2 Quantum Computing Simulator for Maxima
3 Copyright (C) 2021 Jaime E. Villate
5 Time-stamp: "2022-03-19 13:52:00 villate"
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License
9 as published by the Free Software Foundation; either version 2
10 of the License, or (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
25 Inserts an expression or list "e" into a list "list" at position "pos".
26 The list could be empty and "pos" must be an integer between 1 and the
27 length of "list" plus 1.
29 linsert(e, list, pos) := block(
30 if not(listp(e)) then e: [e],
31 append(rest(list, pos-length(list)-1), e, rest(list, pos-1)))$
35 If e is a list of length n, the elements in the positions pos, pos+1,
36 ..., pos+n-1 of the list "list" are replaced by e, or the first elements
37 of e if the end of "list" is reached.
38 If e is an expression, the element in position "pos" of "list" is
39 replaced by that expression.
40 "pos" must be an integer between 1 and the length of "list".
42 lreplace(e, list, pos) := block([r: copylist(list)],
43 if not(listp(e)) then e: [e],
44 for i:0 thru min(length(e)-1, length(list)-pos) do r[pos+i]: e[i+1],
48 Should be called with one or two arguments, binlist(k) or binlist(k,n),
49 where k and n are natural numbers. With only one argument, a list of
50 binary digits is returned, which are the representation of k in binary.
51 With two arguments, zeros are included at the beginning in order
52 to return a list with exactly n binary digits. Notice that for the result
53 to represent a possible state of m qubits, n should be equal to 2^m and
54 k should be between 0 and 2^m-1.
56 binlist([n]):= block([m:n[1], q, l:[], k],
57 do([m,q]: divide(m, 2), l: cons(q,l), if m=0
62 for i:1 thru n[2]-k do l:cons(0,l)),
66 Given a list with n binary digits, it returns the decimal number it
69 binlist2dec(l) := block([m:l[1]],
70 for i:2 thru length(l) do m:m*2+l[i],
74 Returns the tensor product of n matrices or n lists.
76 tprod([ops]) := block(
78 then list_matrix_entries(apply(tprod,map(matrix,ops)))
79 else lreduce(kronecker_product, ops))$
82 Returns the normalized version of a quantum state given as a list q.
84 normalize(q) := block([p:0],
85 for b in q do p: p+cabs(b)^2,
86 for i:1 thru length(q) do q[i]: rootscontract(radcan(q[i]/sqrt(p))),
90 Returns a list with 2^n elements, representing the state of n qubits.
91 The argument can be a single natural number n, or n binary digits.
92 If given only one natural number, greater than 1, it returns the ground
93 state for a system of n qubits.
94 If given n binary digits (n can be 1), it returns the state of a system
95 of n qubits with those binary values.
97 qubits([b]) := block([l],
98 if (length(b) = 1) and (first(b) > 1)
99 then cons(1, makelist(0,2^first(b)-1))
101 l: makelist(0,2^length(b)),
102 l[binlist2dec(b)+1]: 1,
106 Applies a matrix U, acting on mu qubits on the list q corresponding
107 to a state of mq qubits (mq >= mu).
108 When U acts on several qubits (mu > 1), and no more arguments are
109 given, the matrix will act on qubits 1, 2, ..., mu. A third
110 argument can be given, a integer from 1 through mq+1-mu, in which
111 case the matrix will act on qubits i through i+mu-1.
112 When U acts on only one qubit (mu = 1), and no more arguments are
113 given, the matrix will act in all of the qubits. If more arguments
114 are given, they should be diferent integer numbers between 1 and
115 nq, and the matrix will act in the qubits corresponding to those
117 U can be a symbol representing one of the predefined matrices.
118 It modifies the list q and returns that new list.
120 gate(U,q,[bits]) := block([nq: length(q), mq, nu, mu, ln, lk, j, l, aux],
121 if symbolp(U) then U: qmatrix[U],
123 mq: round(float(log(nq)/log(2))),
124 mu: round(float(log(nu)/log(2))),
129 else bits: makelist(j, j, 1, mq)),
133 ln: binlist(n-1, mq),
134 j: binlist2dec(rest(rest(ln, i-1), mu+i-mq-1)) + 1,
136 lk: binlist(k-1, mu),
137 l: binlist2dec(lreplace(lk, ln, i)) + 1,
138 aux[n]: aux[n] + U[j][k]*q[l])),
139 for n:1 thru nq do q[n]: aux[n]),
143 Creates the matrix corresponding to the action of a single qbit matrix U
144 acting on one of several of the qubits in a state of n qubits.
