1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (macsyma-module combin
)
15 ;; It seems *a must really be special because it's referenced in this
16 ;; file, but is not set here. I (rtoy) don't know what *a is intended
17 ;; to hold, and *a is declare special in lots of files.
18 (declare-top (special *a
))
20 (load-macsyma-macros mhayat rzmac ratmac
)
22 ;; minfactorial and factcomb stuff
24 (defmfun $makefact
(e)
25 (let ((makef t
)) (if (atom e
) e
(simplify (makefact1 e
)))))
29 ((eq (caar e
) '%binomial
)
30 (subst (makefact1 (cadr e
)) 'x
31 (subst (makefact1 (caddr e
)) 'y
32 '((mtimes) ((mfactorial) x
)
33 ((mexpt) ((mfactorial) y
) -
1)
34 ((mexpt) ((mfactorial) ((mplus) x
((mtimes) -
1 y
)))
36 ((eq (caar e
) '%gamma
)
37 (list '(mfactorial) (list '(mplus) -
1 (makefact1 (cadr e
)))))
39 (makefact1 (subst (cadr e
) 'x
41 '((mtimes) ((%gamma
) x
)
43 ((mexpt) ((%gamma
) ((mplus) x y
)) -
1))))))
44 (t (recur-apply #'makefact1 e
))))
46 (defmfun $makegamma
(e)
47 (if (atom e
) e
(simplify (makegamma1 ($makefact e
)))))
49 (defmfun $minfactorial
(e)
50 (let (*mfactl
*factlist
)
54 ((eq (caar e
) 'mfactorial
)
55 ;; Replace factorial with simplified expression from *factlist.
56 (simplifya (cdr (assoc (cadr e
) *factlist
:test
#'equal
)) nil
))
57 ((member (caar e
) '(%sum %derivative %integrate %product
) :test
#'eq
)
58 (cons (list (caar e
)) (cons (evfact (cadr e
)) (cddr e
))))
59 (t (recur-apply #'evfact e
))))
62 (cond ((null l
) (push (list e
) *mfactl
))
63 ((numberp (setq n
($ratsimp
`((mplus) ,e
((mtimes) -
1 ,(caar l
))))))
65 (rplacd (car l
) (cons e
(cdar l
))))
66 ((rplaca l
(cons e
(car l
))))))
67 ((adfactl e
(cdr l
))))))
70 ((eq (caar e
) 'mfactorial
)
71 (and (null (member (cadr e
) *factlist
:test
#'equal
))
73 (push (cadr e
) *factlist
)
74 (adfactl (cadr e
) *mfactl
))))
75 ((member (caar e
) '(%sum %derivative %integrate %product
) :test
#'eq
)
77 ((mapc #'getfact
(cdr e
)))))
79 (do ((al *mfactl
(cdr al
)))
80 ((member (car e
) (car al
) :test
#'equal
)
85 ($ratsimp
(list '(mplus) (car e
)
86 (list '(mtimes) -
1 (caar al
)))) 1)
87 (list '(mfactorial) (caar al
)))))))))
88 (if (specrepp e
) (setq e
(specdisrep e
)))
90 (mapl #'evfac1
*factlist
)
91 (setq e
(evfact e
)))))
93 (defmfun $factcomb
(e)
94 (let ((varlist varlist
) $ratfac
(ratrep (and (not (atom e
)) (eq (caar e
) 'mrat
))))
95 (and ratrep
(setq e
(ratdisrep e
)))
98 (t (simplify (cons (list (caar e
))
99 (mapcar #'factcomb1
(cdr e
)))))))
100 (or $sumsplitfact
(setq e
($minfactorial e
)))
101 (if ratrep
(ratf e
) e
)))
104 (cond ((free e
'mfactorial
) e
)
105 ((member (caar e
) '(mplus mtimes mexpt
) :test
#'eq
)
106 (cons (list (caar e
)) (mapcar #'factcomb1
(cdr e
))))
107 (t (setq e
(factcomb e
))
110 (cons (list (caar e
)) (mapcar #'factcomb1
(cdr e
)))))))
114 ((free e
'mfactorial
) e
)
115 ((member (caar e
) '(mplus mtimes
) :test
#'eq
)
116 (factpluscomb (factcombplus e
)))
117 ((eq (caar e
) 'mexpt
)
118 (simpexpt (list '(mexpt) (factcomb (cadr e
))
119 (factcomb (caddr e
)))
123 (t (cons (car e
) (mapcar #'factcomb
(cdr e
))))))
127 (setq e
(factqsnt ($ratdisrep
(cons (car e
) (cons (cadr e
) 1)))
128 ($ratdisrep
(cons (car e
) (cons (cddr e
) 1)))))
130 (div* (factpluscomb nn
*) (factpluscomb dn
*))))
132 (defun factqsnt (num den
)
134 (let (nn* dn
* (e (factpluscomb (div* den num
))))
136 (factpluscomb (div* dn
* nn
*)))))
138 (defun factcombplus (e)
140 (do ((l1 (nplus e
) (cdr l1
))
143 (simplus (cons '(mplus)
144 (mapcar #'(lambda (q) (factqsnt (car q
) (cdr q
))) l2
))
147 (do ((l3 l2
(cdr l3
))
149 ((null l3
) (setq l2
(nconc l2
(list (cons nn
* dn
*)))))
151 (cond ((not (free ($gcd dn
* (cdr l4
)) 'mfactorial
))
152 (numden (list '(mplus) (div* nn
* dn
*)
153 (div* (car l4
) (cdr l4
))))
154 (setq l2
(delete l4 l2
:count
1 :test
#'eq
))))))))
157 (defun getfactorial (e)
159 ((member (caar e
) '(mplus mtimes
) :test
#'eq
)
160 (do ((e (cdr e
) (cdr e
))
163 (setq a
(getfactorial (car e
)))
165 ((eq (caar e
) 'mexpt
)
166 (getfactorial (cadr e
)))
167 ((eq (caar e
) 'mfactorial
)
168 (and (null (memalike (cadr e
) donel
))
170 (car (setq donel
(cons (cadr e
) donel
))))))))
172 (defun factplus1 (exp e fact
)
175 (fpn (list '(mplus) fact
1) (list '(mplus) fact i
))
178 (setq div
(dypheyed (car l
) (list '(mexpt) fpn e
)))
179 (and (or $sumsplitfact
(equal (cadr div
) 0))
180 (null (equal (car div
) 0))
181 (rplaca l
(cadr div
))
182 (rplacd l
(cons (cond ((cadr l
)
183 (simplus (list '(mplus) (car div
) (cadr l
))
187 (cons (simplus fpn
1 nil
) donel
))
191 (defun factpluscomb (e)
194 tag
(setq e
(factexpand e
)
195 fact
(getfactorial e
))
197 (setq indl
(mapcar #'(lambda (q) (factplusdep q fact
))
199 tt
(factpowerselect indl
(nplus e
) fact
)
201 (cons '(mplus) (mapcar #'(lambda (q) (factplus2 q fact
))
203 (t (factplus2 (car tt
) fact
))))
207 (if (eq (caar e
) 'mplus
)
211 (defun factexpand (e)
213 ((eq (caar e
) 'mplus
)
214 (simplus (cons '(mplus) (mapcar #'factexpand
(cdr e
)))
216 ((free e
'mfactorial
) e
)
220 (defun factplusdep (e fact
)
221 (cond ((alike1 e fact
) 1)
223 ((eq (caar e
) 'mtimes
)
224 (do ((l (cdr e
) (cdr l
))
228 (and (setq out
(factplusdep e fact
))
230 ((eq (caar e
) 'mexpt
)
231 (let ((fto (factplusdep (cadr e
) fact
)))
232 (and fto
(simptimes (list '(mtimes) fto
234 ((eq (caar e
) 'mplus
)
235 (same (mapcar #'(lambda (q) (factplusdep q fact
))
240 (cd (cdr l
) (cdr cd
))
247 (defun factpowerselect (indl e fact
)
249 (do ((i indl
(cdr i
))
255 (setq exp
($divide
(car j
) `((mexpt) ,fact
,expt
)))
256 ;; (car j) need not involve fact^expt since
257 ;; fact^expt may be the gcd of the num and denom
258 ;; of (car j) and $divide will cancel this out.
