fixes typos and a missing reference.
[maxima.git] / share / minpack / fortran / lmpar.f
blob26c422a79e9b229dcdfef31ec5a7d23ff6c68926
1 subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1,
2 * wa2)
3 integer n,ldr
4 integer ipvt(n)
5 double precision delta,par
6 double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa1(n),
7 * wa2(n)
8 c **********
10 c subroutine lmpar
12 c given an m by n matrix a, an n by n nonsingular diagonal
13 c matrix d, an m-vector b, and a positive number delta,
14 c the problem is to determine a value for the parameter
15 c par such that if x solves the system
17 c a*x = b , sqrt(par)*d*x = 0 ,
19 c in the least squares sense, and dxnorm is the euclidean
20 c norm of d*x, then either par is zero and
22 c (dxnorm-delta) .le. 0.1*delta ,
24 c or par is positive and
26 c abs(dxnorm-delta) .le. 0.1*delta .
28 c this subroutine completes the solution of the problem
29 c if it is provided with the necessary information from the
30 c qr factorization, with column pivoting, of a. that is, if
31 c a*p = q*r, where p is a permutation matrix, q has orthogonal
32 c columns, and r is an upper triangular matrix with diagonal
33 c elements of nonincreasing magnitude, then lmpar expects
34 c the full upper triangle of r, the permutation matrix p,
35 c and the first n components of (q transpose)*b. on output
36 c lmpar also provides an upper triangular matrix s such that
38 c t t t
39 c p *(a *a + par*d*d)*p = s *s .
41 c s is employed within lmpar and may be of separate interest.
43 c only a few iterations are generally needed for convergence
44 c of the algorithm. if, however, the limit of 10 iterations
45 c is reached, then the output par will contain the best
46 c value obtained so far.
48 c the subroutine statement is
50 c subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,
51 c wa1,wa2)
53 c where
55 c n is a positive integer input variable set to the order of r.
57 c r is an n by n array. on input the full upper triangle
58 c must contain the full upper triangle of the matrix r.
59 c on output the full upper triangle is unaltered, and the
60 c strict lower triangle contains the strict upper triangle
61 c (transposed) of the upper triangular matrix s.
63 c ldr is a positive integer input variable not less than n
64 c which specifies the leading dimension of the array r.
66 c ipvt is an integer input array of length n which defines the
67 c permutation matrix p such that a*p = q*r. column j of p
68 c is column ipvt(j) of the identity matrix.
70 c diag is an input array of length n which must contain the
71 c diagonal elements of the matrix d.
73 c qtb is an input array of length n which must contain the first
74 c n elements of the vector (q transpose)*b.
76 c delta is a positive input variable which specifies an upper
77 c bound on the euclidean norm of d*x.
79 c par is a nonnegative variable. on input par contains an
80 c initial estimate of the levenberg-marquardt parameter.
81 c on output par contains the final estimate.
83 c x is an output array of length n which contains the least
84 c squares solution of the system a*x = b, sqrt(par)*d*x = 0,
85 c for the output par.
87 c sdiag is an output array of length n which contains the
88 c diagonal elements of the upper triangular matrix s.
90 c wa1 and wa2 are work arrays of length n.
92 c subprograms called
94 c minpack-supplied ... dpmpar,enorm,qrsolv
96 c fortran-supplied ... dabs,dmax1,dmin1,dsqrt
98 c argonne national laboratory. minpack project. march 1980.
99 c burton s. garbow, kenneth e. hillstrom, jorge j. more
101 c **********
102 integer i,iter,j,jm1,jp1,k,l,nsing
103 double precision dxnorm,dwarf,fp,gnorm,parc,parl,paru,p1,p001,
104 * sum,temp,zero
105 double precision dpmpar,enorm
106 data p1,p001,zero /1.0d-1,1.0d-3,0.0d0/
108 c dwarf is the smallest positive magnitude.
110 dwarf = dpmpar(2)
112 c compute and store in x the gauss-newton direction. if the
113 c jacobian is rank-deficient, obtain a least squares solution.
