Add "ru" entry for the hashtable *index-file-name*
[maxima.git] / src / nalgfa.lisp
blob77ab96791e03e1a5770f0dd13ec78558b50acaf7
2 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4 ;;; The data in this file contains enhancements. ;;;;;
5 ;;; ;;;;;
6 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
7 ;;; All rights reserved ;;;;;
8 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
10 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
12 (in-package :maxima)
14 (macsyma-module nalgfa)
16 (declare-top (special vlist *nosplitf *algvar *denom *num *ans))
18 (load-macsyma-macros rzmac ratmac)
20 (defun new-alg ()
21 (newsym ($gensym "alg")))
24 (defun psqfrp (p var)
25 (zerop (pdegree (pgcd p (pderivative p var)) var)))
27 (defun pgsubst (val var p) ;;generalized psubst substitutes any
28 (cond ((pcoefp p) p) ;;expression for any var in p
29 ((eq var (car p))
30 (cond ((pzerop val)
31 (ptterm (cdr p) 0))
32 ((do ((ld (cadr p) (car a))
33 (a (cdddr p) (cddr a))
34 (ans (caddr p)
35 (pplus
36 (ptimes ans (pexpt val (- ld (car a))))
37 (cadr a))))
38 ((null a) (ptimes ans (pexpt val ld)))))))
39 ((pointergp var (car p)) p)
40 ((do ((a (cdddr p) (cddr a))
41 (ans (ptimes (list (car p) (cadr p) 1)
42 (pgsubst val var (caddr p)))
43 (pplus ans
44 (ptimes (list (car p) (car a) 1)
45 (pgsubst val var (cadr a))))))
46 ((null a) ans)))))
48 (defun pvsubst (nvar ovar p)
49 (cond ((or (pcoefp p) (pointergp ovar (car p))) p)
50 ((eq ovar (car p))
51 (cons nvar (cdr p)))
52 (t (pgsubst (make-poly nvar) ovar p))))
54 (defun ordervar (var l)
55 (let ((mvar (lmainvar l)))
56 (cond ((null mvar) l)
57 ((null (pointergp mvar var)) (cons var l))
58 ((let ((newvar (gensym)))
59 (setq genvar (append genvar (list newvar)))
60 (setf (symbol-plist newvar) (symbol-plist var))
61 (setf (symbol-value newvar) (1+ (symbol-value mvar)))
62 (cons newvar (mapcar #'(lambda (p) (pvsubst newvar var p)) l)))))))
64 (defun lmainvar (l) ;;main var of list of poly's
65 (do ((l l (cdr l))
66 (v))
67 ((null l) v)
68 (cond ((pcoefp (car l)))
69 ((null v) (setq v (caar l)))
70 ((pointergp (caar l) v)
71 (setq v (caar l))))))
73 (defun presult (p1 p2 var) ;;change call in algsys?
