fixes typos and a missing reference.
[maxima.git] / share / minpack / fortran / rwupdt.f
blob05282b556942cd9659cfa8acc57486af9d0b65cf
1 subroutine rwupdt(n,r,ldr,w,b,alpha,cos,sin)
2 integer n,ldr
3 double precision alpha
4 double precision r(ldr,n),w(n),b(n),cos(n),sin(n)
5 c **********
7 c subroutine rwupdt
9 c given an n by n upper triangular matrix r, this subroutine
10 c computes the qr decomposition of the matrix formed when a row
11 c is added to r. if the row is specified by the vector w, then
12 c rwupdt determines an orthogonal matrix q such that when the
13 c n+1 by n matrix composed of r augmented by w is premultiplied
14 c by (q transpose), the resulting matrix is upper trapezoidal.
15 c the matrix (q transpose) is the product of n transformations
17 c g(n)*g(n-1)* ... *g(1)
19 c where g(i) is a givens rotation in the (i,n+1) plane which
20 c eliminates elements in the (n+1)-st plane. rwupdt also
21 c computes the product (q transpose)*c where c is the
22 c (n+1)-vector (b,alpha). q itself is not accumulated, rather
23 c the information to recover the g rotations is supplied.
25 c the subroutine statement is
27 c subroutine rwupdt(n,r,ldr,w,b,alpha,cos,sin)
29 c where
31 c n is a positive integer input variable set to the order of r.
33 c r is an n by n array. on input the upper triangular part of
34 c r must contain the matrix to be updated. on output r
35 c contains the updated triangular matrix.
37 c ldr is a positive integer input variable not less than n
38 c which specifies the leading dimension of the array r.
40 c w is an input array of length n which must contain the row
41 c vector to be added to r.
43 c b is an array of length n. on input b must contain the
44 c first n elements of the vector c. on output b contains
45 c the first n elements of the vector (q transpose)*c.
47 c alpha is a variable. on input alpha must contain the
48 c (n+1)-st element of the vector c. on output alpha contains
49 c the (n+1)-st element of the vector (q transpose)*c.
51 c cos is an output array of length n which contains the
52 c cosines of the transforming givens rotations.
54 c sin is an output array of length n which contains the
55 c sines of the transforming givens rotations.
57 c subprograms called
59 c fortran-supplied ... dabs,dsqrt
61 c argonne national laboratory. minpack project. march 1980.
62 c burton s. garbow, dudley v. goetschel, kenneth e. hillstrom,
63 c jorge j. more
65 c **********
66 integer i,j,jm1
67 double precision cotan,one,p5,p25,rowj,tan,temp,zero
68 data one,p5,p25,zero /1.0d0,5.0d-1,2.5d-1,0.0d0/
70 do 60 j = 1, n
71 rowj = w(j)
72 jm1 = j - 1
74 c apply the previous transformations to
75 c r(i,j), i=1,2,...,j-1, and to w(j).
77 if (jm1 .lt. 1) go to 20
78 do 10 i = 1, jm1
79 temp = cos(i)*r(i,j) + sin(i)*rowj
80 rowj = -sin(i)*r(i,j) + cos(i)*rowj
81 r(i,j) = temp
82 10 continue
83 20 continue
85 c determine a givens rotation which eliminates w(j).
87 cos(j) = one
88 sin(j) = zero
89 if (rowj .eq. zero) go to 50
90 if (dabs(r(j,j)) .ge. dabs(rowj)) go to 30
91 cotan = r(j,j)/rowj
92 sin(j) = p5/dsqrt(p25+p25*cotan**2)
93 cos(j) = sin(j)*cotan
94 go to 40
95 30 continue
96 tan = rowj/r(j,j)
97 cos(j) = p5/dsqrt(p25+p25*tan**2)
98 sin(j) = cos(j)*tan
99 40 continue
101 c apply the current transformation to r(j,j), b(j), and alpha.
103 r(j,j) = cos(j)*r(j,j) + sin(j)*rowj
104 temp = cos(j)*b(j) + sin(j)*alpha
105 alpha = -sin(j)*b(j) + cos(j)*alpha
106 b(j) = temp
107 50 continue
108 60 continue
109 return
111 c last card of subroutine rwupdt.