Add "ru" entry for the hashtable *index-file-name*
[maxima.git] / src / trigo.lisp
blobd42cc4064fbf0e6deb1f61fb4d3872d93c5571d9
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module trigo)
15 (load-macsyma-macros mrgmac)
17 (def-simplifier sinh (y)
18 (cond ((flonum-eval (mop form) y))
19 ((big-float-eval (mop form) y))
20 ((taylorize (mop form) (second form)))
21 ((and $%piargs (if (zerop1 y) 0)))
22 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%sin (coeff y '$%i 1))))
23 ((and $triginverses (not (atom y))
24 (let ((fcn (caar y))
25 (arg (cadr y)))
26 (cond ((eq '%asinh fcn)
27 arg)
28 ((eq '%acosh fcn)
29 ;; ratsimp(logarc(exponentialize(sinh(acosh(x))))),algebraic;
30 ;; -> sqrt(x-1)*sqrt(x+1)
31 (mul (power (sub arg 1) 1//2)
32 (power (add arg 1) 1//2)))
33 ((eq '%atanh fcn)
34 ;; radcan(logarc(exponentialize(sinh(atanh(x)))));
35 ;; -> x/(sqrt(1-x)*sqrt(1+x))
36 (div arg
37 (mul (power (sub 1 arg) 1//2)
38 (power (add 1 arg) 1//2))))))))
39 ((and $trigexpand (trigexpand '%sinh y)))
40 ($exponentialize (exponentialize '%sinh y))
41 ((and $halfangles (halfangle '%sinh y)))
42 ((apply-reflection-simp (mop form) y $trigsign))
43 ;((and $trigsign (mminusp* y)) (neg (ftake* '%sinh (neg y))))
44 (t (give-up))))
46 (def-simplifier cosh (y)
47 (cond ((flonum-eval (mop form) y))
48 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
49 ((taylorize (mop form) (second form)))
50 ((and $%piargs (if (zerop1 y) 1)))
51 ((and $%iargs (multiplep y '$%i)) (ftake* '%cos (coeff y '$%i 1)))
52 ((and $triginverses (not (atom y))
53 (let ((fcn (caar y))
54 (arg (cadr y)))
55 (cond ((eq '%acosh fcn)
56 arg)
57 ((eq '%asinh fcn)
58 ;; ex: cosh(asinh(x));
59 ;; ex,exponentialize,logarc;
60 ;; ratsimp(%),algebraic
61 ;; -> sqrt(x^2+1)
62 ;;
63 (sqrt1+x^2 arg))
64 ((eq '%atanh fcn)
65 ;; ex: cosh(atanh(x))
66 ;; radcan(logarc(exponentialize(ex)))
67 ;; -> 1/sqrt(1-x)/sqrt(1+x)
68 (div 1
69 (mul (power (sub 1 arg) 1//2)
70 (power (add 1 arg) 1//2))))))))
71 ((and $trigexpand (trigexpand '%cosh y)))
72 ($exponentialize (exponentialize '%cosh y))
73 ((and $halfangles (halfangle '%cosh y)))
74 ((apply-reflection-simp (mop form) y $trigsign))
75 ;((and $trigsign (mminusp* y)) (ftake* '%cosh (neg y)))
76 (t (give-up))))
78 (def-simplifier tanh (y)
79 (cond ((flonum-eval (mop form) y))
80 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
81 ((taylorize (mop form) (second form)))
82 ((and $%piargs (if (zerop1 y) 0)))
83 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%tan (coeff y '$%i 1))))
84 ((and $triginverses (not (atom y))
85 (let ((fcn (caar y))
86 (arg (cadr y)))
87 (cond ((eq '%atanh fcn)
88 arg)
89 ((eq '%asinh fcn)
90 ;; ratsimp(logarc(exponentialize(tanh(asinh(x))))),algebraic;
91 ;; --> x/sqrt(1+x^2)
92 (div arg (sqrt1+x^2 arg)))
93 ((eq '%acosh fcn)
94 ;; ratsimp(logarc(exponentialize(tanh(acosh(x))))),algebraic;
95 ;; sqrt(x-1)*sqrt(x+1)/x
96 (div (mul (power (sub arg 1) 1//2)
