Rename *ll* and *ul* to ll and ul in poles-in-interval
[maxima.git] / src / float.lisp
blobdd599fa10b435aa24f9858996a07c9df5b29a771
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module float)
15 ;; EXPERIMENTAL BIGFLOAT PACKAGE VERSION 2- USING BINARY MANTISSA
16 ;; AND POWER-OF-2 EXPONENT.
17 ;; EXPONENTS MAY BE BIG NUMBERS NOW (AUG. 1975 --RJF)
18 ;; Modified: July 1979 by CWH to run on the Lisp Machine and to comment
19 ;; the code.
20 ;; August 1980 by CWH to run on Multics and to install
21 ;; new FIXFLOAT.
22 ;; December 1980 by JIM to fix BIGLSH not to pass LSH a second
23 ;; argument with magnitude greater than MACHINE-FIXNUM-PRECISION.
25 ;; Number of bits of precision in a fixnum and in the fields of a flonum for
26 ;; a particular machine. These variables should only be around at eval
27 ;; and compile time. These variables should probably be set up in a prelude
28 ;; file so they can be accessible to all Macsyma files.
30 (eval-when
31 (:compile-toplevel :load-toplevel :execute)
32 (defconstant +machine-fixnum-precision+ (integer-length most-positive-fixnum)))
34 ;; Internal specials
36 ;; FPROUND uses this to return a second value, i.e. it sets it before
37 ;; returning. This number represents the number of binary digits its input
38 ;; bignum had to be shifted right to be aligned into the mantissa. For
39 ;; example, aligning 1 would mean shifting it FPPREC-1 places left, and
40 ;; aligning 7 would mean shifting FPPREC-3 places left.
42 (defvar *m)
44 ;; *DECFP = T if the computation is being done in decimal radix. NIL implies
45 ;; base 2. Decimal radix is used only during output.
47 (defvar *decfp nil)
49 ;; FIXME: These don't appear to be used anywhere. Remove these.
50 (defvar max-bfloat-%pi bigfloat%pi)
51 (defvar max-bfloat-%e bigfloat%e)
52 (defvar max-bfloat-%gamma bigfloat%gamma)
53 (defvar max-bfloat-log2 bigfloat_log2)
56 (declare-top (special *cancelled $bfloat))
58 ;; Representation of a Bigfloat: ((BIGFLOAT SIMP precision) mantissa exponent)
59 ;; precision -- number of bits of precision in the mantissa.
60 ;; precision = (integer-length mantissa)
61 ;; mantissa -- a signed integer representing a fractional portion computed by
62 ;; fraction = (// mantissa (^ 2 precision)).
63 ;; exponent -- a signed integer representing the scale of the number.
64 ;; The actual number represented is (* fraction (^ 2 exponent)).
66 (defun hipart (x nn)
67 (if (bignump nn)
68 (abs x)
69 (haipart x nn)))
71 (defun fpprec1 (assign-var q)
72 (declare (ignore assign-var))
73 (if (or (not (fixnump q)) (< q 1))
74 (merror (intl:gettext "fpprec: value must be a positive integer; found: ~M") q))
75 (setq fpprec (+ 2 (integer-length (expt 10. q)))
76 bigfloatone ($bfloat 1)
77 bigfloatzero ($bfloat 0)
78 bfhalf (list (car bigfloatone) (cadr bigfloatone) 0)
79 bfmhalf (list (car bigfloatone) (- (cadr bigfloatone)) 0))
82 ;; FPSCAN is called by lexical scan when a
83 ;; bigfloat is encountered. For example, 12.01B-3
84 ;; would be the result of (FPSCAN '(/1 /2) '(/0 /1) '(/- /3))
85 ;; Arguments to FPSCAN are a list of characters to the left of the
86 ;; decimal point, to the right of the decimal point, and in the exponent.
88 (defun fpscan (lft rt exp &aux (*read-base* 10.) (*m 1) (*cancelled 0))
89 (setq exp (readlist exp))
90 (bigfloatp
91 (let ((fpprec (+ 4 fpprec (integer-length exp)
92 (floor (1+ (* #.(/ (log 10.0) (log 2.0)) (length lft))))))
93 $float temp)
94 (setq temp (add (readlist lft)
95 (div (readlist rt) (expt 10. (length rt)))))
96 ($bfloat (cond ((> (abs exp) 1000.)
97 (cons '(mtimes) (list temp (list '(mexpt) 10. exp))))
98 (t (mul2 temp (power 10. exp))))))))
100 (defun dim-bigfloat (form result)
101 (let (($lispdisp nil))
102 (dimension-atom (maknam (fpformat form)) result)))
104 ;; Assume that X has the form ((BIGFLOAT ... <prec>) ...).
105 ;; Return <prec>.
106 (defun bigfloat-prec (x)
107 (car (last (car x))))
109 ;; Converts the bigfloat L to list of digits including |.| and the
110 ;; exponent marker |b|. The number of significant digits is controlled
111 ;; by $fpprintprec.
112 (defun fpformat (l)
113 (if (not (member 'simp (cdar l) :test #'eq))
114 (setq l (cons (cons (caar l) (cons 'simp (cdar l))) (cdr l))))
115 (cond ((equal (cadr l) 0)
116 (if (not (equal (caddr l) 0))
117 (mtell "FPFORMAT: warning: detected an incorrect form of 0.0b0: ~M, ~M~%"
118 (cadr l) (caddr l)))
119 (list '|0| '|.| '|0| '|b| '|0|))
120 (t ;; L IS ALWAYS POSITIVE FP NUMBER
121 (let* ((extradigs (floor (1+ (quotient (integer-length (caddr l)) #.(/ (log 10.0) (log 2.0))))))
122 (fpprec (+ extradigs (decimalsin (- (bigfloat-prec l) 2))))
123 (*m 1)
124 (*cancelled 0))
125 (setq l
126 (let ((*decfp t)
127 (of (bigfloat-prec l))
128 (l (cdr l))
129 (expon nil))
130 (setq expon (- (cadr l) of))
131 (setq l (if (minusp expon)
132 (fpquotient (intofp (car l)) (fpintexpt 2 (- expon) of))
133 (fptimes* (intofp (car l)) (fpintexpt 2 expon of))))
134 (incf fpprec (- extradigs))
135 (list (fpround (car l)) (+ (- extradigs) *m (cadr l)))))
136 (let ((*print-base* 10.)
137 *print-radix*
138 (expo-adjust 0)
139 (l1 nil))
140 (setq l1 (let*
141 ((effective-printprec (if (or (= $fpprintprec 0) (> $fpprintprec fpprec)) fpprec $fpprintprec))
142 (integer-to-explode (round (car l) (expt 10 (- fpprec effective-printprec))))
143 (exploded-integer (explodec integer-to-explode)))
144 ;; If the rounded integer has more digits than
145 ;; expected, we need to adjust the exponent by
146 ;; this amount. This also means we need to remove
147 ;; these extra digits so that the result has the
148 ;; desired number of digits.
149 (setf expo-adjust (- (length exploded-integer) effective-printprec))
150 (when (plusp expo-adjust)
151 (setf exploded-integer (butlast exploded-integer expo-adjust)))
152 (if $bftrunc
153 (do ((l (nreverse exploded-integer) (cdr l)))
154 ((not (eq '|0| (car l))) (nreverse l)))
155 exploded-integer)))
156 (nconc (ncons (car l1)) (ncons '|.|)
157 (or (cdr l1) (ncons '|0|))
158 (ncons '|b|)
159 (explodec (+ (1- (cadr l)) expo-adjust))))))))
161 ;; NOTE: This is a modified version of FORMAT-EXP-AUX from CMUCL to
162 ;; support printing of bfloats.
163 (defun bfloat-format-e (stream arg colonp atp
164 &optional w d e (k 1)
165 overflowchar (padchar #\space) exponentchar)
166 (declare (ignore colonp))
167 (flet ((exponent-value (x)
168 ;; Compute the (decimal exponent) of the bfloat number X.
169 (let* (($fpprintprec 1)
170 (f (fpformat x))
171 (marker (position '|b| f)))
172 ;; FIXME: do something better than printing and reading
173 ;; the result.
174 (read-from-string
175 (format nil "~{~A~}" (nthcdr (1+ marker) f)))))
176 (bfloat-to-string (x fdigits scale)
177 ;; Print the bfloat X with FDIGITS after the decimal
178 ;; point. This means, roughtly, FDIGITS+1 significant
179 ;; digits.
180 (let* (($fpprintprec (if fdigits
181 (if (zerop fdigits)
183 (+ fdigits scale))
185 (f (fpformat (bcons (fpabs (cdr x)))))
186 (marker (position '|b| f))
187 (digits (remove '|.| (subseq f 0 marker))))
188 ;; Depending on the value of k, move the decimal
189 ;; point. DIGITS was printed assuming the decimal point
190 ;; is after the first digit. But if fdigits = 0, fpformat
191 ;; actually printed out one too many digits, so we need
192 ;; to remove that.
193 (when (and fdigits (zerop fdigits))
194 (setf digits (butlast digits)))
195 (cond ((zerop k)
196 (push '|.| digits))
197 ((minusp k)
198 ;; Put the leading decimal and then some zeroes
199 (dotimes (i (abs k))
200 (push #\0 digits))
201 (push '|.| digits))
203 ;; The number is scaled by 10^k. Do this by
204 ;; putting the decimal point in the right place,
205 ;; appending zeroes if needed.
206 (setf digits
207 (cond ((> k (length digits))
208 (concatenate 'list
209 digits
210 (make-list (- k (length digits))
211 :initial-element #\0)
212 (list '|.|)))
214 (concatenate 'list
215 (subseq digits 0 k)
216 (list '|.|)
217 (subseq digits k)))))))
218 (let* ((str (format nil "~{~A~}" digits))
219 (len (length str)))
220 (when (and fdigits (>= fdigits len))
221 ;; Append some zeroes to get the desired number of digits
222 (setf str (concatenate 'string str
223 (make-string (+ 1 k (- fdigits len))
224 :initial-element #\0)))
225 (setf len (length str)))
226 (values str
228 (char= (aref str 0) #\.)