259 (if (not (equal (cadr exp
) 0))
265 (cond ((null l
) (setq l
(list (list expt exp
))))
266 ((setq fl
(assolike expt l
))
267 (nconc fl
(list exp
)))
268 (t (nconc l
(list (list expt exp
))))))))
270 (defun factplus2 (l fact
)
271 (let ((expt (car l
)))
272 (cond (expt (factplus0 (cond ((cddr l
) (rplaca l
'(mplus)))
275 (t (rplaca l
'(mplus))))))
277 (defun factplus0 (r e fact
)
279 (fpn fact
(list '(mplus) fact i
))
280 (j -
1) (exp) (rfpn) (div))
282 (setq rfpn
(simpexpt (list '(mexpt) fpn -
1) 1 nil
))
283 (setq div
(dypheyed r
(simpexpt (list '(mexpt) rfpn e
) 1 nil
)))
284 (cond ((or (null (or $sumsplitfact
(equal (cadr div
) 0)))
286 (return (simplus (cons '(mplus) (mapcar
289 (list '(mtimes) q
(list '(mexpt)
290 (list '(mfactorial) (list '(mplus) fpn j
)) e
)))
291 (factplus1 (cons r exp
) e fpn
)))
293 (t (setq r
(car div
))
294 (setq exp
(cons (cadr div
) exp
))))))
298 (defun dypheyed (r f
)
302 p1
(pdegreevector (cadr r1
))
303 p2
(pdegreevector (cddr r1
)))
306 (k (caddar r1
) (cdr k
)))
307 ((null k
) (kansel r
(cadr r1
) (cddr r1
)))
308 (cond ((> (car i
) (car j
))
309 (return (cdr ($divide r f
(car k
)))))))))
311 (defun kansel (r n d
)
314 p1
(testdivide (cadr r1
) n
)
315 p2
(testdivide (cddr r1
) d
))
317 (cons (rdis (cons p1 p2
)) '(0))
318 (cons '0 (list r
)))))
320 ;; euler and bernoulli stuff
322 (defvar *bn
* (make-array 17 :adjustable t
:element-type
'integer
323 :initial-contents
'(0 -
1 1 -
1 5. -
691.
7. -
3617.
43867. -
174611.
854513.
324 -
236364091.
8553103. -
23749461029.
8615841276005.
325 -
7709321041217.
2577687858367.
)))
327 (defvar *bd
* (make-array 17 :adjustable t
:element-type
'integer
328 :initial-contents
'(0 30.
42.
30.
66.
2730.
6.
510.
798.
330.
138.
2730.
329 6.
870.
14322.
510.
6.
)))
331 (defvar *eu
* (make-array 11 :adjustable t
:element-type
'integer
332 :initial-contents
'(-1 5. -
61.
1385. -
50521.
2702765. -
199360981.
19391512145.
333 -
2404879675441.
370371188237525. -
69348874393137901.
)))
335 (putprop '*eu
* 11 'lim
)
336 (putprop 'bern
16 'lim
)
338 (defun nxtbincoef (m nom combin-a
)
339 (truncate (* nom
(- combin-a m
)) m
))
342 (prog (nom %k e fl $zerobern combin-a
)
343 (setq nom
1 %k %a
* fl nil e
0 $zerobern
'%$
/#& combin-a
(1+ %a
*))
346 (setf (aref *eu
* (1- (ash %a
* -
1))) e
)
347 (putprop '*eu
* (ash %a
* -
1) 'lim
)
349 (setq nom
(nxtbincoef (1+ (- %a
* %k
)) nom combin-a
) %k
(1- %k
))
350 (cond ((setq fl
(null fl
))
352 (incf e
(* nom
(ftake '%euler %k
)))
355 (def-simplifier euler
(u)
360 (cond ((or (not (fixnump s
)) (< s
0)) (list '($euler
) s
))
361 ((zerop (setq %n s
)) 1)
364 ((null (> (ash %n -
1) (get '*eu
* 'lim
)))
365 (aref *eu
* (1- (ash %n -
1))))
366 ((eq $zerobern
'%$
/#&)
368 ((setq *eu
* (adjust-array *eu
* (1+ (ash %n -
1))))
370 ((<= %n
(get '*eu
* 'lim
))
372 ((setq *eu
* (adjust-array *eu
* (1+ %n
)))
375 (if (and (fixnump u
) (>= u
0))
380 (prog (nom %k bb a b $zerobern l combin-a
)
390 (setq bb
(*red a
(* -
1 b %a
*)))
391 (putprop 'bern
(setq %a
* (1- (ash %a
* -
1))) 'lim
)
392 (setf (aref *bn
* %a
*) (cadr bb
))
393 (setf (aref *bd
* %a
*) (caddr bb
))
396 (setq a
(+ (* b
(setq nom
(nxtbincoef %k nom combin-a
))
397 (num1 (setq bb
(ftake '%bern %k
))))
399 (setq b
(* b
(denom1 bb
)))
400 (setq a
(*red a b
) b
(denom1 a
) a
(num1 a
))
403 ;; bern - the n'th Bernoulli number for integer u.
404 (def-simplifier bern
(u)
409 (cond ((or (not (fixnump s
)) (< s
0)) (list '($bern
) s
))
410 ((= (setq %n s
) 0) 1)
411 ((= %n
1) '((rat) -
1 2))
412 ((= %n
2) '((rat) 1 6))
415 ((null (> (setq %n
(1- (ash %n -
1))) (get 'bern
'lim
)))
416 (list '(rat) (aref *bn
* %n
) (aref *bd
* %n
)))
417 ((eq $zerobern
'$
/#&) (bern (* 2 (1+ %n
))))
419 (setq *bn
* (adjust-array *bn
* (setq %n
(1+ %n
))))
420 (setq *bd
* (adjust-array *bd
* %n
))
422 ((null (> %n
(get 'bern
'lim
)))
423 (list '(rat) (aref *bn
* (- %n
2)) (aref *bd
* (- %n
2))))
425 (setq *bn
* (adjust-array *bn
* (1+ %n
)))
426 (setq *bd
* (adjust-array *bd
* (1+ %n
)))
427 (bern (* 2 (1- %n
)))))))
429 (if (and (fixnump u
) (not (< u
0)))
433 ;;; ----------------------------------------------------------------------------
434 ;;; Bernoulli polynomials
436 ;;; The following explicit formula is directly implemented:
441 ;;; B (x) = > b binomial(n, k) x
446 ;;; The coeffizients b[k] are the Bernoulli numbers. The algorithm does not
447 ;;; skip over Beroulli numbers, which are zero. We have to ensure that
448 ;;; $zerobern is bound to true.