97 (power (add arg 1) 1//2))
98 arg))))))
99 ((and $trigexpand (trigexpand '%tanh y)))
100 ($exponentialize (exponentialize '%tanh y))
101 ((and $halfangles (halfangle '%tanh y)))
102 ((apply-reflection-simp (mop form) y $trigsign))
103 ;((and $trigsign (mminusp* y)) (neg (ftake* '%tanh (neg y))))
104 (t (give-up))))
106 (def-simplifier coth (y)
107 (cond ((flonum-eval (mop form) y))
108 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
109 ((taylorize (mop form) (second form)))
110 ((and $%piargs (if (zerop1 y) (domain-error y 'coth))))
111 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%cot (coeff y '$%i 1))))
112 ((and $triginverses (not (atom y)) (if (eq '%acoth (caar y)) (cadr y))))
113 ((and $trigexpand (trigexpand '%coth y)))
114 ($exponentialize (exponentialize '%coth y))
115 ((and $halfangles (halfangle '%coth y)))
116 ((apply-reflection-simp (mop form) y $trigsign))
117 ;((and $trigsign (mminusp* y)) (neg (ftake* '%coth (neg y))))
118 (t (give-up))))
120 (def-simplifier csch (y)
121 (cond ((flonum-eval (mop form) y))
122 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
123 ((taylorize (mop form) (second form)))
124 ((and $%piargs (cond ((zerop1 y) (domain-error y 'csch)))))
125 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%csc (coeff y '$%i 1))))
126 ((and $triginverses (not (atom y)) (if (eq '%acsch (caar y)) (cadr y))))
127 ((and $trigexpand (trigexpand '%csch y)))
128 ($exponentialize (exponentialize '%csch y))
129 ((and $halfangles (halfangle '%csch y)))
130 ((apply-reflection-simp (mop form) y $trigsign))
131 ;((and $trigsign (mminusp* y)) (neg (ftake* '%csch (neg y))))
132 (t (give-up))))
134 (def-simplifier sech (y)
135 (cond ((flonum-eval (mop form) y))
136 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
137 ((taylorize (mop form) (second form)))
138 ((and $%piargs (zerop1 y)) 1)
139 ((and $%iargs (multiplep y '$%i)) (ftake* '%sec (coeff y '$%i 1)))
140 ((and $triginverses (not (atom y)) (if (eq '%asech (caar y)) (cadr y))))
141 ((and $trigexpand (trigexpand '%sech y)))
142 ($exponentialize (exponentialize '%sech y))
143 ((and $halfangles (halfangle '%sech y)))
144 ((apply-reflection-simp (mop form) y $trigsign))
145 ;((and $trigsign (mminusp* y)) (ftake* '%sech (neg y)))
146 (t (give-up))))
148 (def-simplifier asin (y)
149 (cond ((flonum-eval (mop form) y))
150 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
151 ((taylorize (mop form) (second form)))
152 ((and $%piargs
153 ;; Recognize some special values
154 (cond ((zerop1 y)
156 ((equal 1 y)
157 (div '$%pi 2))
158 ((equal -1 y)
159 (div '$%pi -2))
160 ((alike1 y 1//2)
161 (div '$%pi 6))
162 ((alike1 y -1//2)
163 (div '$%pi -6))
164 ;; 1/sqrt(2)
165 ((alike1 y (power* 2 -1//2))
166 (div '$%pi 4))
167 ;; sqrt(3)/2
168 ((alike1 y (div (power* 3 1//2) 2))
169 (div '$%pi 3))
170 ;; -sqrt(3)/2
171 ((alike1 y (div (power* 3 1//2) -2))
172 (div '$%pi -3)))))