229 (char= (aref str (1- (length str))) #\.)
231 0)))))
232 (let* ((num-expt (exponent-value arg))
233 (expt (if (zerop (second arg))
235 (1+ (- num-expt k))))
236 (estr (format nil "~D" (abs expt)))
237 (elen (if e (max (length estr) e) (length estr)))
238 (add-zero-p nil))
239 (cond ((and w overflowchar e (> elen e))
240 ;; Exponent overflow
241 (dotimes (i w)
242 (write-char overflowchar stream)))
244 ;; The hairy case
245 (let* ((fdig (if d
246 (if (plusp k)
247 (1+ (- d k))
249 nil))
250 (spaceleft (if w
251 (- w 2 elen
252 (if (or atp (minusp (second arg)))
253 1 0))
254 nil)))
255 #+(or)
256 (progn
257 (format t "d, k = ~D ~D~%" d k)
258 (format t "fdig = ~D, spaceleft = ~D~%" fdig spaceleft))
260 (multiple-value-bind (fstr flen lpoint tpoint)
261 (bfloat-to-string arg fdig (or k 1))
262 #+(or)
263 (format t "fstr flen lpoint tpoint = ~S ~S ~S ~S~%"
264 fstr flen lpoint tpoint)
265 (when (and d (zerop d)) (setq tpoint nil))
266 (when w
267 (decf spaceleft flen)
268 ;; See CLHS 22.3.3.2. "If the parameter d is
269 ;; omitted, ... [and] if the fraction to be
270 ;; printed is zero then a single zero digit should
271 ;; appear after the decimal point." So we need to
272 ;; subtract one from here because we're going to
273 ;; add an extra 0 digit later.
274 (when (and (null d) (char= (aref fstr (1- flen)) #\.))
275 (setf add-zero-p t)
276 (decf spaceleft))
277 (when lpoint
278 (if (or (> spaceleft 0) tpoint)
279 (decf spaceleft)
280 (setq lpoint nil)))
281 (when (and tpoint (<= spaceleft 0))
282 (setq tpoint nil)))
283 #+(or)
284 (format t "w, spaceleft overflowchar = ~S ~S ~S~%"
285 w spaceleft overflowchar)
286 (cond ((and w (< spaceleft 0) overflowchar)
287 ;; Significand overflow; output the overflow char
288 (dotimes (i w)
289 (write-char overflowchar stream)))
291 (when w
292 (dotimes (i spaceleft)
293 (write-char padchar stream)))
294 (if (minusp (second arg))
295 (write-char #\- stream)
296 (when atp (write-char #\+ stream)))
297 (when lpoint
298 (write-char #\0 stream))
300 (write-string fstr stream)
301 ;; Add a zero if we need it. Which means
302 ;; we figured out we need one above, or
303 ;; another condition. Basically, append a
304 ;; zero if there are no width constraints
305 ;; and if the last char to print was a
306 ;; decimal (so the trailing fraction is
307 ;; zero.)
308 (when (or add-zero-p
309 (and (null w)
310 (char= (aref fstr (1- flen)) #\.)))
311 (write-char #\0 stream))
312 (write-char (if exponentchar
313 exponentchar
314 #\b)
315 stream)
316 (write-char (if (minusp expt) #\- #\+) stream)
317 (when e
318 (dotimes (i (- e (length estr)))
319 (write-char #\0 stream)))
320 (write-string estr stream)))))))))
321 (values))
323 ;; NOTE: This is a modified version of FORMAT-FIXED-AUX from CMUCL to
324 ;; support printing of bfloats.
325 (defun bfloat-format-f (stream number colonp atsign &optional w d (k 0) ovf (pad #\space))
326 (declare (ignore colonp))
327 (labels
328 ((exponent-value (x)
329 ;; Compute the (decimal exponent) of the bfloat number X.
330 (let* (($fpprintprec 1)
331 (f (fpformat x))
332 (marker (position '|b| f)))
333 ;; FIXME: do something better than printing and reading
334 ;; the result.
335 (read-from-string
336 (format nil "~{~A~}" (nthcdr (1+ marker) f)))))
337 (bfloat-to-string (x fdigits scale spaceleft)
338 ;; Print the bfloat X with FDIGITS after the decimal
339 ;; point. To do this we need to know the exponent because
340 ;; fpformat always produces exponential output. If the
341 ;; exponent is E, and we want FDIGITS after the decimal
342 ;; point, we need FDIGITS + E digits printed.
343 (flet ((compute-prec (exp spaceleft)
344 #+nil
345 (format t "compute-prec ~D ~D~%" exp spaceleft)
346 (cond (fdigits
347 (+ fdigits exp 1))
348 (spaceleft
349 (max (1- spaceleft) (1+ exp)))
351 (max (1+ exp) 0)))))
352 (let* ((exp (+ k (exponent-value x)))
353 ($fpprintprec (compute-prec exp spaceleft))
354 (f (let ((maxima::$bftrunc nil))
355 #+nil
356 (format t "printprec = ~D~%" $fpprintprec)
357 (fpformat (bcons (fpabs (cdr x))))))
358 (marker (position '|b| f))
359 (digits (remove '|.| (subseq f 0 marker))))
360 ;; Depending on the value of scale, move the decimal
361 ;; point. DIGITS was printed assuming the decimal point
362 ;; is after the first digit. But if fdigits = 0, fpformat
363 ;; actually printed out one too many digits, so we need
364 ;; to remove that.
365 #+nil
366 (format t "exp, fdigits = ~D ~D, digits = ~S~%" exp fdigits digits)
367 #+nil
368 (when (and fdigits (zerop fdigits))
369 (setf digits (butlast digits)))
370 ;; Figure out where the decimal point should go. An
371 ;; exponent of 0 means the decimal is after the first
372 ;; digit.
373 (cond ((minusp exp)
374 (dotimes (k (1- (abs exp)))
375 (push '|0| digits))
376 (push '|.| digits))
377 ((< exp (length digits))
378 #+nil
379 (format t "exp, len = ~D ~D~%" exp (length digits))
380 (setf digits (concatenate 'list
381 (subseq digits 0 (1+ exp))
382 (list '|.|)
383 (subseq digits (1+ exp)))))
385 (setf digits (append digits (list '|.|)))))
386 (let* ((str (format nil "~{~A~}" digits))
387 (len (length str)))
388 #+nil
389 (format t "str = ~S~%" str)
390 (when (and fdigits (>= fdigits len))
391 ;; Append some zeroes to get the desired number of digits
392 (setf str (concatenate 'string str
393 (make-string (+ 1 scale (- fdigits len))
394 :initial-element #\0)))
395 (setf len (length str)))
396 (values str
398 (char= (aref str 0) #\.)
399 (char= (aref str (1- (length str))) #\.)
401 0))))))
402 (let ((spaceleft w))
403 (when (and w (or atsign (minusp (second number))))
404 (decf spaceleft))
405 (multiple-value-bind (str len lpoint tpoint)
406 (bfloat-to-string number d k spaceleft)
407 ;;if caller specifically requested no fraction digits, suppress the
408 ;;optional trailing zero
409 (when (and d (zerop d)) (setq tpoint nil))
410 (when w
411 (decf spaceleft len)
412 ;;optional leading zero
413 (when lpoint
414 (if (or (> spaceleft 0) tpoint) ;force at least one digit
415 (decf spaceleft)
416 (setq lpoint nil)))
417 ;;optional trailing zero
418 (when tpoint
419 (if (> spaceleft 0)
420 (decf spaceleft)
421 (setq tpoint nil))))
422 (cond ((and w (< spaceleft 0) ovf)
423 ;;field width overflow
424 (dotimes (i w) (write-char ovf stream))
427 (when w (dotimes (i spaceleft) (write-char pad stream)))
428 (if (minusp (second number))
429 (write-char #\- stream)
430 (if atsign (write-char #\+ stream)))
431 (when lpoint (write-char #\0 stream))
432 (write-string str stream)
433 (when tpoint (write-char #\0 stream))
434 nil))))))
436 ;; NOTE: This is a modified version of FORMAT-EXP-AUX from CMUCL to
437 ;; support printing of bfloats.
438 (defun bfloat-format-g (stream arg colonp atsign
439 &optional w d e (k 1)
440 ovf (pad #\space) exponentchar)
441 (declare (ignore colonp))
442 (flet ((exponent-value (x)
443 ;; Compute the (decimal exponent) of the bfloat number X.
444 (let* (($fpprintprec 1)
445 (f (fpformat x))
446 (marker (position '|b| f)))
447 ;; FIXME: do something better than printing and reading
448 ;; the result.
449 (read-from-string
450 (format nil "~{~A~}" (nthcdr (1+ marker) f)))))
451 (bfloat-to-string (x fdigits)
452 ;; Print the bfloat X with FDIGITS after the decimal
453 ;; point. This means, roughtly, FDIGITS+1 significant
454 ;; digits.
455 (let* (($fpprintprec (if fdigits
456 (if (zerop fdigits)
458 (1+ fdigits))
460 (f (fpformat (bcons (fpabs (cdr x)))))
461 (marker (position '|b| f))
462 (digits (remove '|.| (subseq f 0 marker))))
463 ;; Depending on the value of k, move the decimal
464 ;; point. DIGITS was printed assuming the decimal point
465 ;; is after the first digit. But if fdigits = 0, fpformat
466 ;; actually printed out one too many digits, so we need
467 ;; to remove that.