449 ;;; ----------------------------------------------------------------------------
451 (defmfun $bernpoly
(x s
)
452 (let ((%n
0) ($zerobern t
))
453 (cond ((not (fixnump s
)) (list '($bernpoly
) x s
))
455 (do ((sum (cons (if (and (= %n
0) (zerop1 x
))
459 (cons (mul (binocomp %n %k
)
461 (if (and (= %n %k
) (zerop1 x
))
463 (power x
(- %n %k
))))
466 ((> %k %n
) (addn sum t
))))
467 (t (list '($bernpoly
) x %n
)))))
469 ;;; ----------------------------------------------------------------------------
470 ;;; Euler polynomials
472 ;;; The following explicit formula is directly implemented:
475 ;;; ==== E binomial(n, k) (x - -)
477 ;;; E (x) = > ------------------------------
482 ;;; The coeffizients E[k] are the Euler numbers.
483 ;;; ----------------------------------------------------------------------------
485 (defmfun $eulerpoly
(x s
)
486 (let ((n 0) ($zerobern t
) (y 0))
487 (cond ((not (fixnump s
)) (list '($eulerpoly
) x s
))
489 (do ((sum (cons (if (and (zerop1 (setq y
(sub x
(div 1 2))))
494 (cons (mul (binocomp n k
)
497 (if (and (zerop1 (setq y
(sub x
(div 1 2))))
503 ((> k n
) ($expand
(addn sum t
)))))
504 (t (list '($eulerpoly
) x n
)))))
506 ;; zeta and fibonacci stuff
508 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
510 ;;; Implementation of the Riemann Zeta function as a simplifying function
512 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
514 ;;; The Riemann Zeta function has mirror symmetry
516 (defprop %zeta t commutes-with-conjugate
)
518 ;;; The Riemann Zeta function distributes over lists, matrices, and equations
520 (defprop %zeta
(mlist $matrix mequal
) distribute_over
)
522 ;;; We support a simplim%function. The function is looked up in simplimit and
523 ;;; handles specific values of the function.
525 (defprop %zeta simplim%zeta simplim%function
)
527 (defun simplim%zeta
(expr var val
)
528 ;; Look for the limit of the argument
529 (let* ((arg (limit (cadr expr
) var val
'think
))
530 (dir (limit (add (cadr expr
) (neg arg
)) var val
'think
)))
532 ;; Handle an argument 1 at this place
534 (cond ((eq dir
'$zeroa
)
540 ;; All other cases are handled by the simplifier of the function.
541 (simplify (list '(%zeta
) arg
))))))
543 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
545 (def-simplifier zeta
(z)
548 ;; Check for special values
550 ((alike1 z
'((mtimes) -
1 $minf
)) 1)
552 (cond (($bfloatp z
) ($bfloat
'((rat) -
1 2)))
554 (t '((rat simp
) -
1 2))))
556 (simp-domain-error (intl:gettext
"zeta: zeta(~:M) is undefined.") z
))
558 ;; Check for numerical evaluation
559 ((or (bigfloat-numerical-eval-p z
)
560 (complex-bigfloat-numerical-eval-p z
)
561 (float-numerical-eval-p z
)
562 (complex-float-numerical-eval-p z
))
564 ;; Check for transformations and argument simplifications
571 (mul -
1 (div (ftake '%bern z
) z
)))))
575 (t (let ($numer $float
)
577 (mul (div (power 2 (1- z
))
578 (take '(mfactorial) z
))
579 (take '(mabs) (ftake '%bern z
))))))))
581 ;; z is a negative number. We can use the relationship (A&S
584 ;; zeta(s) = 2^s*%pi^(s-1)*sin(%pi/2*s)*gamma(1-s)*zeta(1-s)
586 ;; to transform zeta of a negative number in terms of a zeta to a
589 (power '$%pi
(sub z
1))
590 (ftake '%sin
(div (mul '$%pi z
) 2))
591 (ftake '%gamma
(sub 1 z
))
592 (ftake '%zeta
(sub 1 z
))))
596 ;; See http://numbers.computation.free.fr/Constants/constants.html
597 ;; and, in particular,
598 ;; http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf.
599 ;; We use the algorithm from Proposition 2:
601 ;; zeta(s) = 1/(1-2^(1-s)) *
602 ;; (sum((-1)^(k-1)/k^s,k,1,n) +
603 ;; 1/2^n*sum((-1)^(k-1)*e(k-n)/k^s,k,n+1,2*n))
606 ;; where e(k) = sum(binomial(n,j), j, k, n). Writing s = sigma + %i*t, when
607 ;; sigma is positive you get an error estimate of
609 ;; |g(n,s)| <= 1/8^n * h(s)
613 ;; h(s) = ((1 + abs (t / sigma)) exp (abs (t) * %pi / 2)) / abs (1 - 2^(1 - s))
615 ;; We need to figure out how many terms are required to make |g(n,s)|
616 ;; sufficiently small. The answer is
618 ;; n = (log h(s) - log (eps)) / log (8)
622 ;; log (h (s)) = (%pi/2 * abs (t)) + log (1 + t/sigma) - log (abs (1 - 2^(1 - s)))
624 ;; Notice that this bound is a bit rubbish when sigma is near zero. In that
625 ;; case, use the expansion zeta(s) = -1/2-1/2*log(2*pi)*s.
626 (defun float-zeta (s)
627 ;; If s is a rational (real or complex), convert to a float. This
628 ;; is needed so we can compute a sensible epsilon value. (What is
629 ;; the epsilon value for an exact rational?)
630 (setf s
(bigfloat:to s
))
635 (setf s
(coerce s
'(complex flonum
)))))
637 (let ((sigma (bigfloat:realpart s
))
638 (tau (bigfloat:imagpart s
)))
640 ;; abs(s)^2 < epsilon, use the expansion zeta(s) = -1/2-1/2*log(2*%pi)*s
641 ((bigfloat:< (bigfloat:abs
(bigfloat:* s s
)) (bigfloat:epsilon s
))
644 (bigfloat:log
(bigfloat:* 2 (bigfloat:%pi s
)))
647 ;; Reflection formula:
648 ;; zeta(s) = 2^s*%pi^(s-1)*sin(%pi*s/2)*gamma(1-s)*zeta(1-s)
649 ((not (bigfloat:plusp sigma
))
650 (let ((n (bigfloat:floor sigma
)))
651 ;; If s is a negative even integer, zeta(s) is zero,
652 ;; from the reflection formula because sin(%pi*s/2) is 0.
653 (when (and (bigfloat:zerop tau
) (bigfloat:= n sigma
) (evenp n
))
654 (return-from float-zeta
(bigfloat:float
0.0 sigma
))))
655 (bigfloat:* (bigfloat:expt
2 s
)
656 (bigfloat:expt
(bigfloat:%pi s
)
658 (bigfloat:sin
(bigfloat:* (bigfloat:/ (bigfloat:%pi s
)
661 (bigfloat:to
($gamma
(to (bigfloat:-
1 s
))))
662 (float-zeta (bigfloat:-
1 s
))))
664 ;; The general formula from above. Call the imaginary part "tau" rather
665 ;; than the "t" above, because that isn't a CL keyword...