173 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%asinh (coeff y '$%i 1))))
174 ((and (not (atom y)) (member (caar y) '(%cos %sin))
175 (if ($constantp (cadr y))
176 (let ((y-val (mfuncall '$mod
177 (if (eq (caar y) '%sin) (cadr y) (m- %pi//2 (cadr y)))
178 (m* 2 '$%pi))))
179 (cond ((eq (mlsp y-val %pi//2) t) y-val)
180 ((eq (mlsp y-val (m* 3 %pi//2)) t) (m- '$%pi y-val))
181 ((eq (mlsp y-val (m* 2 '$%pi)) t) (m- y-val (m* 2 '$%pi))))))))
182 ((and (eq $triginverses t) (not (atom y)) (eq (caar y) '%sin)
183 (if (and (member (csign (m- (cadr y) %pi//2)) '($nz $neg) :test #'eq)
184 (member (csign (m+ (cadr y) %pi//2)) '($pz $pos) :test #'eq))
185 (cadr y))))
186 ((and (eq $triginverses '$all) (not (atom y))
187 (if (eq '%sin (caar y)) (cadr y))))
188 ($logarc (logarc '%asin y))
189 ((apply-reflection-simp (mop form) y $trigsign))
190 ;((and $trigsign (mminusp* y)) (neg (ftake* '%asin (neg y))))
191 (t (give-up))))
193 (def-simplifier acos (y)
194 (cond ((flonum-eval (mop form) y))
195 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
196 ((taylorize (mop form) (second form)))
197 ((and $%piargs
198 ;; Recognize some special values
199 (cond ((zerop1 y)
200 (div '$%pi 2))
201 ((equal 1 y)
203 ((equal -1 y)
204 '$%pi)
205 ((alike1 y 1//2)
206 (div '$%pi 3))
207 ((alike1 y -1//2)
208 (mul '$%pi (div 2 3)))
209 ;; 1/sqrt(2)
210 ((alike1 y (power* 2 -1//2))
211 (div '$%pi 4))
212 ;; sqrt(3)/2
213 ((alike1 y (div (power* 3 1//2) 2))
214 (div '$%pi 6))
215 ;; -sqrt(3)/2
216 ((alike1 y (div (power* 3 1//2) -2))
217 (mul '$%pi (div 5 6))))))
218 ((and (not (atom y)) (member (caar y) '(%cos %sin))
219 (if ($constantp (cadr y))
220 (let ((y-val (mfuncall '$mod
221 (if (eq (caar y) '%cos) (cadr y) (m- %pi//2 (cadr y)))
222 (m* 2 '$%pi))))
223 (cond ((eq (mlsp y-val '$%pi) t) y-val)
224 ((eq (mlsp y-val (m* 2 '$%pi)) t) (m- (m* 2 '$%pi) y-val)))))))
225 ((and (eq $triginverses '$all) (not (atom y))
226 (if (eq '%cos (caar y)) (cadr y))))
227 ((and (eq $triginverses t) (not (atom y)) (eq (caar y) '%cos)
228 (if (and (member (csign (m- (cadr y) '$%pi)) '($nz $neg) :test #'eq)
229 (member (csign (cadr y)) '($pz $pos) :test #'eq))
230 (cadr y))))
231 ($logarc (logarc '%acos y))
232 ((apply-reflection-simp (mop form) y $trigsign))
233 ;((and $trigsign (mminusp* y)) (sub '$%pi (ftake* '%acos (neg y))))
234 (t (give-up))))
236 (def-simplifier acot (y)
237 (cond ((flonum-eval (mop form) y))
238 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
239 ((taylorize (mop form) (second form)))
240 ((and $%piargs
241 (cond ((zerop1 y) (div '$%pi 2))
242 ((equal 1 y) (div '$%pi 4))
243 ((equal -1 y) (div '$%pi -4))
244 ;; 1/sqrt(3)
245 ((alike1 y '((mexpt) 3 ((rat) -1 2))) (div '$%pi 3))
246 ;; sqrt(3)
247 ((alike1 y '((mexpt) 3 ((rat) 1 2))) (div '$%pi 6)))))
248 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%acoth (coeff y '$%i 1))))
249 ((and (not (atom y)) (member (caar y) '(%cot %tan))