468 (when (and fdigits (zerop fdigits))
469 (setf digits (butlast digits)))
470 (cond ((zerop k)
471 (push '|.| digits))
472 ((minusp k)
473 ;; Put the leading decimal and then some zeroes
474 (dotimes (i (abs k))
475 (push #\0 digits))
476 (push '|.| digits))
478 ;; The number is scaled by 10^k. Do this by
479 ;; putting the decimal point in the right place,
480 ;; appending zeroes if needed.
481 (setf digits
482 (cond ((> k (length digits))
483 (concatenate 'list
484 digits
485 (make-list (- k (length digits))
486 :initial-element #\0)
487 (list '|.|)))
489 (concatenate 'list
490 (subseq digits 0 k)
491 (list '|.|)
492 (subseq digits k)))))))
493 (let* ((str (format nil "~{~A~}" digits))
494 (len (length str)))
495 (when (and fdigits (>= fdigits len))
496 ;; Append some zeroes to get the desired number of digits
497 (setf str (concatenate 'string str
498 (make-string (+ 1 k (- fdigits len))
499 :initial-element #\0)))
500 (setf len (length str)))
501 (values str
503 (char= (aref str 0) #\.)
504 (char= (aref str (1- (length str))) #\.)
506 0)))))
507 (let* ((n (1+ (exponent-value arg)))
508 (orig-d d))
509 ;; Default d if omitted. The procedure is taken directly from
510 ;; the definition given in the manual (CLHS 22.3.3.3), and is
511 ;; not very efficient, since we generate the digits twice.
512 ;; Future maintainers are encouraged to improve on this.
514 ;; It's also not very clear whether q in the spec is the
515 ;; number of significant digits or not. I (rtoy) think it
516 ;; makes more sense if q is the number of significant digits.
517 ;; That way 1d300 isn't printed as 1 followed by 300 zeroes.
518 ;; Exponential notation would be used instead.
519 (unless d
520 (let* ((q (1- (nth-value 1 (bfloat-to-string arg nil)))))
521 (setq d (max q (min n 7)))))
522 (let* ((ee (if e (+ e 2) 4))
523 (ww (if w (- w ee) nil))
524 (dd (- d n)))
525 #+(or)
526 (progn
527 (format t "d = ~A~%" d)
528 (format t "ee = ~A~%" ee)
529 (format t "ww = ~A~%" ww)
530 (format t "dd = ~A~%" dd)
531 (format t "n = ~A~%" n))
532 (cond ((<= 0 dd d)
533 ;; Use dd fraction digits, even if that would cause
534 ;; the width to be exceeded. We choose accuracy over
535 ;; width in this case.
536 (let* ((fill-char (if (bfloat-format-f stream arg nil atsign
540 ovf pad)
542 #\space)))
543 (dotimes (i ee) (write-char fill-char stream))))
545 (bfloat-format-e stream arg nil atsign
547 orig-d
548 e (or k 1)
549 ovf pad exponentchar)))))))
551 ;; Tells you if you have a bigfloat object. BUT, if it is a bigfloat,
552 ;; it will normalize it by making the precision of the bigfloat match
553 ;; the current precision setting in fpprec. And it will also convert
554 ;; bogus zeroes (mantissa is zero, but exponent is not) to a true
555 ;; zero.
556 (defun bigfloatp (x)
557 ;; A bigfloat object looks like '((bigfloat simp <prec>) <mantissa> <exp>)
558 ;; Note bene that the simp flag is optional -- don't count on its presence.
559 (prog (x-prec)
560 (cond ((not ($bfloatp x)) (return nil))
561 ((= fpprec (setq x-prec (bigfloat-prec x)))
562 ;; Precision matches. (Should we fix up bogus bigfloat
563 ;; zeros?)
564 (return x))
565 ((> fpprec x-prec)
566 ;; Current precision is higher than bigfloat precision.
567 ;; Scale up mantissa and adjust exponent to get the
568 ;; correct precision.
569 (setq x (bcons (list (fpshift (cadr x) (- fpprec x-prec))
570 (caddr x)))))
572 ;; Current precision is LOWER than bigfloat precision.
573 ;; Round the number to the desired precision.
574 (setq x (bcons (list (fpround (cadr x))
575 (+ (caddr x) *m fpprec (- x-prec)))))))
576 ;; Fix up any bogus zeros that we might have created.
577 (return (if (equal (cadr x) 0) (bcons (list 0 0)) x))))
579 (defun bigfloat2rat (x)
580 (setq x (bigfloatp x))
581 (let (($float2bf t)
582 (exp nil)
583 (y nil)
584 (sign nil))
585 (setq exp (cond ((minusp (cadr x))
586 (setq sign t
587 y (fpration1 (cons (car x) (fpabs (cdr x)))))
588 (rplaca y (* -1 (car y))))
589 (t (fpration1 x))))
590 (when $ratprint
591 (princ "`rat' replaced ")
592 (when sign (princ "-"))
593 (princ (maknam (fpformat (cons (car x) (fpabs (cdr x))))))
594 (princ " by ")
595 (princ (car exp))
596 (write-char #\/)
597 (princ (cdr exp))
598 (princ " = ")
599 (setq x ($bfloat (list '(rat simp) (car exp) (cdr exp))))
600 (when sign (princ "-"))
601 (princ (maknam (fpformat (cons (car x) (fpabs (cdr x))))))
602 (terpri)
603 (finish-output))
604 exp))
606 (defun fpration1 (x)
607 (let ((fprateps (cdr ($bfloat (if $bftorat
608 (list '(rat simp) 1 (exptrl 2 (1- fpprec)))
609 $ratepsilon)))))
610 (or (and (equal x bigfloatzero) (cons 0 1))
611 (prog (y a)
612 (return (do ((xx x (setq y (invertbigfloat
613 (bcons (fpdifference (cdr xx) (cdr ($bfloat a)))))))
614 (num (setq a (fpentier x))
615 (+ (* (setq a (fpentier y)) num) onum))
616 (den 1 (+ (* a den) oden))
617 (onum 1 num)
618 (oden 0 den))
619 ((and (not (zerop den))
620 (not (fpgreaterp
621 (fpabs (fpquotient
622 (fpdifference (cdr x)
623 (fpquotient (cdr ($bfloat num))
624 (cdr ($bfloat den))))
625 (cdr x)))
626 fprateps)))
627 (cons num den))))))))
629 (defun float-nan-p (x)
630 (and (floatp x) (not (= x x))))
632 (defun float-inf-p (x)
633 (and (floatp x) (not (float-nan-p x)) (beyond-extreme-values x)))
635 (defun beyond-extreme-values (x)
636 (multiple-value-bind (most-negative most-positive) (extreme-float-values x)
637 (cond
638 ((< x 0) (< x most-negative))
639 ((> x 0) (> x most-positive))
640 (t nil))))
642 (defun extreme-float-values (x)
643 ;; BLECHH, I HATE ENUMERATING CASES. IS THERE A BETTER WAY ??
644 (typecase x ;gcl returns an atomic list type with type-of
645 (short-float (values most-negative-short-float most-positive-short-float))
646 (single-float (values most-negative-single-float most-positive-single-float))
647 (double-float (values most-negative-double-float most-positive-double-float))
648 (long-float (values most-negative-long-float most-positive-long-float))
649 ;; NOT SURE THE FOLLOWING REALLY WORKS
650 ;; #+(and cmu double-double)
651 ;; (kernel:double-double-float
652 ;; (values most-negative-double-double-float most-positive-double-double-float))
655 ;; Convert a floating point number into a bigfloat.
656 (defun floattofp (x)
657 (if (float-nan-p x)
658 (merror (intl:gettext "bfloat: attempted conversion of floating point NaN (not-a-number).~%")))
659 (if (float-inf-p x)
660 (merror (intl:gettext "bfloat: attempted conversion of floating-point infinity.~%")))
661 (unless $float2bf
662 (let ((p (float-precision x)))
663 (if (< fpprec p)
664 (mtell (intl:gettext "bfloat: converting float ~S to bigfloat.~%") x))))
666 ;; Need to check for zero because different lisps return different
667 ;; values for integer-decode-float of a 0. In particular CMUCL
668 ;; returns 0, -1075. A bigfloat zero needs to have an exponent and
669 ;; mantissa of zero.
670 (if (zerop x)
671 (list 0 0)
672 (multiple-value-bind (frac exp sign)
673 (integer-decode-float x)
674 ;; Scale frac to the desired number of bits, and adjust the
675 ;; exponent accordingly.
676 (let ((scale (- fpprec (integer-length frac))))
677 (list (ash (* sign frac) scale)
678 (+ fpprec (- exp scale)))))))
680 ;; Convert a bigfloat into a floating point number.
681 (defun fp2flo (l)
682 (let ((precision (bigfloat-prec l))
683 (mantissa (cadr l))
684 (exponent (caddr l))
685 (fpprec machine-mantissa-precision)
686 (*m 0))
687 ;; Round the mantissa to the number of bits of precision of the
688 ;; machine, and then convert it to a floating point fraction. We
689 ;; have 0.5 <= mantissa < 1
690 (setq mantissa (quotient (fpround mantissa) (expt 2.0 machine-mantissa-precision)))
691 ;; Multiply the mantissa by the exponent portion. I'm not sure
692 ;; why the exponent computation is so complicated.
694 ;; GCL doesn't signal overflow from scale-float if the number
695 ;; would overflow. We have to do it this way. 0.5 <= mantissa <
696 ;; 1. The largest double-float is .999999 * 2^1024. So if the
697 ;; exponent is 1025 or higher, we have an overflow.
698 (let ((e (+ exponent (- precision) *m machine-mantissa-precision)))
699 (if (>= e 1025)
700 (merror (intl:gettext "float: floating point overflow converting ~:M") l)
701 (scale-float mantissa e)))))
703 ;; New machine-independent version of FIXFLOAT. This may be buggy. - CWH
704 ;; It is buggy! On the PDP10 it dies on (RATIONALIZE -1.16066076E-7)
705 ;; which calls FLOAT on some rather big numbers. ($RATEPSILON is approx.