669 (if (bigfloat:zerop tau
) 0
671 (bigfloat:* 1.6 (bigfloat:abs tau
))
672 (bigfloat:log
(bigfloat:1+
674 (bigfloat:/ tau sigma
))))))
677 (bigfloat:-
1 (bigfloat:expt
2 (bigfloat:-
1 s
)))))))
679 (logeps (bigfloat:log
(bigfloat:epsilon s
)))
681 (n (max (bigfloat:ceiling
682 (bigfloat:/ (bigfloat:- logh logeps
) (bigfloat:log
8)))
688 ;; sum(binomial(n,j), j, k, n) = sum(binomial(n,j), j, n, k)
691 (loop for j from n downto k
695 (setf term
(/ (* term j
) (+ n
1 (- j
))))))
697 ;; (format t "n = ~D terms~%" n)
698 ;; sum1 = sum((-1)^(k-1)/k^s,k,1,n)
699 ;; sum2 = sum((-1)^(k-1)/e(n,k-n)/k^s, k, n+1, 2*n)
700 ;; = (-1)^n*sum((-1)^(m-1)*e(n,m)/(n+k)^s, k, 1, n)
701 (loop for k from
1 to n
702 for d
= (bigfloat:expt k s
)
704 (bigfloat:incf sum1
(bigfloat:/ (cl:expt -
1 (- k
1)) d
))
705 (bigfloat:incf sum2
(bigfloat:/ (* (cl:expt -
1 (- k
1))
707 (bigfloat:expt
(+ k n
) s
))))
708 finally
(return (values sum1 sum2
)))
710 (setq sum2
(bigfloat:- sum2
)))
711 (bigfloat:/ (bigfloat:+ sum1
712 (bigfloat:/ sum2
(bigfloat:expt
2 n
)))
713 (bigfloat:-
1 (bigfloat:expt
2 (bigfloat:-
1 s
))))))))))
715 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
717 ;; Returns the N'th Fibonacci number.
724 ;; Main routine for computing the n'th Fibonacci number where n is an
728 (declare (fixnum %n
))
736 (let* ((f2 (ffib (ash (logandc2 %n
1) -
1))) ; f2 = fib(n/2) or fib((n-1)/2)
738 (y (* prevfib prevfib
))
740 (setq f2
(- (* x x
) y
)
747 ;; Returns the N'th Lucas number defined by the following recursion,
748 ;; where L(n) is the n'th Lucas number:
752 ;; L(n) = L(n-1) + L(n-2), n > 1;
762 (let ((w 2) (x 2) (y 1) u v
(sign (signum n
))) (declare (fixnum sign
))
764 (do ((i (1- (integer-length n
)) (1- i
)))
767 (setq u
(* x x
) v
(* y y
))
769 (setq y
(+ v w
) x
(+ y
(- u
) w
) w -
2)
770 (setq x
(- u w
) y
(+ v w
(- x
)) w
2) ))
772 ((or (= 1 sign
) (not (logbitp 0 n
)))
777 ;; continued fraction stuff
779 (defmfun $cfdisrep
(a)
780 (cond ((not ($listp a
))
781 (merror (intl:gettext
"cfdisrep: argument must be a list; found ~M") a
))
782 ((null (cddr a
)) (cadr a
))
784 (list '(mexpt) (cfdisrep1 (cddr a
)) -
1))
785 ((cfdisrep1 (cdr a
)))))
789 (list '(mplus simp cf
) (car a
)
790 (prog2 (setq a
(cfdisrep1 (cdr a
)))
791 (cond ((integerp a
) (list '(rat simp
) 1 a
))
792 (t (list '(mexpt simp
) a -
1))))))
797 (cond ((integerp a
) (list a
))
798 ((eq (caar a
) 'mlist
) (cdr a
))
799 ((eq (caar a
) 'rat
) (ratcf (cadr a
) (caddr a
)))
800 ((merror (intl:gettext
"cf: continued fractions must be lists or integers; found ~M") a
))))
803 (cond ((null (cdr a
)) (car a
))
804 ((cons '(mlist simp cf
) a
))))
806 ;;; Translation properties for $CF defined in MAXSRC;TRANS5 >
809 (cfratsimp (let ($listarith
)
810 (cfeval (meval (fexprcheck a
))))))
812 ;; Definition of cfratsimp as given in SF bug report # 620928.
815 ((member 'cf
(car a
) :test
#'eq
) a
)
816 (t (cons '(mlist cf simp
)
817 (apply 'find-cf
(cf-back-recurrence (cdr a
)))))))
819 ; Code to expand nth degree roots of integers into continued fraction
820 ; approximations. E.g. cf(2^(1/3))
821 ; Courtesy of Andrei Zorine (feniy@mail.nnov.ru) 2005/05/07
824 (let ((ans (list '(mlist xf
))) ent
($algebraic $true
))
825 (dotimes (i $cflength
(nreverse ans
))
826 (setq ent
(meval `(($floor
) ,b
))
828 b
($ratsimp
(m// (m- b ent
)))))))
831 (let (temp $ratprint
)
832 (cond ((integerp a
) (list '(mlist cf
) a
))
834 (let ((a (maxima-rationalize a
)))
835 (cons '(mlist cf
) (ratcf (car a
) (cdr a
)))))
838 (setq a
(bigfloat2rat a
))
839 (cons '(mlist cf
) (ratcf (car a
) (cdr a
)))))
841 (merror (intl:gettext
"cf: ~:M is not a continued fraction.") a
))
843 (cons '(mlist cf
) (ratcf (cadr a
) (caddr a
))))
844 ((eq (caar a
) 'mlist
)
846 ;;the following doesn't work for non standard form
847 ;; (cfplus a '((mlist) 0)))
848 ((and (mtimesp a
) (cddr a
) (null (cdddr a
))
851 (fixnump (cadr (caddr a
)))
852 (alike1 (caddr (caddr a
)) '((rat) 1 2)))
853 (cfsqrt (cfeval (* (expt (cadr a
) 2) (cadr (caddr a
))))))
854 ((eq (caar a
) 'mexpt
)
855 (cond ((alike1 (caddr a
) '((rat) 1 2))
856 (cfsqrt (cfeval (cadr a
))))
857 ((integerp (m* 2 (caddr a
))) ; a^(n/2) was sqrt(a^n)
858 (cfsqrt (cfeval (cfexpt (cadr a
) (m* 2 (caddr a
))))))
859 ((integerp (cadr a
)) (cfnroot a
)) ; <=== new case x
860 ((cfexpt (cfeval (cadr a
)) (caddr a
)))))
861 ((setq temp
(assoc (caar a
) '((mplus . cfplus
) (mtimes . cftimes