250 (if ($constantp (cadr y))
251 (let ((y-val (mfuncall '$mod
252 (if (eq (caar y) '%cot) (cadr y) (m- %pi//2 (cadr y)))
253 '$%pi)))
254 (cond ((eq (mlsp y-val %pi//2) t) y-val)
255 ((eq (mlsp y-val '$%pi) t) (m- y-val '$%pi)))))))
256 ((and (eq $triginverses '$all) (not (atom y))
257 (if (eq '%cot (caar y)) (cadr y))))
258 ((and (eq $triginverses t) (not (atom y)) (eq (caar y) '%cot)
259 (if (and (member (csign (m- (cadr y) %pi//2)) '($nz $neg) :test #'eq)
260 (member (csign (m+ (cadr y) %pi//2)) '($pz $pos) :test #'eq))
261 (cadr y))))
262 ($logarc (logarc '%acot y))
263 ((apply-reflection-simp (mop form) y $trigsign))
264 ;((and $trigsign (mminusp* y)) (neg (ftake* '%acot (neg y))))
265 (t (give-up))))
267 (def-simplifier acsc (y)
268 (cond ((flonum-eval (mop form) y))
269 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
270 ((taylorize (mop form) (second form)))
271 ((and $%piargs
272 (cond ((equal 1 y) (div '$%pi 2))
273 ((equal -1 y) (div '$%pi -2))
274 ((equal y 2) (div '$%pi 6))
275 ;; sqrt(2)
276 ((alike1 y '((mexpt) 2 ((rat) 1 2))) (div '$%pi 4))
277 ;; 2*sqrt(3)/3
278 ((alike1 y '((mtimes) 2 ((mexpt) 3 ((rat) -1 2))))
279 (div '$%pi 3)))))
280 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%acsch (coeff y '$%i 1))))
281 ((and (not (atom y)) (eq '%csc (caar y))
282 (if ($constantp (cadr y))
283 (let ((y-val (mfuncall '$mod (cadr y) (m* 2 '$%pi))))
284 (cond ((eq (mlsp y-val %pi//2) t) y-val)
285 ((eq (mlsp y-val (m* 3 %pi//2)) t) (m- '$%pi y-val))
286 ((eq (mlsp y-val (m* 2 '$%pi)) t) (m- y-val (m* 2 '$%pi))))))))
287 ((and (eq $triginverses '$all) (not (atom y))
288 (if (eq '%csc (caar y)) (cadr y))))
289 ($logarc (logarc '%acsc y))
290 ((apply-reflection-simp (mop form) y $trigsign))
291 ;((and $trigsign (mminusp* y)) (neg (ftake* '%acsc (neg y))))
292 (t (give-up))))
294 (def-simplifier asec (y)
295 (cond ((flonum-eval (mop form) y))
296 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
297 ((taylorize (mop form) (second form)))
298 ((and $%piargs
299 (cond ((equal 1 y) 0)
300 ((equal -1 y) '$%pi)
301 ((equal 2 y) (div '$%pi 3))
302 ;; sqrt(2)
303 ((alike1 y '((mexpt) 2 ((rat) 1 2))) (div '$%pi 4))
304 ;; 2/sqrt(3)
305 ((alike1 y '((mtimes) 2 ((mexpt) 3 ((rat) -1 2))))
306 (div '$%pi 6)))))
307 ((and (not (atom y)) (eq '%sec (caar y))
308 (if ($constantp (cadr y))
309 (let ((y-val (mfuncall '$mod (cadr y) (m* 2 '$%pi))))
310 (cond ((eq (mlsp y-val '$%pi) t) y-val)
311 ((eq (mlsp y-val (m* 2 '$%pi)) t) (m- (m* 2 '$%pi) y-val)))))))
312 ((and (eq $triginverses '$all) (not (atom y))
313 (if (eq '%sec (caar y)) (cadr y))))
314 ($logarc (logarc '%asec y))
315 ((apply-reflection-simp (mop form) y $trigsign))
316 ;;((and $trigsign (mminusp* y)) (sub '$%pi (ftake* '%asec (neg y))))
317 (t (give-up))))
319 (def-simplifier asinh (y)
320 (cond ((flonum-eval (mop form) y))
321 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
322 ((taylorize (mop form) (second form)))