706 ;; 7.45E-9) - JPG
708 (defun fixfloat (x)
709 (let (($ratepsilon (expt 2.0 (- machine-mantissa-precision))))
710 (maxima-rationalize x)))
712 ;; Takes a flonum arg and returns a rational number corresponding to the flonum
713 ;; in the form of a dotted pair of two integers. Since the denominator will
714 ;; always be a positive power of 2, this number will not always be in lowest
715 ;; terms.
717 (defun bcons (s)
718 `((bigfloat simp ,fpprec) . ,s))
720 (defmfun ($bfloat :properties ((evfun t))) (x)
721 (let (y)
722 (cond ((bigfloatp x))
723 #+nil
724 ((eq x '$%i)
725 ;; Handle %i specially.
726 (mul ($bfloat 1) '$%i))
727 ((or (numberp x)
728 (member x *builtin-numeric-constants* :test #'eq))
729 (bcons (intofp x)))
730 ((or (atom x) (member 'array (cdar x) :test #'eq))
732 ((eq (caar x) 'mexpt)
733 (if (equal (cadr x) '$%e)
734 (*fpexp ($bfloat (caddr x)))
735 (exptbigfloat ($bfloat (cadr x)) (caddr x))))
736 ((eq (caar x) 'mncexpt)
737 (list '(mncexpt) ($bfloat (cadr x)) (caddr x)))
738 ((eq (caar x) 'rat)
739 (ratbigfloat (cdr x)))
740 ((setq y (safe-get (caar x) 'floatprog))
741 (funcall y (mapcar #'$bfloat (cdr x))))
742 ((or (trigp (caar x)) (arcp (caar x)) (eq (caar x) '$entier))
743 (setq y ($bfloat (cadr x)))
744 (if ($bfloatp y)
745 (cond ((eq (caar x) '$entier) ($entier y))
746 ((arcp (caar x))
747 (setq y ($bfloat (logarc (caar x) y)))
748 (if (free y '$%i)
749 y (let ($ratprint) (fparcsimp ($rectform y)))))
750 ((member (caar x) '(%cot %sec %csc) :test #'eq)
751 (invertbigfloat
752 ($bfloat (list (ncons (safe-get (caar x) 'recip)) y))))
753 (t ($bfloat (exponentialize (caar x) y))))
754 (subst0 (list (ncons (caar x)) y) x)))
755 (t (recur-apply #'$bfloat x)))))
757 (defprop mplus addbigfloat floatprog)
758 (defprop mtimes timesbigfloat floatprog)
759 (defprop %sin sinbigfloat floatprog)
760 (defprop %cos cosbigfloat floatprog)
761 (defprop rat ratbigfloat floatprog)
762 (defprop %atan atanbigfloat floatprog)
763 (defprop %tan tanbigfloat floatprog)
764 (defprop %log logbigfloat floatprog)
765 (defprop mabs mabsbigfloat floatprog)
767 (defun addbigfloat (h)
768 (prog (fans tst r nfans)
769 (setq fans (setq tst bigfloatzero) nfans 0)
770 (do ((l h (cdr l)))
771 ((null l))
772 (cond ((setq r (bigfloatp (car l)))
773 (setq fans (bcons (fpplus (cdr r) (cdr fans)))))
774 (t (setq nfans (list '(mplus) (car l) nfans)))))
775 (return (cond ((equal nfans 0) fans)
776 ((equal fans tst) nfans)
777 (t (simplify (list '(mplus) fans nfans)))))))
779 (defun ratbigfloat (r)
780 ;; R is a Maxima ratio, represented as a list of the numerator and
781 ;; denominator. FLOAT-RATIO doesn't like it if the numerator is 0,
782 ;; so handle that here.
783 (if (zerop (car r))
784 (bcons (list 0 0))
785 (bcons (float-ratio r))))
787 ;; This is borrowed from CMUCL (float-ratio-float), and modified for
788 ;; converting ratios to Maxima's bfloat numbers.
789 (defun float-ratio (x)
790 (let* ((signed-num (first x))
791 (plusp (plusp signed-num))
792 (num (if plusp signed-num (- signed-num)))
793 (den (second x))
794 (digits fpprec)
795 (scale 0))
796 (declare (fixnum digits scale))
798 ;; Strip any trailing zeros from the denominator and move it into the scale
799 ;; factor (to minimize the size of the operands.)
800 (let ((den-twos (1- (integer-length (logxor den (1- den))))))
801 (declare (fixnum den-twos))
802 (decf scale den-twos)
803 (setq den (ash den (- den-twos))))
805 ;; Guess how much we need to scale by from the magnitudes of the numerator
806 ;; and denominator. We want one extra bit for a guard bit.
807 (let* ((num-len (integer-length num))
808 (den-len (integer-length den))
809 (delta (- den-len num-len))
810 (shift (1+ (the fixnum (+ delta digits))))
811 (shifted-num (ash num shift)))
812 (declare (fixnum delta shift))
813 (decf scale delta)
814 (labels ((float-and-scale (bits)
815 (let* ((bits (ash bits -1))
816 (len (integer-length bits)))
817 (cond ((> len digits)
818 (assert (= len (the fixnum (1+ digits))))
819 (multiple-value-bind (f0)
820 (floatit (ash bits -1))
821 (list (first f0) (+ (second f0)
822 (1+ scale)))))
824 (multiple-value-bind (f0)
825 (floatit bits)
826 (list (first f0) (+ (second f0) scale)))))))
827 (floatit (bits)
828 (let ((sign (if plusp 1 -1)))
829 (list (* sign bits) 0))))
830 (loop
831 (multiple-value-bind (fraction-and-guard rem)
832 (truncate shifted-num den)
833 (let ((extra (- (integer-length fraction-and-guard) digits)))
834 (declare (fixnum extra))
835 (cond ((/= extra 1)
836 (assert (> extra 1)))
837 ((oddp fraction-and-guard)
838 (return
839 (if (zerop rem)
840 (float-and-scale
841 (if (zerop (logand fraction-and-guard 2))
842 fraction-and-guard
843 (1+ fraction-and-guard)))
844 (float-and-scale (1+ fraction-and-guard)))))
846 (return (float-and-scale fraction-and-guard)))))
847 (setq shifted-num (ash shifted-num -1))
848 (incf scale)))))))
850 (defun decimalsin (x)
851 (do ((i (quotient (* 59. x) 196.) (1+ i))) ;log[10](2)=.301029
852 (nil)
853 (when (> (integer-length (expt 10. i)) x)
854 (return (1- i)))))
856 (defun atanbigfloat (x)
857 (*fpatan (car x) (cdr x)))
859 (defun *fpatan (a y)
860 (fpend (let ((fpprec (+ 8. fpprec)))
861 (if (null y)
862 (if ($bfloatp a) (fpatan (cdr ($bfloat a)))
863 (list '(%atan) a))
864 (fpatan2 (cdr ($bfloat a)) (cdr ($bfloat (car y))))))))
866 ;; Bigfloat atan
867 (defun fpatan (x)
868 (prog (term x2 ans oans one two tmp)
869 (setq one (intofp 1) two (intofp 2))
870 (cond ((fpgreaterp (fpabs x) one)
871 ;; |x| > 1.
873 ;; Use A&S 4.4.5:
874 ;; atan(x) + acot(x) = +/- pi/2 (+ for x >= 0, - for x < 0)
876 ;; and A&S 4.4.8
877 ;; acot(z) = atan(1/z)
878 (setq tmp (fpquotient (fppi) two))
879 (setq ans (fpdifference tmp (fpatan (fpquotient one x))))
880 (return (cond ((fplessp x (intofp 0))
881 (fpdifference ans (fppi)))
882 (t ans))))
883 ((fpgreaterp (fpabs x) (fpquotient one two))
884 ;; |x| > 1/2
886 ;; Use A&S 4.4.42, third formula:
888 ;; atan(z) = z/(1+z^2)*[1 + 2/3*r + (2*4)/(3*5)*r^2 + ...]
890 ;; r = z^2/(1+z^2)
891 (setq tmp (fpquotient x (fpplus (fptimes* x x) one)))
892 (setq x2 (fptimes* x tmp) term (setq ans one))
893 (do ((n 0 (1+ n)))
894 ((equal ans oans))
895 (setq term
896 (fptimes* term (fptimes* x2 (fpquotient
897 (intofp (+ 2 (* 2 n)))
898 (intofp (+ (* 2 n) 3))))))
899 (setq oans ans ans (fpplus term ans)))
900 (setq ans (fptimes* tmp ans)))
902 ;; |x| <= 1/2. Use Taylor series (A&S 4.4.42, first
903 ;; formula).
905 ;; The n'th term is (-1)^n*x^(2*n+1)/(2*n+1). We want to
906 ;; stop summing when the relative error between the n'th
907 ;; term and the first is small. That is
908 ;; |x^(2*n+1)/(2*n+1)/x| <= tol. Hence, |x^(2*n)|/(2*n+1)
909 ;; <= tol. Or |x^(2*n)| <= tol. But we know |x| <= 1/2,
910 ;; so (1/2)^(2*n) <= tol. Then n = -log2(tol)/2. Since
911 ;; tol is basically 2^(-fpprec), n = fpprec/2. But double
912 ;; it so that the testsuite passes without differences.
913 (setq ans x x2 (fpminus (fptimes* x x)) term x)
914 (let ((max-n fpprec))
915 (do ((n 3 (+ n 2)))
916 ((or (equal ans oans)
917 (>= n max-n))
918 #+nil
919 (progn
920 (format t "n max-n ~A ~A~%" n max-n)
921 (format t "ans oans = ~A ~A~%" ans oans)))
922 (setq term (fptimes* term x2))
923 (setq oans ans
924 ans (fpplus ans (fpquotient term (intofp n))))))))
925 (return ans)))
927 ;; atan(y/x) taking into account the quadrant. (Also equal to
928 ;; arg(x+%i*y).)