74 (let ((genvar genvar))
75 (setq var (ordervar var (list p1 p2))
76 p1 (cadr var)
77 p2 (caddr var)
78 var (car var))
79 (cond ((zerop (pdegree p1 var))
80 (cond ((zerop (pdegree p2 var)) 1)
81 ((pexpt p1 (cadr p2)))))
82 ((zerop (pdegree p2 var))
83 (pexpt p2 (cadr p1)))
84 ((resultant p1 p2)))))
86 (defun pcoefvec (p)
87 (cond ((pcoefp p) (list p))
88 ((do ((l)
89 (i (cadr p) (1- i))
90 (p (cdr p)))
91 ((signp l i) (nreverse l))
92 (push (cond ((and p (= (car p) i))
93 (prog1 (cadr p) (setq p (cddr p))))
94 ( 0 ))
95 l)))))
97 (defun algtrace1 (bvec tvec)
98 (do ((i (- (length tvec) (length bvec)) (1- i)))
99 ((zerop i) (algtrace* bvec tvec))
100 (setq bvec (cons 0 bvec))))
102 (defun algtrace* (bvec tvec)
103 (do ((b bvec (cdr b))
104 (tr (car (last bvec))
105 (pplus tr (car (last b)))))
106 ((null (cdr b)) tr)
107 (or (pzerop (car b))
108 (do ((l (cdr b) (cdr l))
109 (tv tvec (cdr tv)))
110 ((null l))
111 (rplaca l (pdifference (car l) (ptimes (car b) (car tv))))))))
113 (defun algtrace (f p)
114 (let* ((r (cadr (pdivide (car f) p))))
115 (if (or (constantp (car r)) ; r constant
116 (not (eq (caar r) (car p)))) ; r constant in main var of p
117 (ratreduce (pctimes (cadr p) (car r)) (cdr r)) ; r*deg(p)
118 (ratreduce (algtrace1 (pcoefvec (car r)) (cdr (pcoefvec p)))
119 (cdr r)))))
122 (defmfun $algtrace (f p var)
123 (let ((varlist (list var))
124 (genvar nil))
125 (rdis* (algtrace (rform f) (car (rform p))))))
128 (defun good-form (l) ;;bad -> good
129 (do ((l l (cddr l))
130 (ans))
131 ((null l) (nreverse ans))
132 (push (cons (cadr l) (car l)) ans)))
134 (defun bad-form (l) ;;good -> bad
135 (mapcar #'(lambda (q) (list (cdr q) (car q))) l))
137 (defmfun $algfac (a1 &optional (a2 nil a2?) (a3 nil a3?))
138 (if a3?
139 ($pfactoralg a1 a2 a3)
140 (let ((varlist))
141 (cond (a2?
142 (newvar a2)
143 (if (alike1 a2 (car varlist))
144 ($pfactoralg a1 nil a2)
145 ($pfactoralg a1 a2 (car (last varlist)))))
147 (newvar a1)
148 (setq varlist (mapcan #'(lambda (q) (if (algpget q) (list q) nil)) varlist))
149 (cond ((= (length varlist) 1)
150 ($pfactoralg a1 nil (car varlist)))
151 ((> (length varlist) 1)
152 ;; MEANING OF NEXT MESSAGE IS UNCLEAR
153 (merror (intl:gettext "algfac: too many algebraics.")))
155 ;; MEANING OF NEXT MESSAGE IS UNCLEAR
156 (merror (intl:gettext "algfac: no algebraics.")))))))))
158 (defmfun $pfactoralg (f p alg)
159 (let ((varlist (list alg))
160 (genvar) (vlist) (tellratlist) ($ratfac)
161 ($gcd '$algebraic)
162 ($algebraic) ($ratalgdenom t)
163 (*denom 1) (*num 1) (*ans))
164 (cond ((and (null p) (radfunp alg t)) (newvar (cadr alg)))
165 (t (newvar p)))
166 (newvar1 f)
167 (cond ((null vlist) (merror (intl:gettext "pfactoralg: attempt to factor a constant."))))