145 The first argument must be a 2 by 2 matrix or a symbol representing one
146 of the predefined matrices.
147 There must be a second argument, a natural number, corresponding to the
148 total number of qbits.
149 If no more arguments are given, the matrix will act in all of the qubits.
150 If there are more arguments, they should be one or more different
151 natural numbers, between 1 and n, and the matrix will act in the qubits
152 corresponding to those numbers.
153 It returns a 2^n by 2^n matrix.
155 gate_matrix(U,n,[bits]) := block([lU],
156 if symbolp(U) then U: qmatrix[U],
158 then apply(tprod, makelist(U, n))
160 lU: makelist(ident(2), n),
161 for i in bits do lU[i]: U,
165 Applies a matrix U, acting on mu qubits, on qubits i through i+mu-1
166 on the state q of a system of mq qubits (mq > mu), when the value of
167 the c'th qubit in q equals 1.
168 i should be an intenger between 1 and mq+1-mu.
169 c should be an integer within 1 and mq, excluding the qubits to be
170 modified (i through i+mu-1)
171 U can be a symbol representing one of the predefined matrices.
172 It modifies the list q and returns that new list.
174 controlled(U,q,c,i) := block([nq: length(q), mq, nu, mu, ln, lk, j, l, aux],
175 if symbolp(U) then U: qmatrix[U],
178 mq: round(float(log(nq)/log(2))),
179 mu: round(float(log(nu)/log(2))),
181 ln: binlist(n-1, mq),
184 j: binlist2dec(rest(rest(ln, i-1), mu+i-mq-1)) + 1,
186 lk: binlist(k-1, mu),
187 l: binlist2dec(lreplace(lk, ln, i)) + 1,
188 aux[n]: aux[n] + U[j][k]*q[l]))
191 for n:1 thru nq do q[n]: aux[n],
195 Changes the value of the j'th qubit, in a state q of m qubits, when
196 the value of the i'th qubit equals 1.
197 It modifies the list q and returns its modified value.
200 CNOT(q,i,j) := block([lst: [], n: length(q), d, m, k],
201 m: round(float(log(length(q))/log(2))),
205 for b:0 thru n/4-1 do (
206 lst: binlist(b, m-2),
208 then lst: linsert(0, linsert(1,lst,i), j)
209 else lst: linsert(1, linsert(0,lst,j), i),
210 k: binlist2dec(lst)+1,
211 [q[k],q[k+d]]: [q[k+d],q[k]]))
213 [q[4-i],q[4-i+d]]: [q[4-i+d],q[4-i]]),
217 Interchanges the states of bits i and j in the qubits state q.
218 It modifies the list q and returns its modified value.
221 qswap(q, i, j) := (CNOT(q, i, j), CNOT(q, j, i), CNOT(q, i, j))$
224 Changes the value of the k'th qubit, in a state q of m qubits, when
225 the value of the i'th snf j'th qubitd equal 1.
226 It modifies the list q and returns its modified value.
229 toffoli(q,i,j,k) := block([lst: [], n: length(q), c, d, m],
230 m: round(float(log(length(q))/log(2))),
234 for b:0 thru n/8-1 do (
235 lst: binlist(b, m-3),
241 then lst: linsert(0, linsert(1, linsert(1,lst,i), j), k)
242 else lst: linsert(1, linsert(0, linsert(1,lst,i), k), j))
243 else lst: linsert(1, linsert(0, linsert(1,lst,j), k), i))
245 then lst: linsert(0, linsert(1, linsert(1,lst,j), i), k)
248 then lst: linsert(1, linsert(1, linsert(0,lst,k), i), j)
249 else lst: linsert(1, linsert(1, linsert(0,lst,k), j), i)),
250 c: binlist2dec(lst)+1,
251 [q[c],q[c+d]]: [q[c+d],q[c]]))
