2 * Functions and Variables for Groups::
5 @node Functions and Variables for Groups, , Groups, Groups
6 @section Functions and Variables for Groups
9 @deffn {Function} todd_coxeter @
10 @fname{todd_coxeter} (@var{relations}, @var{subgroup}) @
11 @fname{todd_coxeter} (@var{relations})
13 Find the order of G/H where G is the Free Group modulo @var{relations}, and
14 H is the subgroup of G generated by @var{subgroup}. @var{subgroup} is an optional
15 argument, defaulting to []. In doing this it produces a
16 multiplication table for the right action of G on G/H, where the
17 cosets are enumerated [H,Hg2,Hg3,...]. This can be seen internally in
18 the variable @code{todd_coxeter_state}.
23 @c symet(n):=create_list(
24 @c if (j - i) = 1 then (p(i,j))^^3 else
25 @c if (not i = j) then (p(i,j))^^2 else
26 @c p(i,i) , j, 1, n-1, i, 1, j);
27 @c p(i,j) := concat(x,i).concat(x,j);
30 @c todd_coxeter(%o3,[x1]);
31 @c todd_coxeter(%o3,[x1,x2]);
34 (%i1) symet(n):=create_list(
35 if (j - i) = 1 then (p(i,j))^^3 else
36 if (not i = j) then (p(i,j))^^2 else
37 p(i,i) , j, 1, n-1, i, 1, j);
39 (%o1) symet(n) := create_list(if j - i = 1 then p(i, j)
42 else (if not i = j then p(i, j) else p(i, i)), j, 1, n - 1,
45 (%i2) p(i,j) := concat(x,i).concat(x,j);
46 (%o2) p(i, j) := concat(x, i) . concat(x, j)
49 (%o3) [x1 , (x1 . x2) , x2 , (x1 . x3) , (x2 . x3) ,
52 x3 , (x1 . x4) , (x2 . x4) , (x3 . x4) , x4 ]
53 (%i4) todd_coxeter(%o3);
57 (%i5) todd_coxeter(%o3,[x1]);
61 (%i6) todd_coxeter(%o3,[x1,x2]);
66 @opencatbox{Categories:}
67 @category{Group theory}