115 nsing = n
116 do 10 j = 1, n
117 wa1(j) = qtb(j)
118 if (r(j,j) .eq. zero .and. nsing .eq. n) nsing = j - 1
119 if (nsing .lt. n) wa1(j) = zero
120 10 continue
121 if (nsing .lt. 1) go to 50
122 do 40 k = 1, nsing
123 j = nsing - k + 1
124 wa1(j) = wa1(j)/r(j,j)
125 temp = wa1(j)
126 jm1 = j - 1
127 if (jm1 .lt. 1) go to 30
128 do 20 i = 1, jm1
129 wa1(i) = wa1(i) - r(i,j)*temp
130 20 continue
131 30 continue
132 40 continue
133 50 continue
134 do 60 j = 1, n
135 l = ipvt(j)
136 x(l) = wa1(j)
137 60 continue
139 c initialize the iteration counter.
140 c evaluate the function at the origin, and test
141 c for acceptance of the gauss-newton direction.
143 iter = 0
144 do 70 j = 1, n
145 wa2(j) = diag(j)*x(j)
146 70 continue
147 dxnorm = enorm(n,wa2)
148 fp = dxnorm - delta
149 if (fp .le. p1*delta) go to 220
151 c if the jacobian is not rank deficient, the newton
152 c step provides a lower bound, parl, for the zero of
153 c the function. otherwise set this bound to zero.
155 parl = zero
156 if (nsing .lt. n) go to 120
157 do 80 j = 1, n
158 l = ipvt(j)
159 wa1(j) = diag(l)*(wa2(l)/dxnorm)
160 80 continue
161 do 110 j = 1, n
162 sum = zero
163 jm1 = j - 1
164 if (jm1 .lt. 1) go to 100
165 do 90 i = 1, jm1
166 sum = sum + r(i,j)*wa1(i)
167 90 continue
168 100 continue
169 wa1(j) = (wa1(j) - sum)/r(j,j)
170 110 continue
171 temp = enorm(n,wa1)
172 parl = ((fp/delta)/temp)/temp
173 120 continue
175 c calculate an upper bound, paru, for the zero of the function.
177 do 140 j = 1, n
178 sum = zero
179 do 130 i = 1, j
180 sum = sum + r(i,j)*qtb(i)
181 130 continue
182 l = ipvt(j)
183 wa1(j) = sum/diag(l)
184 140 continue
185 gnorm = enorm(n,wa1)
186 paru = gnorm/delta
187 if (paru .eq. zero) paru = dwarf/dmin1(delta,p1)
189 c if the input par lies outside of the interval (parl,paru),
190 c set par to the closer endpoint.
192 par = dmax1(par,parl)
193 par = dmin1(par,paru)
194 if (par .eq. zero) par = gnorm/dxnorm
196 c beginning of an iteration.
198 150 continue
199 iter = iter + 1
201 c evaluate the function at the current value of par.
203 if (par .eq. zero) par = dmax1(dwarf,p001*paru)
204 temp = dsqrt(par)
205 do 160 j = 1, n
206 wa1(j) = temp*diag(j)
207 160 continue
208 call qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2)
209 do 170 j = 1, n
210 wa2(j) = diag(j)*x(j)
211 170 continue
212 dxnorm = enorm(n,wa2)
213 temp = fp
214 fp = dxnorm - delta
216 c if the function is small enough, accept the current value
217 c of par. also test for the exceptional cases where parl
218 c is zero or the number of iterations has reached 10.
220 if (dabs(fp) .le. p1*delta
221 * .or. parl .eq. zero .and. fp .le. temp
222 * .and. temp .lt. zero .or. iter .eq. 10) go to 220
224 c compute the newton correction.
226 do 180 j = 1, n
227 l = ipvt(j)
228 wa1(j) = diag(l)*(wa2(l)/dxnorm)
229 180 continue
230 do 210 j = 1, n
231 wa1(j) = wa1(j)/sdiag(j)
232 temp = wa1(j)
233 jp1 = j + 1
234 if (n .lt. jp1) go to 200
235 do 190 i = jp1, n
236 wa1(i) = wa1(i) - r(i,j)*temp
237 190 continue
238 200 continue
239 210 continue
240 temp = enorm(n,wa1)
241 parc = ((fp/delta)/temp)/temp
243 c depending on the sign of the function, update parl or paru.
245 if (fp .gt. zero) parl = dmax1(parl,par)
246 if (fp .lt. zero) paru = dmin1(paru,par)
248 c compute an improved estimate for par.
250 par = dmax1(parl,par+parc)
252 c end of an iteration.
254 go to 150
255 220 continue
257 c termination.
259 if (iter .eq. 0) par = zero
260 return
262 c last card of subroutine lmpar.