168 (setq varlist (nconc varlist (sortgreat vlist)))
169 (cond (p (setq p (cadr (ratrep* p)))
170 (push (cons alg (mapcar #'pdis (cdr p)))
171 tellratlist))
172 (t (setq p (algpget alg))
173 (setq p (pdifference
174 (pexpt (cadr (ratrep* alg)) (car p))
175 (cadr p)))))
176 (setq $algebraic t)
177 (setq f (cadr (ratrep* f)))
178 (setq f (pfactoralg1 f p 0))
179 (cons '(mtimes)
180 (cons (rdis (ratreduce *num *denom))
181 (mapcar 'pdis f)))))
183 (defun nalgfac (p mp)
184 (let ((*num 1) (*denom 1) (*ans) (algfac*) ($nalgfac)
185 ($algebraic t) ($gcd '$algebraic))
186 (setq p (pfactoralg1 p mp 0))
187 (setq adn* (* adn* *denom))
188 (cond ((equal *num 1) p)
189 (t (cons *num p)))))
191 (setq *nosplitf t)
193 (defun pfactoralg1 (f p ind)
194 (cond ((pcoefp f) (setq *num (ptimeschk f *num)) *ans)
195 ((= (cadr f) 1) (setq f (pshift f (car p) ind))
196 (push (algnormal f) *ans)
197 (setq f (rquotient f (car *ans))
198 *denom (ptimeschk (cdr f) *denom)
199 *num (ptimeschk (car f) *num))
200 *ans)
201 ((equal (cdr f) (cdr p))
202 (push (pdifference (make-poly (car f)) (make-poly (car p))) *ans)
203 (setq f (rquotient f (car *ans))
204 *denom (ptimeschk (cdr f) *denom))
205 (pfactoralg1 (car f) p ind))
206 ((zerop (pdegree f (car p)))
207 (mapc #'(lambda (q)
208 (if (pcoefp q) nil
209 (pfactoralg1 (pshift q (car p) -1) p (1+ ind))))
210 (let (($algebraic nil)
211 ($gcd (car *gcdl*)))
212 (pfactor1 f)))
213 *ans)
214 (t (do ((l (let (($algebraic nil)
215 ($gcd (car *gcdl*)))
216 (pfactor (algnorm f p)))
217 (cddr l))
218 (polys)
219 (temp)
220 (alg (car p)))
221 ((null l)
222 (setq *num (ptimeschk f *num))
223 (mapc #'(lambda (q) (pfactoralg1
224 (pshift q alg -1) p (1+ ind)))
225 polys)
226 *ans)
227 (cond ((pcoefp (car l)) nil)
228 (t (setq temp (cond ((null (cddr l)) f)
229 (t (pgcd f (car l)))))
230 (cond ((pcoefp temp) nil)
231 ((= (cadr temp) 1)
232 (setq temp (algnormal temp))
233 (push (pshift temp alg ind) *ans))
234 ((= (cadr l) 1)
235 (setq temp (algnormal temp))
236 (push (pshift temp alg ind) *ans)
237 (or *nosplitf
238 (setq *nosplitf
239 (list (car l) temp ind))))
240 (t (push temp polys)))
241 (setq f (rquotient f temp)
242 *denom (ptimeschk (cdr f) *denom)
243 f (car f)))) ))))
245 (defun pshift (f alg c)
246 (if (= c 0) f
247 (pgsubst (pplus (make-poly (car f)) (pctimes c (make-poly alg)))
248 (car f) f)))
252 (defmfun $splitfield (p var)
253 (let ((varlist)
254 (genvar)
255 (genpairs)
256 (*algvar)
257 ($gcd '$algebraic))
258 (newsym var)
259 (setq *algvar (caar (new-alg)))
260 (setq p (psplit-field (cadr (ratf p))))
261 (cons
262 '(mlist)
263 (cons (pdis* (car p))
264 (mapcar 'rdis* (cdr p))))))
266 (defun psplit-field (p) ;modresult?
267 (let ((l (mapcar #'(lambda (q) (psplit-field1 (cdr q)))
268 (good-form (pfactor p)))) ;don't normalize lcfs?