323 ((and $%piargs (if (zerop1 y) y)))
324 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%asin (coeff y '$%i 1))))
325 ((and (eq $triginverses '$all) (not (atom y))
326 (if (eq '%sinh (caar y)) (cadr y))))
327 ($logarc (logarc '%asinh y))
328 ((apply-reflection-simp (mop form) y $trigsign))
329 ;((and $trigsign (mminusp* y)) (neg (ftake* '%asinh (neg y))))
330 (t (give-up))))
332 (def-simplifier acosh (y)
333 (cond ((flonum-eval (mop form) y))
334 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
335 ((taylorize (mop form) (second form)))
336 ((and $%piargs (if (equal y 1) 0)))
337 ((and (eq $triginverses '$all) (not (atom y))
338 (if (eq '%cosh (caar y)) (cadr y))))
339 ($logarc (logarc '%acosh y))
340 (t (give-up))))
342 (def-simplifier atanh (y)
343 (cond ((flonum-eval (mop form) y))
344 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
345 ((taylorize (mop form) (second form)))
346 ((and $%piargs (cond ((zerop1 y) 0)
347 ((or (equal y 1) (equal y -1)) (domain-error y 'atanh)))))
348 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%atan (coeff y '$%i 1))))
349 ((and (eq $triginverses '$all) (not (atom y))
350 (if (eq '%tanh (caar y)) (cadr y))))
351 ($logarc (logarc '%atanh y))
352 ((apply-reflection-simp (mop form) y $trigsign))
353 ;((and $trigsign (mminusp* y)) (neg (ftake* '%atanh (neg y))))
354 (t (give-up))))
356 (def-simplifier acoth (y)
357 (cond ((flonum-eval (mop form) y))
358 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
359 ((taylorize (mop form) (second form)))
360 ((and $%piargs (if (or (equal y 1) (equal y -1)) (domain-error y 'acoth))))
361 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%acot (coeff y '$%i 1))))
362 ((and (eq $triginverses '$all) (not (atom y))
363 (if (eq '%coth (caar y)) (cadr y))))
364 ($logarc (logarc '%acoth y))
365 ((apply-reflection-simp (mop form) y $trigsign))
366 ;((and $trigsign (mminusp* y)) (neg (ftake* '%acoth (neg y))))
367 (t (give-up))))
369 (def-simplifier acsch (y)
370 (cond ((flonum-eval (mop form) y))
371 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
372 ((taylorize (mop form) (second form)))
373 ((and $%piargs (if (zerop1 y) (domain-error y 'acsch))))
374 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%acsc (coeff y '$%i 1))))
375 ((and (eq $triginverses '$all) (not (atom y))
376 (if (eq '%csch (caar y)) (cadr y))))
377 ($logarc (logarc '%acsch y))
378 ((apply-reflection-simp (mop form) y $trigsign))
379 ;((and $trigsign (mminusp* y)) (neg (ftake* '%acsch (neg y))))
380 (t (give-up))))
382 (def-simplifier asech (y)
383 (cond ((flonum-eval (mop form) y))
384 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
385 ((taylorize (mop form) (second form)))
386 ((and $%piargs (cond ((equal y 1) 0)
387 ((zerop1 y) (domain-error y 'asech)))))
388 ((and (eq $triginverses '$all) (not (atom y))
389 (if (eq '%sech (caar y)) (cadr y))))
390 ($logarc (logarc '%asech y))