) (mquotient . cfquot
)
862 (mdifference . cfdiff
) (mminus . cfminus
)) :test
#'eq
))
863 (cf (cfeval (cadr a
)) (cddr a
) (cdr temp
)))
865 (cfeval ($ratdisrep a
)))
866 (t (merror (intl:gettext
"cf: ~:M is not a continued fraction.") a
)))))
870 ((cf (funcall fun a
(meval (list '($cf
) (car l
)))) (cdr l
) fun
))))
873 (setq a
(cfmak a
) b
(cfmak b
))
874 (makcf (cffun '(0 1 1 0) '(0 0 0 1) a b
)))
877 (setq a
(cfmak a
) b
(cfmak b
))
878 (makcf (cffun '(1 0 0 0) '(0 0 0 1) a b
)))
881 (setq a
(cfmak a
) b
(cfmak b
))
882 (makcf (cffun '(0 1 -
1 0) '(0 0 0 1) a b
)))
886 (makcf (cffun '(0 0 -
1 0) '(0 0 0 1) a
'(0))))
889 (setq a
(cfmak a
) b
(cfmak b
))
890 (makcf (cffun '(0 1 0 0) '(0 0 1 0) a b
)))
894 (cond ((null (integerp e
))
895 (merror (intl:gettext
"cf: can't raise continued fraction to non-integral power ~M") e
))
897 (do ((n (ash n -
1) (ash n -
1))
898 (s (cond ((oddp n
) b
)
904 ((cffun '(0 0 0 1) '(0 1 0 0) b
'(1))))))
905 (setq b
(cffun '(1 0 0 0) '(0 0 0 1) b b
))
907 (setq s
(cffun '(1 0 0 0) '(0 0 0 1) s b
))))))))
910 (defun conf1 (f g a b
&aux
(den (conf2 g a b
)))
912 (* (signum (conf2 f a b
)) ; (/ most-positive-fixnum (^ 2 4))
914 (t (truncate (conf2 f a b
) den
))))
916 (defun conf2 (n a b
) ;2*(abn_0+an_1+bn_2+n_3)
917 (* 2 (+ (* (car n
) a b
)
922 ;;(cffun '(0 1 1 0) '(0 0 0 1) '(1 2) '(1 1 1 2)) gets error
925 (defun cf-convergents-p-q (cf &optional
(n (length cf
)) &aux pp qq
)
926 "returns two lists such that pp_i/qq_i is the quotient of the first i terms
932 (setq pp
(list (1+ (* (first cf
) (second cf
))) (car cf
)))
933 (setq qq
(list (second cf
) 1))
936 (loop for i from
2 to n
939 (push (+ (* (car cf
) (car pp
))
941 (push (+ (* (car cf
) (car qq
))
944 finally
(return (list (reverse pp
) (reverse qq
)))))))
947 (defun find-cf1 (p q so-far
)
948 (multiple-value-bind (quot rem
) (truncate p q
)
949 (cond ((< rem
0) (incf rem q
) (incf quot -
1))
950 ((zerop rem
) (return-from find-cf1
(cons quot so-far
))))
951 (setq so-far
(cons quot so-far
))
952 (find-cf1 q rem so-far
)))
955 "returns the continued fraction for p and q integers, q not zero"
956 (cond ((zerop q
) (maxima-error "find-cf: quotient by zero"))
957 ((< q
0) (setq p
(- p
)) (setq q
(- q
))))
958 (nreverse (find-cf1 p q
())))
960 (defun cf-back-recurrence (cf &aux tem
(num-gg 0)(den-gg 1))
961 "converts CF (a continued fraction list) to a list of numerator
962 denominator using recurrence from end
963 and not calculating intermediate quotients.
964 The numerator and denom are relatively
966 (loop for v in
(reverse cf
)
967 do
(setq tem
(* den-gg v
))
968 (setq tem
(+ tem num-gg
))
973 (cond ((and (<= den-gg
0) (< num-gg
0))
974 (list (- den-gg
) (- num-gg
)))
975 (t(list den-gg num-gg
))))))
977 ;;(cffun '(0 1 1 0) '(0 0 0 1) '(1 2) '(1 1 1 2)) gets error
980 (defun cffun (f g a b
)
982 a
(and (zerop (cadddr g
))
986 (return (reverse c
)))
987 (and (equal (setq w
(conf1 f g
(car a
) (1+ (car b
))))
988 (setq v
(conf1 f g
(car a
) (car b
))))
989 (equal (conf1 f g
(1+ (car a
)) (car b
)) v
)
990 (equal (conf1 f g
(1+ (car a
)) (1+ (car b
))) v
)
991 (setq g
(mapcar #'(lambda (a b
)
996 (cond ((< (abs (- (conf1 f g
(1+ (car a
)) (car b
)) v
))
998 (cond ((setq v
(cdr b
))
1000 (setq g
(conf6 g b
))
1002 (t (setq f
(conf7 f b
)) (setq g
(conf7 g b
)))))
1004 (cond ((setq v
(cdr a
))
1005 (setq f
(conf4 f a
))
1006 (setq g
(conf4 g a
))
1008 (t (setq f
(conf5 f a
)) (setq g
(conf5 g a
))))))
1011 (defun conf4 (n a
) ;n_0*a_0+n_2,n_1*a_0+n_3,n_0,n_1
1012 (list (+ (* (car n
) (car a
)) (caddr n
))
1013 (+ (* (cadr n
) (car a
)) (cadddr n
))
1017 (defun conf5 (n a
) ;0,0, n_0*a_0,n_2
1019 (+ (* (car n
) (car a
)) (caddr n
))
1020 (+ (* (cadr n
) (car a
)) (cadddr n
))))
1023 (list (+ (* (car n
) (car b
)) (cadr n
))
1025 (+ (* (caddr n
) (car b
)) (cadddr n
))
1029 (list 0 (+ (* (car n
) (car b
)) (cadr n
))
1030 0 (+ (* (caddr n
) (car b
)) (cadddr n
))))
1033 (cond ((cddr n
) ;A non integer
1034 (merror (intl:gettext
"cf: argument of sqrt must be an integer; found ~M") n
))
1035 ((setq n
(cadr n
))))
1037 (cond ((= $cflength
1)
1038 (cons '(mlist simp
) n
))
1040 (a (copy-tree (cdr n
))))
1041 ((> i $cflength
) (cons '(mlist simp
) n
))
1042 (setq n
(nconc n
(copy-tree a
)))))))
1045 (let ((isqrtn ($isqrt n
)))
1046 (when (or (not (integerp n
))
1048 (= (* isqrtn isqrtn
) n
))
1050 (intl:gettext
"qunit: Argument must be a positive non quadratic integer.")))