269 ($algebraic t))
270 (if (null (cdr l)) (car l)
271 (do ((l l (cdr l))
272 (prim) (zeroes) (temp))
273 ((null l) (cons (or prim '|$splits in q|) zeroes))
274 (cond ((eq (caar l) 'linear)
275 (setq zeroes (cons (cdar l) zeroes)))
276 ((null prim)
277 (setq prim (caar l)
278 zeroes (nconc (cdar l) zeroes)))
279 ((setq temp
280 (primelmt (cons (car p) (cdr prim))
281 (cons (car p) (cdaar l))
282 *algvar)
283 zeroes
284 (nconc
285 (mapcar
286 #'(lambda (q)
287 (ratgsubst (cadddr temp) (caaar l) q))
288 (cdar l))
289 (mapcar
290 #'(lambda (q)
291 (ratgsubst (caddr temp) (car prim) q))
292 zeroes))
293 prim (car temp))))))))
295 (defun plsolve (p)
296 (ratreduce (ptterm (cdr p) 0)
297 (pminus (ptterm (cdr p) 1))))
300 (defun psplit-field1 (p)
301 ;;returns minimal poly and list of roots
302 ;;p must be square free
303 (*bind* ((minpoly (cons *algvar (cdr p)))
304 (zeroes) ($algebraic t)
305 ($ratalgdenom t))
306 (if (equal (cadr p) 1) (return (cons 'linear (plsolve p))))
307 (do ((polys (list p) )
308 (nminpoly)
309 (*nosplitf nil nil)
310 (alpha (cons (make-poly (car minpoly)) 1)))
311 ((null polys)
312 (cons minpoly zeroes))
313 (push alpha zeroes)
314 (putprop (car minpoly) (cdr minpoly) 'tellrat)
315 (rplaca polys
316 (car
317 (rquotient (pctimes (cdr alpha) (car polys))
318 (pdifference
319 (pctimes (cdr alpha) (pget (caar polys)))
320 (car alpha)))))
321 (setq polys
322 (mapcan
323 #'(lambda (q)
324 (cond ((equal (cadr q) 1) ;;linear factor
325 (push (plsolve q) zeroes)
326 nil) ;;flush linear factor
327 ((list q))))
328 (mapcan #'(lambda (q)
329 (let ((*ans) (*num 1) (*denom 1))
330 (nreverse (pfactoralg1 q minpoly 0))))
331 polys)))
332 (when *nosplitf
333 (setq nminpoly (car *nosplitf)
334 *nosplitf (cdr *nosplitf))
335 (putprop *algvar (cdr nminpoly) 'tellrat)
336 (let ((beta
337 (plsolve (pgcd (cons (caar *nosplitf) (cdr minpoly))
338 (exchangevar (car *nosplitf) *algvar)))))
339 (setq alpha (ratplus (cons (make-poly *algvar) 1)
340 (rattimes (cons (- (cadr *nosplitf)) 1)
341 beta t)))
342 (setq zeroes
343 (mapcar
344 #'(lambda (q) (ratgsubst beta (car minpoly) q))
345 zeroes))
346 (setq polys
347 (mapcar
348 #'(lambda (q) (car (rgsubst beta (car minpoly) q)))
349 polys))
350 (setq minpoly
351 (cons *algvar (cdr nminpoly))))))))
353 (defun exchangevar (poly var)
354 (let ((newvar (gensym))
355 (ovar (car poly)))
356 (setf (symbol-value newvar) (1+ (eval ovar)))
357 (pvsubst ovar newvar
358 (pvsubst var ovar
359 (pvsubst newvar var poly)))))
361 (defun rgsubst (val var p) ;;generalized psubst substitutes any
362 (cond ((pcoefp p)
363 (cons p 1)) ;;expression for any var in p
364 ((eq var (car p))
365 (cond ((pzerop val)
366 (cons (ptterm (cdr p) 0) 1))
367 ((do ((ld (cadr p) (car a))
368 (a (cdddr p) (cddr a))
369 (ans (cons (caddr p) 1)
370 (ratplus
371 (rattimes ans
372 (ratexpt val
373 (- ld (car a)))
375 (cons (cadr a) 1))))
376 ((null a) (rattimes ans (ratexpt val ld) t))))))
377 ((pointergp var (car p)) (cons p 1))
378 (t (let ((newsym (gensym)))
379 (setf (symbol-value newsym) (1+ (symbol-value (car p))))
380 (rgsubst val newsym (pvsubst newsym var p))))))