929 (defun fpatan2 (y x)
930 (cond ((equal (car x) 0)
931 ;; atan(y/0) = atan(inf), but what sign?
932 (cond ((equal (car y) 0)
933 (merror (intl:gettext "atan2: atan2(0, 0) is undefined.")))
934 ((minusp (car y))
935 ;; We're on the negative imaginary axis, so -pi/2.
936 (fpquotient (fppi) (intofp -2)))
938 ;; The positive imaginary axis, so +pi/2
939 (fpquotient (fppi) (intofp 2)))))
940 ((signp g (car x))
941 ;; x > 0. atan(y/x) is the correct value.
942 (fpatan (fpquotient y x)))
943 ((signp g (car y))
944 ;; x < 0, and y > 0. We're in quadrant II, so the angle we
945 ;; want is pi+atan(y/x).
946 (fpplus (fppi) (fpatan (fpquotient y x))))
948 ;; x <= 0 and y <= 0. We're in quadrant III, so the angle we
949 ;; want is atan(y/x)-pi.
950 (fpdifference (fpatan (fpquotient y x)) (fppi)))))
952 (defun tanbigfloat (a)
953 (setq a (car a))
954 (fpend (let ((fpprec (+ 8. fpprec)))
955 (cond (($bfloatp a)
956 (setq a (cdr ($bfloat a)))
957 (fpquotient (fpsin a t) (fpsin a nil)))
958 (t (list '(%tan) a))))))
960 ;; Returns a list of a mantissa and an exponent. This function MUST
961 ;; recognize any symbol in *builtin-numeric-constants* and compute a
962 ;; bfloat value for it.
963 (defun intofp (l)
964 (cond ((not (atom l))
965 ($bfloat l))
966 ((floatp l)
967 (floattofp l))
968 ((equal 0 l)
969 '(0 0))
970 ((eq l '$%pi)
971 (fppi))
972 ((eq l '$%e)
973 (fpe))
974 ((eq l '$%gamma)
975 (fpgamma))
976 ((eq l '$%catalan)
977 (fpcatalan))
978 ((eq l '$%phi)
979 (fpphi))
981 (list (fpround l) (+ *m fpprec)))))
983 ;; It seems to me that this function gets called on an integer
984 ;; and returns the mantissa portion of the mantissa/exponent pair.
986 ;; "STICKY BIT" CALCULATION FIXED 10/14/75 --RJF
987 ;; BASE must not get temporarily bound to NIL by being placed
988 ;; in a PROG list as this will confuse stepping programs.
990 (defun fpround (l &aux (*print-base* 10.) *print-radix*)
991 (prog (adjust)
992 (cond
993 ((null *decfp)
994 ;;*M will be positive if the precision of the argument is greater than
995 ;;the current precision being used.
996 (setq *m (- (integer-length l) fpprec))
997 (when (= *m 0)
998 (setq *cancelled 0)
999 (return l))
1000 ;;FPSHIFT is essentially LSH.
1001 (setq adjust (fpshift 1 (1- *m)))
1002 (when (minusp l) (setq adjust (- adjust)))
1003 (incf l adjust)
1004 (setq *m (- (integer-length l) fpprec))
1005 (setq *cancelled (abs *m))
1006 (cond ((zerop (hipart l (- *m)))
1007 ;ONLY ZEROES SHIFTED OFF
1008 (return (fpshift (fpshift l (- -1 *m))
1009 1))) ; ROUND TO MAKE EVEN
1010 (t (return (fpshift l (- *m))))))
1012 (setq *m (- (flatsize (abs l)) fpprec))
1013 (setq adjust (fpshift 1 (1- *m)))
1014 (when (minusp l) (setq adjust (- adjust)))
1015 (setq adjust (* 5 adjust))
1016 (setq *m (- (flatsize (abs (setq l (+ l adjust)))) fpprec))
1017 (return (fpshift l (- *m)))))))
1019 ;; Compute (* L (expt d n)) where D is 2 or 10 depending on
1020 ;; *decfp. Throw away an fractional part by truncating to zero.
1021 (defun fpshift (l n)
1022 (cond ((null *decfp)
1023 (cond ((and (minusp n) (minusp l))
1024 ;; Left shift of negative number requires some
1025 ;; care. (That is, (truncate l (expt 2 n)), but use
1026 ;; shifts instead.)
1027 (- (ash (- l) n)))
1029 (ash l n))))
1030 ((> n 0)
1031 (* l (expt 10. n)))
1032 ((< n 0.)
1033 (quotient l (expt 10. (- n))))
1034 (t l)))
1036 ;; Bignum LSH -- N is assumed (and declared above) to be a fixnum.
1037 ;; This isn't really LSH, since the sign bit isn't propagated when
1038 ;; shifting to the right, i.e. (BIGLSH -100 -3) = -40, whereas
1039 ;; (LSH -100 -3) = 777777777770 (on a 36 bit machine).
1040 ;; This actually computes (* X (EXPT 2 N)). As of 12/21/80, this function
1041 ;; was only called by FPSHIFT. I would like to hear an argument as why this
1042 ;; is more efficient than simply writing (* X (EXPT 2 N)). Is the
1043 ;; intermediate result created by (EXPT 2 N) the problem? I assume that
1044 ;; EXPT tries to LSH when possible.
1046 (defun biglsh (x n)
1047 (cond ((and (not (bignump x))
1048 (< n #.(- +machine-fixnum-precision+)))
1050 ;; Either we are shifting a fixnum to the right, or shifting
1051 ;; a fixnum to the left, but not far enough left for it to become
1052 ;; a bignum.
1053 ((and (not (bignump x))
1054 (or (<= n 0)
1055 (< (+ (integer-length x) n) #.+machine-fixnum-precision+)))
1056 ;; The form which follows is nearly identical to (ASH X N), however
1057 ;; (ASH -100 -20) = -1, whereas (BIGLSH -100 -20) = 0.
1058 (if (>= x 0)
1059 (ash x n)
1060 (- (biglsh (- x) n)))) ;(- x) may be a bignum even is x is a fixnum.
1061 ;; If we get here, then either X is a bignum or our answer is
1062 ;; going to be a bignum.
1063 ((< n 0)
1064 (cond ((> (abs n) (integer-length x)) 0)
1065 ((> x 0)
1066 (hipart x (+ (integer-length x) n)))
1067 (t (- (hipart x (+ (integer-length x) n))))))
1068 ((= n 0) x)
1069 ;; Isn't this the kind of optimization that compilers are
1070 ;; supposed to make?
1071 ((< n #.(1- +machine-fixnum-precision+)) (* x (ash 1 n)))
1072 (t (* x (expt 2 n)))))
1075 ;; exp(x)
1077 ;; For negative x, use exp(-x) = 1/exp(x)
1079 ;; For x > 0, exp(x) = exp(r+y) = exp(r) * exp(y), where x = r + y and
1080 ;; r = floor(x).
1081 (defun fpexp (x)
1082 (prog (r s)
1083 (unless (signp ge (car x))
1084 (return (fpquotient (fpone) (fpexp (fpabs x)))))
1085 (setq r (fpintpart x :skip-exponent-check-p t))
1086 (return (cond ((< r 2)
1087 (fpexp1 x))
1089 (setq s (fpexp1 (fpdifference x (intofp r))))
1090 (fptimes* s
1091 (cdr (bigfloatp
1092 (let ((fpprec (+ fpprec (integer-length r) -1))
1093 (r r))
1094 (bcons (fpexpt (fpe) r))))))))))) ; patch for full precision %E
1096 ;; exp(x) for small x, using Taylor series.
1097 (defun fpexp1 (x)
1098 (prog (term ans oans)
1099 (setq ans (setq term (fpone)))
1100 (do ((n 1 (1+ n)))
1101 ((equal ans oans))
1102 (setq term (fpquotient (fptimes* x term) (intofp n)))
1103 (setq oans ans)
1104 (setq ans (fpplus ans term)))
1105 (return ans)))
1107 ;; Does one higher precision to round correctly.
1108 ;; A and B are each a list of a mantissa and an exponent.
1109 (defun fpquotient (a b)
1110 (cond ((equal (car b) 0)
1111 (merror (intl:gettext "pquotient: attempted quotient by zero.")))
1112 ((equal (car a) 0) '(0 0))
1113 (t (list (fpround (quotient (fpshift (car a) (+ 3 fpprec)) (car b)))
1114 (+ -3 (- (cadr a) (cadr b)) *m)))))
1116 (defun fpgreaterp (a b)
1117 (fpposp (fpdifference a b)))
1119 (defun fplessp (a b)
1120 (fpposp (fpdifference b a)))
1122 (defun fpposp (x)
1123 (> (car x) 0))
1125 (defun fpmin (arg1 &rest args)
1126 (let ((min arg1))
1127 (mapc #'(lambda (u) (if (fplessp u min) (setq min u))) args)
1128 min))
1130 (defun fpmax (arg1 &rest args)
1131 (let ((max arg1))
1132 (mapc #'(lambda (u) (if (fpgreaterp u max) (setq max u))) args)
1133 max))
1135 ;; The following functions compute bigfloat values for %e, %pi,
1136 ;; %gamma, and log(2). For each precision, the computed value is
1137 ;; cached in a hash table so it doesn't need to be computed again.
1138 ;; There are functions to return the hash table or clear the hash
1139 ;; table, for debugging.
1141 ;; Note that each of these return a bigfloat number, but without the
1142 ;; bigfloat tag.
1144 ;; See
1145 ;; https://sourceforge.net/p/maxima/bugs/1842/
1146 ;; for an explanation.