1051 (let ((l (sqcont n
)))
1052 (list '(mplus) (pelso1 l
0 1)
1054 (list '(mexpt) n
'((rat) 1 2))
1057 (defun pelso1 (l a b
)
1058 (do ((i l
(cdr i
))) (nil)
1059 (and (null (cdr i
)) (return b
))
1060 (setq b
(+ a
(* (car i
) (setq a b
))))))
1063 (prog (q q1 q2 m m1 a0 a l
)
1064 (setq a0
($isqrt n
) a
(list a0
) q2
1 m1 a0
1065 q1
(- n
(* m1 m1
)) l
(* 2 a0
))
1066 a
(setq a
(cons (truncate (+ m1 a0
) q1
) a
))
1067 (cond ((equal (car a
) l
)
1068 (return (nreverse a
))))
1069 (setq m
(- (* (car a
) q1
) m1
)
1070 q
(+ q2
(* (car a
) (- m1 m
)))
1076 a
(cond ((equal y
1) (return (nreverse (cons x a
))))
1078 (setq b
(+ y
(rem x y
))
1079 a
(cons (1- (truncate x y
)) a
)
1084 ((equal x y
) (return (nreverse (cons 1 a
))))
1086 (setq a
(cons (truncate x y
) a
) x y y b
)))
1089 (defmfun $cfexpand
(x)
1090 (cond ((null ($listp x
)) x
)
1091 ((cons '($matrix
) (cfexpand (cdr x
))))))
1093 (defun cfexpand (ll)
1095 (p2 1 (simplify (list '(mplus) (list '(mtimes) (car l
) p2
) p1
)))
1097 (q2 0 (simplify (list '(mplus) (list '(mtimes) (car l
) q2
) q1
)))
1099 ((null l
) (list (list '(mlist) p2 p1
) (list '(mlist) q2 q1
)))))
1103 (defun simpsum2 (exp i lo hi
)
1104 (prog (*plus
*times $simpsum u
)
1105 (setq *plus
(list 0) *times
1)
1106 (when (or (and (eq hi
'$inf
) (eq lo
'$minf
))
1107 (equal 0 (m+ hi lo
)))
1108 (setq $simpsum t lo
0)
1109 (setq *plus
(cons (m* -
1 *times
(maxima-substitute 0 i exp
)) *plus
))
1110 (setq exp
(m+ exp
(maxima-substitute (m- i
) i exp
))))
1111 (cond ((eq ($sign
(setq u
(m- hi lo
))) '$neg
)
1114 (merror (intl:gettext
"sum: lower bound ~M greater than upper bound ~M") lo hi
)))
1116 (return (m+l
(cons (freesum exp lo hi
*times
) *plus
))))
1118 ((progn (multiple-value-setq (exp *plus
) (sumsum exp i lo hi
*plus
*times
)) exp
)
1119 (setq exp
(m* *times
(dosum (cadr exp
) (caddr exp
)
1120 (cadddr exp
) (cadr (cdddr exp
)) t
:evaluate-summand nil
))))
1121 (t (return (m+l
*plus
))))
1122 (return (m+l
(cons exp
*plus
)))))
1124 (let (combin-sum combin-usum
)
1126 (push (simplify e
) combin-sum
))
1128 (push (simplify e
) combin-usum
))
1130 (defun fpolysum (e lo hi poly-var
) ;returns *combin-ans*
1131 ;; Sums of polynomials using
1132 ;; bernpoly(x+1, n) - bernpoly(x, n) = n*x^(n-1)
1134 ;; sum(k^n, k, A, B) = 1/(n+1)*(bernpoly(B+1, n+1) - bernpoly(A, n+1))
1136 ;; fpoly1 returns 1/(n+1)*(bernpoly(foo+1, n+1) - bernpoly(0, n+1)) for each power
1137 ;; in the polynomial e
1140 (cond ((smono e poly-var
)
1141 (fpoly2 *a
*n e lo
))
1142 ((eq (caar e
) 'mplus
)
1143 (cons '(mplus) (mapcar #'(lambda (x) (fpoly1 x lo
)) (cdr e
))))
1146 (cond ((null (and (integerp n
) (> n -
1))) (adusum e
) 0)
1148 (m* (cond ((signp e lo
)
1153 (m* a
(list '(rat) 1 (1+ n
))
1154 (m- ($bernpoly
(m+ 'foo
1) (1+ n
))
1155 (ftake '%bern
(1+ n
)))))))))
1156 (let ((a (fpoly1 (setq e
($expand
($ratdisrep
($rat e poly-var
)))) lo
))
1160 (maxima-substitute hi
'foo a
))
1162 (list '(mplus) (maxima-substitute hi
'foo a
)
1163 (list '(mtimes) -
1 (maxima-substitute (list '(mplus) lo -
1) 'foo a
))))))))
1165 (defun fbino (e y lo hi poly-var
)
1166 ;; fbino can do these sums:
1167 ;; a) sum(binomial(n,k),k,0,n) -> 2^n
1168 ;; b) sum(binomial(n-k,k,k,0,n) -> fib(n+1)
1169 ;; c) sum(binomial(n,2k),k,0,n) -> 2^(n-1)
1170 ;; d) sum(binomial(a+k,b),k,l,h) -> binomial(h+a+1,b+1) - binomial(l+a,b+1)
1173 ;; check that n and d are linear in poly-var
1174 (when (null (setq n
(m2 (cadr e
) (list 'n
'linear
* poly-var
))))
1175 (return (adusum e
)))
1176 (setq n
(cdr (assoc 'n n
:test
#'eq
)))
1177 (when (null (setq d
(m2 (caddr e
) (list 'd
'linear
* poly-var
))))
1178 (return (adusum e
)))
1179 (setq d
(cdr (assoc 'd d
:test
#'eq
)))
1181 ;; binomial(a+b*k,c+b*k) -> binomial(a+b*k, a-c)
1182 (when (equal (cdr n
) (cdr d
))
1183 (setq d
(cons (m- (car n
) (car d
)) 0)))
1186 ;; substitute k with -k in sum(binomial(a+b*k, c-d*k))
1187 ;; and sum(binomial(a-b*k,c))
1188 ((and (numberp (cdr d
))
1189 (or (minusp (cdr d
))
1190 (and (zerop (cdr d
))
1193 (rplacd d
(- (cdr d
)))
1194 (rplacd n
(- (cdr n
)))
1197 (t (setq l lo h hi
)))
1201 ;; sum(binomial(a+k,c),k,l,h)
1202 ((and (equal 0 (cdr d
)) (equal 1 (cdr n
)))
1203 (adsum (m* y
(m- (list '(%binomial
) (m+ h
(car n
) 1) (m+ (car d
) 1))
1204 (list '(%binomial
) (m+ l
(car n
)) (m+ (car d
) 1))))))
1206 ;; sum(binomial(n,k),k,0,n)=2^n
1207 ((and (equal 1 (cdr d
)) (equal 0 (cdr n
)))
1208 ;; sum(binomial(n,k+c),k,l,h)=sum(binomial(n,k+c+l),k,0,h-l)
1211 (if (and (integerp (m- (car n
) h1
))
1214 (adsum (m* y
(m^
2 (car n
))))
1215 (when (member (asksign (m- (m+ h1 c
) (car n
))) '($zero $negative
) :test
#'eq
)
1216 (adsum (m* -
1 y
(dosum (list '(%binomial
) (car n
) poly-var
)
1217 poly-var
(m+ h1 c
1) (car n
) t
:evaluate-summand nil
))))
1219 (adsum (m* -
1 y
(dosum (list '(%binomial
) (car n
) poly-var
)
1220 poly-var
0 (m- c
1) t
:evaluate-summand nil
)))))
1223 ;; sum(binomial(b-k,k),k,0,floor(b/2))=fib(b+1)
1224 ((and (equal -
1 (cdr n
)) (equal 1 (cdr d
)))
1225 ;; sum(binomial(a-k,b+k),k,l,h)=sum(binomial(a+b-k,k),k,l+b,h+b)
1226 (let ((h1 (m+ h
(car d
)))
1228 (a1 (m+ (car n
) (car d
))))
1229 ;; sum(binomial(a1-k,k),k,0,floor(a1/2))=fib(a1+1)
1230 ;; we only do sums with h>floor(a1/2)
1231 (if (and (integerp l1
)
1232 (member (asksign (m- h1
(m// a1
2))) '($zero $positive
) :test
#'eq
))
1234 (adsum (m* y
($fib
(m+ a1
1))))
1236 (adsum (m* -
1 y
(dosum (list '(%binomial
) (m- a1 poly-var
) poly-var
)
1237 poly-var
0 (m- l1
1) t
:evaluate-summand nil
)))))
1240 ;; sum(binomial(n,2*k),k,0,floor(n/2))=2^(n-1)
1241 ;; sum(binomial(n,2*k+1),k,0,floor((n-1)/2))=2^(n-1)
1242 ((and (equal 0 (cdr n
)) (equal 2 (cdr d
)))
1243 ;; sum(binomial(a,2*k+b),k,l,h)=sum(binomial(a,2*k),k,l+b/2,h+b/2), b even
1244 ;; sum(binomial(a,2*k+b),k,l,h)=sum(binomial(a,2*k+1),k,l+(b-1)/2,h+(b-1)/2), b odd
1246 (r1 (if (oddp (car d
)) 1 0))
1247 (l1 (if (oddp (car d
))
1248 (m+ l
(truncate (1- (car d
)) 2))
1249 (m+ l
(truncate (car d
) 2)))))
1250 (when (and (integerp l1
)
1251 (member (asksign (m- a hi
)) '($zero $positive
) :test
#'eq
))
1252 (adsum (m* y
(m^
2 (m- a
1))))
1254 (adsum (m* -
1 y
(dosum (list '(%binomial
) a
(m+ poly-var poly-var r1
))
1255 poly-var
0 (m- l1
1) t
:evaluate-summand nil
)))))))
1257 ;; other sums we can't do
1261 (defun isum (e lo poly-var
)
1264 (cond ((atom e
) nil
)
1265 ((eq (caar e
) 'mexpt
)
1266 (not (or (free (cadr e
) poly-var
)
1267 (ratp (caddr e
) poly-var
))))
1268 ((member (caar e
) '(mplus mtimes
) :test
#'eq
)
1269 (some #'identity
(mapcar #'isum-giveup
(cdr e
))))
1272 (cond ((free e poly-var
)
1273 (unless (eq (asksign e
) '$zero
)
1274 (throw 'isumout
'divergent
)))
1276 (adsum (ipolysum e lo
)))
1277 ((eq (caar e
) 'mplus
)
1278 (mapc #'(lambda (x) (isum1 x lo
)) (cdr e
)))
1282 (ipoly1 ($expand e
) lo
))
1284 (cond ((smono e poly-var
)
1285 (ipoly2 *a
*n lo
(asksign (simplify (list '(mplus) *n
1)))))
1287 (cons '(mplus) (mapcar #'(lambda (x) (ipoly1 x lo
)) (cdr e
))))
1290 (ipoly2 (a n lo sign
)
1291 (cond ((member (asksign lo
) '($zero $negative
) :test
#'eq
)
1292 (throw 'isumout
'divergent
)))
1293 (unless (equal lo
1)
1296 ((mtimes) ,a -
1 ((mexpt) ,poly-var
,n
))
1297 ,poly-var
1 ((mplus) -
1 ,lo
)))))
1298 (cond ((eq sign
'$negative
)
1299 (list '(mtimes) a
($zeta
(meval (list '(mtimes) -
1 n
)))))
1300 ((throw 'isumout
'divergent
))))
1302 (let ((r ($ratsimp
(div* (maxima-substitute (list '(mplus) poly-var
1) poly-var e
) e
))))
1303 (and (free r poly-var
)
1304 (isgeo1 (maxima-substitute lo poly-var e
)
1305 r
(asksign (simplify (list '(mplus) (list '(mabs) r
) -
1)))))))
1307 (cond ((eq sign
'$positive
)
1308 (throw 'isumout
'divergent
))
1310 (throw 'isumout
'divergent
))
1311 ((eq sign
'$negative
)
1312 (adsum (list '(mtimes) a
1313 (list '(mexpt) (list '(mplus) 1 (list '(mtimes) -
1 r
)) -
1)))))))
1314 (cond ((isum-giveup e
)
1315 (setq combin-sum nil combin-usum
(list e
)))
1316 ((eq (catch 'isumout
(isum1 e lo
)) 'divergent
)
1317 (merror (intl:gettext
"sum: sum is divergent."))))))
1319 (defun sumsum (e poly-var lo hi
*plus
*times
)
1320 (setf combin-sum nil
)
1321 (setf combin-usum nil
)
1323 ((finite-sum (e y lo hi
)
1326 (adsum (m* y e
(m+ hi
1 (m- lo
)))))
1328 (adsum (m* y
(fpolysum e lo hi poly-var
))))
1329 ((eq (caar e
) '%binomial
) (fbino e y lo hi poly-var
))
1330 ((eq (caar e
) 'mplus
)
1331 (mapc #'(lambda (q) (finite-sum q y lo hi
)) (cdr e
)))
1332 ((and (or (mtimesp e
) (mexptp e
) (mplusp e
))
1338 (let ((r ($ratsimp
(div* (maxima-substitute (list '(mplus) poly-var
1) poly-var e
) e
))))
1342 (list '(mplus) 1 hi
(list '(mtimes) -
1 lo
))
1343 (maxima-substitute lo poly-var e
))))
1347 (maxima-substitute 0 poly-var e
)
1349 (list '(mexpt) r
(list '(mplus) hi
1))
1350 (list '(mtimes) -
1 (list '(mexpt) r lo
)))
1351 (list '(mexpt) (list '(mplus) r -
1) -
1))))))))
1352 (cond ((eq hi
'$inf
)
1354 (isum e lo poly-var
))
1355 ((setq combin-usum
(list e
)))))
1356 ((finite-sum e
1 lo hi
)))
1357 (cond ((eq combin-sum nil
)
1358 (return-from sumsum
(list '(%sum
) e poly-var lo hi
))))
1361 #'(lambda (q) (simptimes (list '(mtimes) *times q
) 1 nil
))
1364 (values (and combin-usum
(setq combin-usum
(list '(%sum
) (simplus (cons '(plus) combin-usum
) 1 t
) poly-var lo hi
)))
1369 (defmspec $product
(l)
1370 (arg-count-check 4 l
)
1372 (dosum (car l
) (cadr l
) (meval (caddr l
)) (meval (cadddr l
)) nil
:evaluate-summand t
))
1374 ;; Is this guy actually looking at the value of its middle arg?
1376 (defun simpprod (x y z
)
1377 (let (($ratsimpexpons t
))
1379 (setq y
(simplifya (cadr x
) z
)))
1380 ((setq y
(simptimes (list '(mexpt) (cadr x
) y
) 1 z
)))))
1381 (simpprod1 y
(caddr x
)
1382 (simplifya (cadddr x
) z
)
1383 (simplifya (cadr (cdddr x
)) z
)))
1385 (defmfun $taytorat
(e)
1386 (cond ((mbagp e
) (cons (car e
) (mapcar #'$taytorat
(cdr e
))))
1387 ((or (atom e
) (not (member 'trunc
(cdar e
) :test
#'eq
))) (ratf e
))
1388 ((catch 'srrat
(srrat e
)))
1389 (t (ratf ($ratdisrep e
)))))
1392 (unless (some (lambda (v) (switch 'multivar v
)) (mrat-tlist e
))
1393 (cons (list 'mrat
'simp
(mrat-varlist e
) (mrat-genvar e
))
1394 (srrat2 (mrat-ps e
)))))
1397 (if (pscoefp e
) e
(srrat3 (terms e
) (gvar e
))))
1399 (defun srrat3 (l poly-var
)
1400 (cond ((null l
) '(0 .