382 (defun ratgsubst (val var rat)
383 (ratquotient (rgsubst val var (car rat))
384 (rgsubst val var (cdr rat))))
386 (defun algnorm (f p)
387 (presult f p (car p)))
389 (defmfun $algnorm (r p var)
390 (let ((varlist (list var))
391 (genvar))
392 (setq r (ratf r)
393 p (cadr (ratf p)))
394 (rdis* (cons (algnorm (cadr r) p)
395 (algnorm (cddr r) p)))))
397 (defun sqfrnorm (f p fvar) ;;f must be sqfr, p is minpoly, fvar # pvar
398 (*bind* ((pvar (car p)))
399 (setq f (cdr (ordervar pvar (list f p))) ;;new main var will be car of p
400 p (cadr f) f (car f)) ;make mainvar of f = mainvar(p)
401 (do ((i 0 (1+ i))
402 (dif (pdifference (make-poly fvar) (make-poly (car p))))
403 (f f (pgsubst dif fvar f))
404 (res))
405 ((and (eq (car f) (car p))
406 (setq res (primpart (algnorm f p)))
407 (psqfrp res fvar))
408 (list res
409 (*bind* (($algebraic t)) ;;;modified f
410 (putprop pvar (cdr p) 'tellrat)
411 (pvsubst pvar (car p) f))
412 (car p)
414 i)))))
416 (defun primelmt (a b gvar &aux ($algebraic nil))
417 ;;a is a poly with coeff's in k(b)
418 ;;gvar is new variable
419 (let ((norm (sqfrnorm (cons gvar (cdr a)) b gvar))
420 (alpha) (beta) ($ratalgdenom t))
421 (rplaca norm (primpart (car norm)))
422 (putprop gvar (cdar norm) 'tellrat)
423 (setq $algebraic t
424 beta (subresgcd (cadddr norm)
425 (pvsubst (caddr norm)
426 (car b)
427 (cadr norm))))
428 (setq beta (plsolve beta)
429 alpha (ratplus (cons (make-poly gvar) 1)
430 (rattimes (cons (- (cadddr (cdr norm))) 1)
431 beta t)))
432 (list (car norm) ;;minimal poly
433 (pplus (make-poly (car a)) ;;new prim elm in old guys
434 (list (car b) 1 (car (last norm))))
435 alpha beta))) ;;in terms of gamma
437 (defun $primelmt (f_b p_a c)
438 ;;p_a(a) is an irreducible polynomial in K defining an extension
439 ;;K[a] of degree n_a. Then f_b(b) is a polynomial in K[a] of degree
440 ;;n_f , which defines a new extension K[a,b]. The output is a
441 ;;polynomial of degree n_a*n_b, and the expression of its variable
442 ;;in terms of a root a of p_a and a root b of f_b.
443 ;;One assumes that p_a only depends on one variable a and f_b of two
444 ;;different variables b and a. So this works only for algebraic
445 ;;numbers, not algebraic curves.
449 (let* ((vla (newvar p_a)) ; ensure varlist = ($a $b)
450 (vlf (newvar f_b))
451 (varlist (cons (car vla) (remove (car vla) vlf)))
452 (genvar) ; start with a clean space of vars
453 (genpairs)
454 (p (cadr (ratf p_a))) ;p_a in rat form
455 (f (cadr (ratf f_b))) ;f_b in rat form mainvar b
456 (algvar (caar (newsym c))) ;new primitive element
457 (prim (primelmt f p algvar)))
458 (list '(mlist) (pdis (car prim)) (pdis (cadr prim)))))
459 ;(rdis (caddr prim)) (rdis (cadddr prim))))) ;debug alpha beta
463 ;; discriminant of a basis
465 (defmfun $bdiscr (&rest args)
466 (let ((varlist) (genvar))
467 (xcons (bdiscr (mapcar #'rform (butlast args))
468 (car (rform (car (last args)))))
469 (list 'mrat 'simp varlist genvar))))
471 (defun bdiscr (l minp)
472 (det (mapcar #'(lambda (q1)
473 (mapcar #'(lambda (q2)
474 (algtrace (cons (ptimes (car q1)
475 (car q2)) 1)
476 minp)) l)) l)))