391 ((apply-reflection-simp (mop form) y $trigsign))
392 ;((and $trigsign (mminusp* y)) (ftake* '%asech (neg y)))
393 (t (give-up))))
395 (declare-top (special $trigexpandplus $trigexpandtimes))
397 (defmfun ($trigexpand :properties ((evfun t))) (e)
398 (cond ((atom e) e)
399 ((specrepp e) ($trigexpand (specdisrep e)))
400 ((trigexpand (caar e) (cadr e)))
401 (t (recur-apply #'$trigexpand e))))
403 (defun trigexpand (op arg)
404 (cond ((atom arg) nil)
405 ((and $trigexpandplus (eq 'mplus (caar arg)))
406 (cond ((eq '%sin op) (sin/cos-plus (cdr arg) 1 '%sin '%cos -1))
407 ((eq '%cos op) (sin/cos-plus (cdr arg) 0 '%sin '%cos -1))
408 ((eq '%tan op) (tan-plus (cdr arg) '%tan -1))
409 ((eq '%cot op) (cot-plus (cdr arg) '%cot -1))
410 ((eq '%csc op) (csc/sec-plus (cdr arg) 1 '%csc '%sec -1))
411 ((eq '%sec op) (csc/sec-plus (cdr arg) 0 '%csc '%sec -1))
412 ((eq '%sinh op) (sin/cos-plus (cdr arg) 1 '%sinh '%cosh 1))
413 ((eq '%cosh op) (sin/cos-plus (cdr arg) 0 '%sinh '%cosh 1))
414 ((eq '%tanh op) (tan-plus (cdr arg) '%tanh 1))
415 ((eq '%coth op) (cot-plus (cdr arg) '%coth 1))
416 ((eq '%csch op) (csc/sec-plus (cdr arg) 1 '%csch '%sech 1))
417 ((eq '%sech op) (csc/sec-plus (cdr arg) 0 '%csch '%sech 1))))
418 ((and $trigexpandtimes (eq 'mtimes (caar arg)) (fixnump (cadr arg)))
419 (cond ((eq '%sin op) (sin/cos-times (cddr arg) 1 (cadr arg) '%sin '%cos -1))
420 ((eq '%cos op) (sin/cos-times (cddr arg) 0 (cadr arg) '%sin '%cos -1))
421 ((eq '%tan op) (tan-times (cddr arg) (cadr arg) '%tan -1))
422 ((eq '%cot op) (cot-times (cddr arg) (cadr arg) '%cot -1))
423 ((eq '%csc op) (csc/sec-times (cddr arg) 1 (cadr arg) '%csc '%sec -1))
424 ((eq '%sec op) (csc/sec-times (cddr arg) 0 (cadr arg) '%csc '%sec -1))
425 ((eq '%sinh op) (sin/cos-times (cddr arg) 1 (cadr arg) '%sinh '%cosh 1))
426 ((eq '%cosh op) (sin/cos-times (cddr arg) 0 (cadr arg) '%sinh '%cosh 1))
427 ((eq '%tanh op) (tan-times (cddr arg) (cadr arg) '%tanh 1))
428 ((eq '%coth op) (cot-times (cddr arg) (cadr arg) '%coth 1))
429 ((eq '%csch op) (csc/sec-times (cddr arg) 1 (cadr arg) '%csch '%sech 1))
430 ((eq '%sech op) (csc/sec-times (cddr arg) 0 (cadr arg) '%csch '%sech 1))))))
432 (defun sin/cos-plus (l n f1 f2 flag)
433 (do ((i n (+ 2 i))
434 (len (length l))
435 (sign 1 (* flag sign))
436 (result))
437 ((> i len) (simplify (cons '(mplus) result)))
438 (setq result (mpc (cond ((minusp sign) '(-1 (mtimes)))
439 (t '((mtimes)))) l result f1 f2 len i))))
441 (defun tan-plus (l f flag)
442 (do ((i 1 (+ 2 i))
443 (sign 1 (* flag sign))
444 (len (length l))
445 (num)
446 (den (list 1)))
447 ((> i len) (div* (cons '(mplus) num) (cons '(mplus) den)))
448 (setq num (mpc1 (list sign '(mtimes)) l num f len i)
449 den (cond ((= len i) den)
450 (t (mpc1 (list (* flag sign) '(mtimes)) l den f len (1+ i)))))))
452 (defun cot-plus (l f flag)
453 (do ((i (length l) (- i 2)) (len (length l)) (sign 1 (* flag sign)) (num) (den))
454 ((< i 0) (div* (cons '(mplus) num) (cons '(mplus) den)))