253 [q[8-d],q[8]]: [q[8],q[8-d]]),
257 Measures the value of one or more qubits in a system of n qubits with
259 It requires 1 or more arguments. The first argument must be the state q.
260 If no more arguments are given, all the n qubits will be measured.
261 If more arguments are given, they should be different natural numbers
262 between 1 and n, and the state of those qubits will be measured.
263 It returns a list with the values of the qubits measured (either 0 or 1),
264 in the same order that the were requested or in ascending order if no
265 second argument was given.
266 It modifies the list q, reflecting the collapse of the quantum state
267 after the measurement.
269 qmeasure(q,[bits]) := block([r, p, l:[], bl, n, m, v, result: [],
272 m: round(float(log(n)/log(2))),
273 if length(bits) = 0 then bits: makelist(j, j, 1, m),
278 if not(test) then return(),
282 if bl[i] = 0 then p: p+cabs(q[j])^2)
286 if r<p then v:0 else (v:1, p: 1-p),
292 then q[j]: q[j]/sqrt(p)
293 else q[j]: rootscontract(radcan(q[j]/sqrt(p))))
295 result: endcons(v, result))),
299 Represents the state q of a system of n qubits as a linear combination
300 of the computational states with n binary digits.
301 It returns an expression including strings and symbols.
303 qdisplay(q):=block([n, m, s, g:1, v, sg: ["-","",""], test:true],
305 m:round(float(log(n)/log(2))),
307 /* Find the GCD only where the non-zero components are expressions
308 **** Currently disabled ****
309 if ((imagpart(e) = 0) and atom(e) and (sign(e) # 'zero)) then test: false,
311 then g: 1/lreduce('gcd, q)
313 if (g = 1) and (length(q) > 1) then s: "" else s: "(",
318 if ((imagpart(v) # 0) or (sign(v) # 'zero))
320 if (numberp(v) or ((imagpart(v) = 0) and atom(v) and (sign(v) # 'pnz)))
322 if ((imagpart(v^2-1) = 0) and (sign(v^2-1) = 'zero))
323 then s:concat(s, sg[round((v+3)/2)], printf(false,"|~v,'0b>",m,i-1))
324 elseif (sign(v) = 'neg)
325 then s:concat(s, sg[3], printf(false,"~a|~v,'0b>",v,m,i-1))
326 else s:concat(s, sg[2], printf(false,"~a|~v,'0b>",v,m,i-1)))
328 then s: concat(s, sg[2], printf(false,"~a|~v,'0b>",v,m,i-1))
329 else s: concat(s, sg[2], printf(false,"(~a)|~v,'0b>",v,m,i-1)),
330 sg: [" -"," +"," "])),
334 then s: concat(s, printf(false,")/~a",g))
335 else s: concat(s, printf(false,")/(~a)",g))),
341 qmatrix[I]: matrix([1,0],[0,1])$
342 qmatrix[X]: matrix([0,1],[1,0])$
343 qmatrix[Y]: matrix([0,-%i],[%i,0])$
344 qmatrix[Z]: matrix([1,0],[0,-1])$
345 qmatrix[H]: matrix([1,1],[1,-1])/sqrt(2)$
346 qmatrix[S]: matrix([1,0],[0,%i])$
347 qmatrix[T]: matrix([1,0],[0,exp(%i*%pi/4)])$
348 Rx(ang) := matrix([cos(ang/2),-%i*sin(ang/2)],[%i*sin(ang/2),cos(ang/2)])$
349 Ry(ang) := matrix([cos(ang/2),-sin(ang/2)],[sin(ang/2),cos(ang/2)])$
350 Rz(ang) := matrix([cos(ang/2)-%i*sin(ang/2),0],[0,cos(ang/2)+%i*sin(ang/2)])$