1))
1401 ((null (=1 (cdr (le l
))))
1404 (rattimes (cons (list poly-var
(car (le l
)) 1) 1)
1408 (rattimes (cons (list poly-var
(car (le l
)) 1) 1)
1411 (srrat3 (n-term l
) poly-var
)))))
1414 (defmspec $deftaylor
(l)
1415 (prog (fun series param op ops
)
1416 a
(when (null (setq l
(cdr l
))) (return (cons '(mlist) ops
)))
1417 (setq fun
(meval (car l
)) series
(meval (cadr l
)) l
(cdr l
) param
() )
1418 (when (or (atom fun
)
1419 (if (eq (caar fun
) 'mqapply
)
1420 (or (cdddr fun
) ; must be one parameter
1421 (null (cddr fun
)) ; must have exactly one
1422 (do ((subs (cdadr fun
) (cdr subs
)))
1424 (setq op
(caaadr fun
))
1426 (setq param
(caddr fun
)))
1428 (unless (atom (car subs
)) (return 't
))))
1430 (setq op
(caar fun
))
1431 (when (cdr fun
) (setq param
(cadr fun
)))
1432 (or (and (zl-get op
'op
) (not (eq op
'mfactorial
)))
1433 (not (atom (cadr fun
)))
1434 (not (= (length fun
) 2))))))
1435 (merror (intl:gettext
"deftaylor: don't know how to handle this function: ~M") fun
))
1436 (when (zl-get op
'sp2
)
1437 (mtell (intl:gettext
"deftaylor: redefining ~:M.~%") op
))
1438 (when param
(setq series
(subst 'sp2var param series
)))
1439 (setq series
(subsum '*index series
))
1440 (putprop op series
'sp2
)
1441 (when (eq (caar fun
) 'mqapply
)
1442 (putprop op
(cdadr fun
) 'sp2subs
))
1447 (defun subsum (combin-i e
)
1448 (susum1 combin-i e
))
1450 (defun susum1 (combin-i e
)
1452 ((eq (caar e
) '%sum
)
1453 (if (null (smonop (cadr e
) 'sp2var
))
1454 (merror (intl:gettext
"deftaylor: argument must be a power series at 0."))
1455 (subst combin-i
(caddr e
) e
)))
1456 (t (recur-apply #'(lambda (v)
1457 (susum1 combin-i v
)) e
))))
1459 (defmfun $polydecomp
(e v
)
1460 (let ((varlist (list v
))
1462 poly-var p den $factorflag $ratfac
)
1463 (setq p
(cdr (ratf (ratdisrep e
)))
1464 poly-var
(cdr (ratf v
)))
1465 (cond ((or (null (cdr poly-var
))
1466 (null (equal (cdar poly-var
) '(1 1))))
1467 (merror (intl:gettext
"polydecomp: second argument must be an atom; found ~M") v
))
1468 (t (setq poly-var
(caar poly-var
))))
1469 (cond ((or (pcoefp (cdr p
))
1470 (null (eq (cadr p
) poly-var
)))
1473 (t (merror (intl:gettext
"polydecomp: cannot apply 'polydecomp' to a rational function."))))
1475 (cond ((or (pcoefp p
)
1476 (null (eq (car p
) poly-var
)))
1477 (list (rdis (cons p den
))))
1478 (t (setq p
(pdecomp p poly-var
))
1480 (setq p
(mapcar #'(lambda (q) (cons q
1)) p
))
1484 (cons (rdis (cons (caar p
)
1485 (ptimes (cdar p
) den
)))
1486 (mapcar #'rdis
(cdr p
))))
1487 (cond ((setq a
(pdecpow (car l
) poly-var
))
1494 (cons (ptterm (cdaadr a
) 1)
1498 (ptterm (cdaadr a
) 0)
1502 (cons (list poly-var
1 1) 1)))
1503 (t (rplacd l
(list (cadr a
)))))))))))))
1506 ;;; POLYDECOMP is like $POLYDECOMP except it takes a poly in *POLY* format (as
1507 ;;; defined in SOLVE) (numerator of a RAT form) and returns a list of
1508 ;;; headerless rat forms. In otherwords, it is $POLYDECOMP minus type checking
1509 ;;; and conversions to/from general representation which SOLVE doesn't
1510 ;;; want/need on a general basis.
1511 ;;; It is used in the SOLVE package and as such it should have an autoload
1514 (defun polydecomp (p poly-var
)
1515 (let ($factorflag $ratfac
)
1516 (cond ((or (pcoefp p
)
1517 (null (eq (car p
) poly-var
)))
1519 (t (setq p
(pdecomp p poly-var
))
1520 (do ((l (setq p
(mapcar #'(lambda (q) (cons q
1)) p
))
1524 (cons (cons (caar p
)
1527 (cond ((setq a
(pdecpow (car l
) poly-var
))
1534 (cons (ptterm (cdaadr a
) 1)
1538 (ptterm (cdaadr a
) 0)
1542 (cons (list poly-var
1 1) 1)))
1543 (t (rplacd l
(list (cadr a
))))))))))))
1547 (defun pdecred (f h poly-var
) ;f = g(h(poly-var))
1548 (cond ((or (pcoefp h
) (null (eq (car h
) poly-var
))
1550 (null (zerop (rem (cadr f
) (cadr h
))))
1551 (and (null (pzerop (caadr (setq f
(pdivide f h
)))))
1552 (equal (cdadr f
) 1)))
1554 (t (do ((q (pdivide (caar f
) h
) (pdivide (caar q
) h
))
1558 (cond ((and (equal (cdadr q
) 1)
1559 (or (pcoefp (caadr q
))
1560 (null (eq (caar (cadr q
)) poly-var
))))
1561 (psimp poly-var
(cons i
(cons (caadr q
) combin-ans
))))))
1562 (cond ((and (equal (cdadr q
) 1)
1563 (or (pcoefp (caadr q
))
1564 (null (eq (caar (cadr q
)) poly-var
))))
1565 (and (null (pzerop (caadr q
)))
1566 (setq combin-ans
(cons i
(cons (caadr q
) combin-ans
)))))
1567 (t (return nil
)))))))
1569 (defun pdecomp (p poly-var
)
1570 (let ((c (ptterm (cdr p
) 0))
1572 ;; CRE form of the polynomial x (with the actual variable in
1574 (poly-x (list poly-var
1 1)))
1576 ((pdecomp1 (prod l poly
)
1578 (and (null (equal (cadr prod
) (cadr poly
)))
1579 (setq l
(pdecred poly prod poly-var
))
1581 ((pdecomp1 prod
(cdr l
) poly
))
1582 (t (pdecomp1 (ptimes (car l
) prod
) (cdr l
) poly
))))
1585 (l (pdecgdfrm (pfactor (pquotient poly poly-x
)))))
1586 (cond ((or (pdecprimep (cadr poly
))
1587 (null (setq a
(pdecomp1 poly-x l poly
))))
1589 (t (append (pdecomp* (car a
)) (cdr a
)))))))
1590 (cons (pcplus c
(car (setq a
(pdecomp* (pdifference p c
)))))
1593 (defun pdecgdfrm (l) ;Get list of divisors
1594 (do ((l (copy-list l
))
1598 (rplaca (cdr l
) (1- (cadr l
)))
1599 (cond ((signp e
(cadr l
))
1601 (cond ((null l
) (return ll
)))))
1603 (defun pdecprimep (x)
1604 (setq x
(cfactorw x
))
1605 (and (null (cddr x
)) (equal (cadr x
) 1)))
1607 (defun pdecpow (p poly-var
)
1609 (let ((p1 (pderivative p poly-var
))
1610 p2 p1p p1c a lin p2p
)
1611 (setq p1p
(oldcontent p1
)
1612 p1c
(car p1p
) p1p
(cadr p1p
))
1613 (setq p2
(pderivative p1 poly-var
))
1614 (setq p2p
(cadr (oldcontent p2
)))
1615 (and (setq lin
(testdivide p1p p2p
))
1617 (eq (car lin
) poly-var
)
1619 (rattimes (cons (list poly-var
(cadr p
) 1) 1)
1620 (setq a
(ratreduce p1c
1625 (rattimes a
(cons (pexpt lin
(cadr p
)) 1)