455 (setq num (mpc1 (list sign '(mtimes)) l num f len i)
456 den (cond ((= 0 i) den)
457 (t (mpc1 (list sign '(mtimes)) l den f len (1- i)))))))
459 (defun csc/sec-plus (l n f1 f2 flag)
460 (div* (do ((l l (cdr l))
461 (result))
462 ((null l) (cons '(mtimes) result))
463 (setq result (cons (ftake* f1 (car l)) (cons (ftake* f2 (car l)) result))))
464 (sin/cos-plus l n f2 f1 flag)))
466 (defun sin/cos-times (l m n f1 f2 flag)
467 ;; Assume m,n < 2^17, but Binom may become big
468 ;; Flag is 1 or -1
469 (setq f1 (ftake* f1 (cons '(mtimes) l)) f2 (ftake* f2 (cons '(mtimes) l)))
470 (do ((i m (+ 2 i))
471 (end (abs n))
472 (result)
473 (binom (cond ((= 0 m) 1)
474 (t (abs n)))
475 (quotient (* flag (- end i 1) (- end i) binom) (* (+ 2 i) (1+ i)))))
476 ((> i end) (setq result (simplify (cons '(mplus) result)))
477 (cond ((and (= 1 m) (minusp n)) (neg result)) (t result)))
478 (setq result (cons (mul binom (power f1 i) (power f2 (- end i))) result))))
480 (defun tan-times (l n f flag)
481 (setq f (ftake* f (cons '(mtimes) l)))
482 (do ((i 1 (+ 2 i))
483 (end (abs n))
484 (num)
485 (den (list 1))
486 (binom (abs n) (quotient (* (- end i 1) binom) (+ 2 i))))
487 ((> i end) (setq num (div* (cons '(mplus) num) (cons '(mplus) den)))
488 (cond ((minusp n) (neg num))
489 (t num)))
490 (setq num (cons (mul binom (power f i)) num)
491 den (cond ((= end i) den)
492 (t (cons (mul (setq binom (truncate (* flag (- end i) binom) (1+ i)))
493 (power f (1+ i)))
494 den))))))
496 (defun cot-times (l n f flag)
497 (setq f (ftake* f (cons '(mtimes) l)))
498 (do ((i (abs n) (- i 2))
499 (end (abs n))
500 (num)
501 (den)
502 (binom 1 (truncate (* flag (1- i) binom) (- end i -2))))
503 ((< i 0) (setq num (div* (cons '(mplus) num) (cons '(mplus) den)))
504 (if (minusp n) (neg num) num))
505 (setq num (cons (mul binom (power f i)) num)
506 den (if (= 0 i)
508 (cons (mul (setq binom (truncate (* i binom) (- end i -1))) (power f (1- i))) den)))))
510 (defun csc/sec-times (l m n f1 f2 flag)
511 (div* (mul (power (ftake* f1 (cons '(mtimes) l)) (abs n))
512 (power (ftake* f2 (cons '(mtimes) l)) (abs n)))
513 (sin/cos-times l m n f2 f1 flag)))
515 (defun mpc (dl ul result f1 f2 di ui)
516 (cond ((= 0 ui)
517 (cons (revappend dl (mapcar #'(lambda (l) (ftake* f2 l)) ul)) result))
518 ((= di ui)
519 (cons (revappend dl (mapcar #'(lambda (l) (ftake* f1 l)) ul)) result))
520 (t (mpc (cons (ftake* f1 (car ul)) dl) (cdr ul)
521 (mpc (cons (ftake* f2 (car ul)) dl)
522 (cdr ul) result f1 f2 (1- di) ui) f1 f2
523 (1- di) (1- ui)))))
525 (defun mpc1 (dl ul result f di ui)
526 (cond ((= 0 ui) (cons (reverse dl) result))
527 ((= di ui)
528 (cons (revappend dl (mapcar #'(lambda (l) (ftake* f l)) ul)) result))
529 (t (mpc1 (cons (ftake* f (car ul)) dl) (cdr ul)
530 (mpc1 dl (cdr ul) result f (1- di) ui) f
531 (1- di) (1- ui)))))
533 ;; Local Modes:
534 ;; Mode: LISP
535 ;; Comment Col: 40
536 ;; End: