEEV: invalid arguments: ~D" info))
362 ((> info 0)
363 (merror "ZGEEV: failed to converge: ~D" info)))
364 (let ((e-val (make-eigval w))
365 (e-vec-right (if right-vec-p
366 (lapack-maxify-matrix n n vr)
367 nil))
368 (e-vec-left (if left-vec-p
369 (lapack-maxify-matrix n n vl)
370 nil)))
371 `((mlist) ,e-val ,e-vec-right ,e-vec-left))))))))
373 (defun $zheev (a &optional eigen-vector-p)
374 (flet ((make-eigval (w)
375 `((mlist) ,@(map 'list #'(lambda (z)
376 (add (realpart z) (mul '$%i (imagpart z))))
377 w))))
379 (let* ((n (maxima-matrix-dims a))
380 (a-mat (lapack-lispify-matrix a n n t))
381 (w (make-array n :element-type 'flonum))
382 (work (make-array 1 :element-type '(complex flonum)))
383 (rwork (make-array (max 1 (- (* 3 n) 2))
384 :element-type 'flonum)))
385 ;; XXX: FIXME: We need to do more error checking in the calls to
386 ;; zgeev!
387 (multiple-value-bind (z-jobz z-uplo z-n z-a z-lda z-w z-work
388 z-lwork z-rwork info)
389 ;; Figure out how much space we need in the work array.
390 (lapack:zheev (if eigen-vector-p "V" "N")
393 a-mat
396 work
398 rwork
400 (declare (ignore z-jobz z-uplo z-n z-a z-lda z-w z-work
401 z-lwork z-rwork))
402 (let* ((opt-lwork (truncate (realpart (aref work 0))))
403 (work (make-array opt-lwork :element-type '(complex flonum))))
404 ;; Now do the work with the optimum size of the work space.
405 (multiple-value-bind (z-jobz z-uplo z-n z-a z-lda z-w z-work
406 z-lwork z-rwork info)
407 (lapack:zheev (if eigen-vector-p "V" "N")
410 a-mat
413 work
414 opt-lwork
415 rwork
417 (declare (ignore z-jobz z-uplo z-n z-a z-lda z-w z-work
418 z-lwork z-rwork))
419 (cond ((< info 0)
420 (merror "ZHEEV: invalid arguments: ~D" info))
421 ((> info 0)
422 (merror "ZHEEV: failed to converge: ~D" info)))
423 (let ((e-val (make-eigval w))
424 (e-vec (if eigen-vector-p
425 (lapack-maxify-matrix n n a-mat)
426 nil)))
427 `((mlist) ,e-val ,e-vec))))))))