1147 (macrolet
1148 ((memoize (name compute-form)
1149 ;; Macro creates a closure over a hash table containing the
1150 ;; bigfloat values of a constant. The key of the hash table is
1151 ;; the number of bits of precision of the bigfloat. This keeps
1152 ;; Maxima from constantly computing the numeric value of a
1153 ;; constant. Once computed for a certain precision, we can
1154 ;; just look up precomputed value.
1156 ;; A function with the name NAME is created that looks up the
1157 ;; value in hash table. If it exists, return it. If not
1158 ;; update the hash table with a new value computed via
1159 ;; COMPUTE-FORM. This value is returned.
1161 ;; For debugging, we define a function to get the hash table
1162 ;; and a function to clear the hash table of all entries.
1163 (let ((table-getter-name
1164 (intern (concatenate 'string (string name) "-TABLE")))
1165 (table-clearer-name
1166 (intern (concatenate 'string
1167 "CLEAR_" (string name) "_TABLE")))
1168 (table-name (gensym (concatenate 'string "TABLE-" (string name)))))
1169 `(let ((,table-name (make-hash-table)))
1170 (defun ,name ()
1171 (let ((value (gethash fpprec ,table-name)))
1172 (if value
1173 value
1174 (setf (gethash fpprec ,table-name) ,compute-form))))
1175 (defun ,table-getter-name ()
1176 ,table-name)
1177 (defun ,table-clearer-name ()
1178 (clrhash ,table-name))))))
1179 (memoize fpe (cdr (fpe1)))
1180 (memoize fppi (cdr (fppi1)))
1181 (memoize fpgamma (cdr (fpgamma1)))
1182 (memoize fplog2 (comp-log2))
1183 (memoize fpcatalan (cdr (fpcatalan1)))
1184 (memoize fpphi (cdr (fpphi1))))
1186 ;; This doesn't need a hash table because there's never a problem with
1187 ;; using a high precision value and rounding to a lower precision
1188 ;; value because 1 is always an exact bfloat.
1189 (defun fpone ()
1190 (cond (*decfp (intofp 1))
1191 ((= fpprec (bigfloat-prec bigfloatone)) (cdr bigfloatone))
1192 (t (intofp 1))))
1194 ;;----------------------------------------------------------------------------;;
1196 ;; The values of %e, %pi, %gamma and log(2) are computed by the technique of
1197 ;; binary splitting. See http://www.ginac.de/CLN/binsplit.pdf for details.
1199 ;; Volker van Nek, Sept. 2014
1202 ;; Euler's number E
1204 (defun fpe1 ()
1205 (let ((e (compe (+ fpprec 12)))) ;; compute additional bits
1206 (bcons (list (fpround (car e)) (cadr e))) )) ;; round to fpprec
1208 ;; Taylor: %e = sum(s[i] ,i,0,inf) where s[i] = 1/i!
1210 (defun compe (prec)
1211 (let ((fpprec prec))
1212 (multiple-value-bind (tt qq) (split-taylor-e 0 (taylor-e-size prec))
1213 (fpquotient (intofp tt) (intofp qq)) )))
1215 ;; binary splitting:
1217 ;; 1
1218 ;; s[i] = ----------------------
1219 ;; q[0]*q[1]*q[2]*..*q[i]
1221 ;; where q[0] = 1
1222 ;; q[i] = i
1224 (defun split-taylor-e (i j)
1225 (let (qq tt)
1226 (if (= (- j i) 1)
1227 (setq qq (if (= i 0) 1 i)
1228 tt 1 )
1229 (let ((m (ash (+ i j) -1)))
1230 (multiple-value-bind (tl ql) (split-taylor-e i m)
1231 (multiple-value-bind (tr qr) (split-taylor-e m j)
1232 (setq qq (* ql qr)
1233 tt (+ (* qr tl) tr) )))))
1234 (values tt qq) ))
1236 ;; stop when i! > 2^fpprec
1238 ;; log(i!) = sum(log(k), k,1,i) > fpprec * log(2)
1240 (defun taylor-e-size (prec)
1241 (let ((acc 0)
1242 (lim (* prec (log 2))) )
1243 (do ((i 1 (1+ i)))
1244 ((> acc lim) i)
1245 (incf acc (log i)) )))
1247 ;;----------------------------------------------------------------------------;;
1249 ;; PI
1251 (defun fppi1 ()
1252 (let ((pi1 (comppi (+ fpprec 10))))
1253 (bcons (list (fpround (car pi1)) (cadr pi1))) ))
1255 ;; Chudnovsky & Chudnovsky:
1257 ;; C^(3/2)/(12*%pi) = sum(s[i], i,0,inf),
1259 ;; where s[i] = (-1)^i*(6*i)!*(A*i+B) / (i!^3*(3*i)!*C^(3*i))
1261 ;; and A = 545140134, B = 13591409, C = 640320
1263 (defun comppi (prec)
1264 (let ((fpprec prec)
1265 nr n d oldn tt qq n*qq )
1266 ;; STEP 1:
1267 ;; compute n/d = sqrt(10005) :
1269 ;; n[0] n[i+1] = n[i]^2+a*d[i]^2 n[inf]
1270 ;; quadratic Heron: x[0] = ----, , sqrt(a) = ------
1271 ;; d[0] d[i+1] = 2*n[i]*d[i] d[inf]
1273 (multiple-value-setq (nr n d) (sqrt-10005-constants fpprec))
1274 (dotimes (i nr)
1275 (setq oldn n
1276 n (+ (* n n) (* 10005 d d))
1277 d (* 2 oldn d) ))
1278 ;; STEP 2:
1279 ;; divide C^(3/2)/12 = 3335*2^7*sqrt(10005)
1280 ;; by Chudnovsky-sum = tt/qq :
1282 (setq nr (ceiling (* fpprec 0.021226729578153))) ;; nr of summands
1283 ;; fpprec*log(2)/log(C^3/(24*6*2*6))
1284 (multiple-value-setq (tt qq) (split-chudnovsky 0 (1+ nr)))
1285 (setq n (* 3335 n)
1286 n*qq (intofp (* n qq)) )
1287 (fpquotient (list (car n*qq) (+ (cadr n*qq) 7))
1288 (intofp (* d tt)) )))
1290 ;; The returned n and d serve as start values for the iteration.
1291 ;; n/d = sqrt(10005) with a precision of p = ceiling(prec/2^nr) bits
1292 ;; where nr is the number of needed iterations.
1294 (defun sqrt-10005-constants (prec)
1295 (let (ilen p nr n d)
1296 (if (< prec 128)
1297 (setq nr 0 p prec)
1298 (setq ilen (integer-length prec)
1299 nr (- ilen 7)
1300 p (ceiling (* prec (expt 2.0 (- nr)))) ))
1301 (cond
1302 ((<= p 76) (setq n 256192036001 d 2561280120))
1303 ((<= p 89) (setq n 51244811200700 d 512320048001))
1304 ((<= p 102) (setq n 2050048640064001 d 20495363200160))
1305 ((<= p 115) (setq n 410060972824000900 d 4099584960080001))
1306 (t (setq n 16404488961600100001 d 164003893766400200)) )
1307 (values nr n d) ))
1309 ;; binary splitting:
1311 ;; a[i] * p[0]*p[1]*p[2]*..*p[i]
1312 ;; s[i] = -----------------------------
1313 ;; q[0]*q[1]*q[2]*..*q[i]
1315 ;; where a[0] = B
1316 ;; p[0] = q[0] = 1
1317 ;; a[i] = A*i+B
1318 ;; p[i] = - (6*i-5)*(2*i-1)*(6*i-1)
1319 ;; q[i] = C^3/24*i^3
1321 (defun split-chudnovsky (i j)
1322 (let (aa pp/qq pp qq tt)
1323 (if (= (- j i) 1)
1324 (if (= i 0)
1325 (setq aa 13591409 pp 1 qq 1 tt aa)
1326 (setq aa (+ (* i 545140134) 13591409)
1327 pp/qq (/ (* (- 5 (* 6 i)) (- (* 2 i) 1) (- (* 6 i) 1))
1328 10939058860032000 ) ; C^3/24
1329 pp (numerator pp/qq)
1330 qq (* (denominator pp/qq) (expt i 3))
1331 tt (* aa pp) ))
1332 (let ((m (ash (+ i j) -1)))
1333 (multiple-value-bind (tl ql pl) (split-chudnovsky i m)
1334 (multiple-value-bind (tr qr pr) (split-chudnovsky m j)
1335 (setq pp (* pl pr)
1336 qq (* ql qr)
1337 tt (+ (* qr tl) (* pl tr)) )))))
1338 (values tt qq pp) ))
1340 ;;----------------------------------------------------------------------------;;
1342 ;; Euler-Mascheroni constant GAMMA
1344 (defun fpgamma1 ()
1345 (let ((res (comp-bf%gamma (+ fpprec 14))))
1346 (bcons (list (fpround (car res)) (cadr res))) ))
1348 ;; Brent-McMillan algorithm
1350 ;; Let
1351 ;; alpha = 4.970625759544
1353 ;; n > 0 and N-1 >= alpha*n
1355 ;; H(k) = sum(1/i, i,1,k)
1357 ;; S = sum(H(k)*(n^k/k!)^2, k,0,N-1)
1359 ;; I = sum((n^k/k!)^2, k,0,N-1)
1361 ;; T = 1/(4*n)*sum((2*k)!^3/(k!^4*(16*n)^(2*k)), k,0,2*n-1)
1363 ;; and
1364 ;; %gamma = S/I - T/I^2 - log(n)
1366 ;; Then
1367 ;; |%gamma - gamma| < 24 * e^(-8*n)
1369 ;; (Corollary 2, Remark 2, Brent/Johansson http://arxiv.org/pdf/1312.0039v1.pdf)
1371 (defun comp-bf%gamma (prec)
1372 (let* ((fpprec prec)
1373 (n (ceiling (* 1/8 (+ (* prec (log 2.0)) (log 24.0)))))
1374 (n2 (* n n))
1375 (alpha 4.970625759544)
1376 (lim (ceiling (* alpha n)))
1377 sums/sumi ;; S/I
1378 sumi sumi2 ;; I and I^2
1379 sumt/sumi2 ) ;; T/I^2
1380 (multiple-value-bind (vv tt qq dd) (split-gamma-1 1 (1+ lim) n2)
1382 ;; sums = vv/(qq*dd)
1383 ;; sumi = tt/qq
1384 ;; sums/sumi = vv/(qq*dd)*qq/tt = vv/(dd*tt)
1386 (setq sums/sumi (fpquotient (intofp vv) (intofp (* dd tt)))
1387 sumi (fpquotient (intofp tt) (intofp qq))
1388 sumi2 (fptimes* sumi sumi) )
1390 (multiple-value-bind (ttt qqq) (split-gamma-2 0 (* 2 n) (* 32 n2))
1392 ;; sumt = 1/(4*n)*ttt/qqq
1393 ;; sumt/sumi2 = ttt/(4*n*qqq*sumi2)
1395 (setq sumt/sumi2 (fpquotient (intofp ttt)
1396 (fptimes* (intofp (* 4 n qqq)) sumi2) ))
1397 ;; %gamma :
1398 (fpdifference sums/sumi (fpplus sumt/sumi2 (log-n n)) )))))
1400 ;; split S and I simultaneously:
1402 ;; summands I[0] = 1, I[i]/I[i-1] = n^2/i^2
1404 ;; S[0] = 0, S[i]/S[i-1] = n^2/i^2*H(i)/H(i-1)
1406 ;; p[0]*p[1]*p[2]*..*p[i]
1407 ;; I[i] = ----------------------
1408 ;; q[0]*q[1]*q[2]*..*q[i]
1410 ;; where p[0] = n^2
1411 ;; q[0] = 1
1412 ;; p[i] = n^2
1413 ;; q[i] = i^2
1414 ;; c[0] c[1] c[2] c[i]
1415 ;; S[i] = H[i] * I[i], where H[i] = ---- + ---- + ---- + .. + ----
1416 ;; d[0] d[1] d[2] d[i]
1417 ;; and c[0] = 0
1418 ;; d[0] = 1
1419 ;; c[i] = 1
1420 ;; d[i] = i
1422 (defun split-gamma-1 (i j n2)
1423 (let (pp cc dd qq tt vv)
1424 (cond
1425 ((= (- j i) 1)
1426 (if (= i 1) ;; S[0] is 0 -> start with i=1 and add I[0]=1 to tt :
1427 (setq pp n2 cc 1 dd 1 qq 1 tt (1+ n2) vv n2)
1428 (setq pp n2 cc 1 dd i qq (* i i) tt pp vv tt) ))
1430 (let* ((m (ash (+ i j) -1)) tmp)
1431 (multiple-value-bind (vl tl ql dl cl pl) (split-gamma-1 i m n2)
1432 (multiple-value-bind (vr tr qr dr cr pr) (split-gamma-1 m j n2)
1433 (setq pp (* pl pr)
1434 cc (+ (* cl dr) (* dl cr))
1435 dd (* dl dr)
1436 qq (* ql qr)
1437 tmp (* pl tr)
1438 tt (+ (* tl qr) tmp)
1439 vv (+ (* dr (+ (* vl qr) (* cl tmp))) (* dl pl vr)) ))))))
1440 (values vv tt qq dd cc pp) ))
1442 ;; split 4*n*T:
1444 ;; summands T[0] = 1, T[i]/T[i-1] = (2*i-1)^3/(32*i*n^2)
1446 ;; p[0]*p[1]*p[2]*..*p[i]
1447 ;; T[i] = ----------------------
1448 ;; q[0]*q[1]*q[2]*..*q[i]
1450 ;; where p[0] = q[0] = 1
1451 ;; p[i] = (2*i-1)^3
1452 ;; q[i] = 32*i*n^2
1454 (defun split-gamma-2 (i j n2*32)
1455 (let (pp qq tt)
1456 (cond
1457 ((= (- j i) 1)
1458 (if (= i 0)
1459 (setq pp 1 qq 1 tt 1)
1460 (setq pp (expt (1- (* 2 i)) 3) qq (* i n2*32) tt pp) ))
1462 (let* ((m (ash (+ i j) -1)))
1463 (multiple-value-bind (tl ql pl) (split-gamma-2 i m n2*32)
1464 (multiple-value-bind (tr qr pr) (split-gamma-2 m j n2*32)
1465 (setq pp (* pl pr)
1466 qq (* ql qr)
1467 tt (+ (* tl qr) (* pl tr)) ))))))
1468 (values tt qq pp) ))
1470 ;;----------------------------------------------------------------------------;;
1472 ;; log(2) = 18*L(26) - 2*L(4801) + 8*L(8749)
1474 ;; where L(k) = atanh(1/k)
1476 ;; see http://numbers.computation.free.fr/Constants/constants.html
1478 ;;;(defun $log2 () (bcons (comp-log2))) ;; checked against reference table
1480 (defun comp-log2 ()
1481 (let ((res
1482 (let ((fpprec (+ fpprec 12)))
1483 (fpplus
1484 (fpdifference (n*atanh-1/k 18 26) (n*atanh-1/k 2 4801))
1485 (n*atanh-1/k 8 8749) ))))
1486 (list (fpround (car res)) (cadr res)) ))
1488 ;; Taylor: atanh(1/k) = sum(s[i], i,0,inf)
1490 ;; where s[i] = 1/((2*i+1)*k^(2*i+1))
1492 (defun n*atanh-1/k (n k) ;; integer n,k
1493 (let* ((k2 (* k k))
1494 (nr (ceiling (* fpprec (/ (log 2) (log k2))))) )
1495 (multiple-value-bind (tt qq bb) (split-atanh-1/k 0 (1+ nr) k k2)
1496 (fpquotient (intofp (* n tt)) (intofp (* bb qq))) )))
1498 ;; binary splitting:
1499 ;; 1
1500 ;; s[i] = -----------------------------
1501 ;; b[i] * q[0]*q[1]*q[2]*..*q[i]
1503 ;; where b[0] = 1
1504 ;; q[0] = k
1505 ;; b[i] = 2*i+1
1506 ;; q[i] = k^2
1508 (defun split-atanh-1/k (i j k k2)
1509 (let (bb qq tt)
1510 (if (= (- j i) 1)
1511 (if (= i 0)
1512 (setq bb 1 qq k tt 1)
1513 (setq bb (1+ (* 2 i)) qq k2 tt 1) )
1514 (let ((m (ash (+ i j) -1)))
1515 (multiple-value-bind (tl ql bl) (split-atanh-1/k i m k k2)
1516 (multiple-value-bind (tr qr br) (split-atanh-1/k m j k k2)
1517 (setq bb (* bl br)
1518 qq (* ql qr)
1519 tt (+ (* br qr tl) (* bl tr)) )))))
1520 (values tt qq bb) ))
1522 ;;----------------------------------------------------------------------------;;
1524 ;; log(n) = log(n/2^k) + k*log(2)
1526 ;;;(defun $log10 () (bcons (log-n 10))) ;; checked against reference table
1528 (defun log-n (n) ;; integer n > 0
1529 (cond
1530 ((= 1 n) (list 0 0))
1531 ((= 2 n) (comp-log2))
1533 (let ((res
1534 (let ((fpprec (+ fpprec 10))
1535 (k (integer-length n)) )
1536 ;; choose k so that |n/2^k - 1| is as small as possible:
1537 (when (< n (* (coerce 2/3 'flonum) (ash 1 k))) (decf k))
1538 ;; now |n/2^k - 1| <= 1/3
1539 (fpplus (log-u/2^k n k fpprec)
1540 (fptimes* (intofp k) (comp-log2)) ))))
1541 (list (fpround (car res)) (cadr res)) ))))
1543 ;; log(1+u/v) = 2 * sum(s[i], i,0,inf)
1545 ;; where s[i] = (u/(2*v+u))^(2*i+1)/(2*i+1)
1547 (defun log-u/2^k (u k prec) ;; integer u k; x = u/2^k; |x - 1| < 1
1548 (setq u (- u (ash 1 k))) ;; x <-- x - 1
1549 (cond
1550 ((= 0 u) (list 0 0))
1552 (while (evenp u) (setq u (ash u -1)) (decf k))
1553 (let* ((u2 (* u u))
1554 (w (+ u (ash 2 k)))
1555 (w2 (* w w))
1556 (nr (ceiling (* prec (/ (log 2) 2 (log (abs (/ w u)))))))
1557 lg/2 )
1558 (multiple-value-bind (tt qq bb) (split-log-1+u/v 0 (1+ nr) u u2 w w2)
1559 (setq lg/2 (fpquotient (intofp tt) (intofp (* bb qq)))) ;; sum
1560 (list (car lg/2) (1+ (cadr lg/2))) ))))) ;; 2*sum
1562 ;; binary splitting:
1564 ;; p[0]*p[1]*p[2]*..*p[i]
1565 ;; s[i] = -----------------------------
1566 ;; b[i] * q[0]*q[1]*q[2]*..*q[i]
1568 ;; where b[0] = 1
1569 ;; p[0] = u
1570 ;; q[0] = w = 2*v+u
1571 ;; b[i] = 2*i+1
1572 ;; p[i] = u^2
1573 ;; q[i] = w^2
1575 (defun split-log-1+u/v (i j u u2 w w2)
1576 (let (pp bb qq tt)
1577 (if (= (- j i) 1)
1578 (if (= i 0)
1579 (setq pp u bb 1 qq w tt u)
1580 (setq pp u2 bb (1+ (* 2 i)) qq w2 tt pp) )
1581 (let ((m (ash (+ i j) -1)))
1582 (multiple-value-bind (tl ql bl pl) (split-log-1+u/v i m u u2 w w2)
1583 (multiple-value-bind (tr qr br pr) (split-log-1+u/v m j u u2 w w2)
1584 (setq bb (* bl br)
1585 pp (* pl pr)
1586 qq (* ql qr)
1587 tt (+ (* br qr tl) (* bl pl tr)) )))))
1588 (values tt qq bb pp) ))
1590 ;;----------------------------------------------------------------------------;;
1591 (defun fpcatalan1 ()
1592 ;; Use 5 extra bits when computing %catalan. Not exactly sure what
1593 ;; is right value, but 5 seems good enough.
1594 (let ((catalan (cdr (bigfloat::comp-catalan (+ fpprec 5)))))
1595 ;; Round value that has extra bits to the current number of bits
1596 ;; in a bfloat.
1597 (bcons (list (fpround (car catalan))
1598 (cadr catalan)))))
1602 (defun fpphi1 ()
1603 (let* ((phi (let ((fpprec (+ fpprec 2)))
1604 ;; Use couple of extra bits to compute %phi =
1605 ;; (1+sqrt(5))/2.
1606 (cdr ($bfloat (div (add 1 (power 5 1//2))
1607 2))))))
1608 ;; Round value that has extra bits to the current number of bits
1609 ;; in a bfloat.
1610 (bcons (list (fpround (car phi))
1611 (cadr phi)))))
1614 ;;----------------------------------------------------------------------------;;
1617 (defun fpdifference (a b)
1618 (fpplus a (fpminus b)))
1620 (defun fpminus (x)
1621 (if (equal (car x) 0)
1623 (list (- (car x)) (cadr x))))
1625 (defun fpplus (a b)
1626 (prog (*m exp man sticky)
1627 (setq *cancelled 0)
1628 (cond ((equal (car a) 0) (return b))
1629 ((equal (car b) 0) (return a)))
1630 (setq exp (- (cadr a) (cadr b)))
1631 (setq man (cond ((equal exp 0)
1632 (setq sticky 0)
1633 (fpshift (+ (car a) (car b)) 2))
1634 ((> exp 0)
1635 (setq sticky (hipart (car b) (- 1 exp)))
1636 (setq sticky (cond ((signp e sticky) 0)
1637 ((signp l (car b)) -1)
1638 (t 1)))
1639 ; COMPUTE STICKY BIT
1640 (+ (fpshift (car a) 2)
1641 ; MAKE ROOM FOR GUARD DIGIT & STICKY BIT
1642 (fpshift (car b) (- 2 exp))))
1643 (t (setq sticky (hipart (car a) (1+ exp)))
1644 (setq sticky (cond ((signp e sticky) 0)
1645 ((signp l (car a)) -1)
1646 (t 1)))
1647 (+ (fpshift (car b) 2)
1648 (fpshift (car a) (+ 2 exp))))))
1649 (setq man (+ man sticky))
1650 (return (cond ((equal man 0) '(0 0))
1651 (t (setq man (fpround man))
1652 (setq exp (+ -2 *m (max (cadr a) (cadr b))))
1653 (list man exp))))))
1655 (defun fptimes* (a b)
1656 (if (or (zerop (car a)) (zerop (car b)))
1657 '(0 0)
1658 (list (fpround (* (car a) (car b)))
1659 (+ *m (cadr a) (cadr b) (- fpprec)))))
1661 ;; Don't use the symbol BASE since it is SPECIAL.
1663 (defun fpintexpt (int nn fixprec) ;INT is integer
1664 (setq fixprec (truncate fixprec (1- (integer-length int)))) ;NN is pos
1665 (let ((bas (intofp (expt int (min nn fixprec)))))
1666 (if (> nn fixprec)
1667 (fptimes* (intofp (expt int (rem nn fixprec)))
1668 (fpexpt bas (quotient nn fixprec)))
1669 bas)))
1671 ;; NN is positive or negative integer
1673 (defun fpexpt (p nn)
1674 (cond ((zerop nn) (fpone))
1675 ((eql nn 1) p)
1676 ((< nn 0) (fpquotient (fpone) (fpexpt p (- nn))))
1677 (t (prog (u)
1678 (if (oddp nn)
1679 (setq u p)
1680 (setq u (fpone)))
1681 (do ((ii (quotient nn 2) (quotient ii 2)))
1682 ((zerop ii))
1683 (setq p (fptimes* p p))
1684 (when (oddp ii)
1685 (setq u (fptimes* u p))))
1686 (return u)))))
1688 (defun exptbigfloat (p n)
1689 (cond ((equal n 1) p)
1690 ((equal n 0) ($bfloat 1))
1691 ((not ($bfloatp p)) (list '(mexpt) p n))
1692 ((equal (cadr p) 0) ($bfloat 0))
1693 ((and (< (cadr p) 0) (ratnump n))
1694 (mul2 (let ($numer $float $keepfloat $ratprint)
1695 (power -1 n))
1696 (exptbigfloat (bcons (fpminus (cdr p))) n)))
1697 ((and (< (cadr p) 0) (not (integerp n)))
1698 (cond ((or (equal n 0.5) (equal n bfhalf))
1699 (exptbigfloat p '((rat simp) 1 2)))
1700 ((or (equal n -0.5) (equal n bfmhalf))
1701 (exptbigfloat p '((rat simp) -1 2)))
1702 (($bfloatp (setq n ($bfloat n)))
1703 (cond ((equal n ($bfloat (fpentier n)))
1704 (exptbigfloat p (fpentier n)))
1705 (t ;; for P<0: P^N = (-P)^N*cos(pi*N) + i*(-P)^N*sin(pi*N)
1706 (setq p (exptbigfloat (bcons (fpminus (cdr p))) n)
1707 n ($bfloat `((mtimes) $%pi ,n)))
1708 (add2 ($bfloat `((mtimes) ,p ,(*fpsin n nil)))
1709 `((mtimes simp) ,($bfloat `((mtimes) ,p ,(*fpsin n t)))
1710 $%i)))))
1711 (t (list '(mexpt) p n))))
1712 ((and (ratnump n) (< (caddr n) 10.))
1713 (bcons (fpexpt (fproot p (caddr n)) (cadr n))))
1714 ((not (integerp n))
1715 (setq n ($bfloat n))
1716 (cond
1717 ((not ($bfloatp n)) (list '(mexpt) p n))
1719 (let ((extrabits (max 1 (+ (caddr n) (integer-length (caddr p))))))
1720 (setq p
1721 (let ((fpprec (+ extrabits fpprec)))
1722 (fpexp (fptimes* (cdr (bigfloatp n)) (fplog (cdr (bigfloatp p)))))))
1723 (setq p (list (fpround (car p)) (+ (- extrabits) *m (cadr p))))
1724 (bcons p)))))
1725 ;; The number of extra bits required
1726 ((< n 0) (invertbigfloat (exptbigfloat p (- n))))
1727 (t (bcons (fpexpt (cdr p) n)))))
1729 (defun fproot (a n) ; computes a^(1/n) see Fitch, SIGSAM Bull Nov 74
1731 ;; Special case for a = 0b0. General algorithm loops endlessly in that case.
1733 ;; Unlike many or maybe all of the other functions named FP-something,
1734 ;; FPROOT assumes it is called with an argument like
1735 ;; '((BIGFLOAT ...) FOO BAR) instead of '(FOO BAR).
1736 ;; However FPROOT does return something like '(FOO BAR).
1738 (if (eql (cadr a) 0)
1739 '(0 0)
1740 (progn
1741 (let* ((ofprec fpprec)
1742 (fpprec (+ fpprec 2)) ;assumes a>0 n>=2
1743 (bk (fpexpt (intofp 2) (1+ (quotient (cadr (setq a (cdr (bigfloatp a)))) n)))))
1744 (do ((x bk (fpdifference x
1745 (setq bk (fpquotient (fpdifference
1746 x (fpquotient a (fpexpt x n1))) n))))
1747 (n1 (1- n))
1748 (n (intofp n)))
1749 ((or (equal bk '(0 0))
1750 (> (- (cadr x) (cadr bk)) ofprec))
1751 (setq a x))))
1752 (list (fpround (car a)) (+ -2 *m (cadr a))))))
1754 (defun timesbigfloat (h)
1755 (prog (fans r nfans)
1756 (setq fans (bcons (fpone)) nfans 1)
1757 (do ((l h (cdr l)))
1758 ((null l))
1759 (if (setq r (bigfloatp (car l)))
1760 (setq fans (bcons (fptimes* (cdr r) (cdr fans))))
1761 (setq nfans (list '(mtimes) (car l) nfans))))
1762 (return (if (equal nfans 1)
1763 fans
1764 (simplify (list '(mtimes) fans nfans))))))
1766 (defun invertbigfloat (a)
1767 ;; If A is a bigfloat, be sure to round it to the current precision.
1768 ;; (See Bug 2543079 for one of the symptoms.)
1769 (let ((b (bigfloatp a)))
1770 (if b
1771 (bcons (fpquotient (fpone) (cdr b)))
1772 (simplify (list '(mexpt) a -1)))))
1774 (defun *fpexp (a)
1775 (fpend (let ((fpprec (+ 8. fpprec)))
1776 (if ($bfloatp a)
1777 (fpexp (cdr (bigfloatp a)))
1778 (list '(mexpt) '$%e a)))))
1780 (defun *fpsin (a fl)
1781 (fpend (let ((fpprec (+ 8. fpprec)))
1782 (cond (($bfloatp a) (fpsin (cdr ($bfloat a)) fl))
1783 (fl (list '(%sin) a))
1784 (t (list '(%cos) a))))))
1786 (defun fpend (a)
1787 (cond ((equal (car a) 0) (bcons a))
1788 ((numberp (car a))
1789 (setq a (list (fpround (car a)) (+ -8. *m (cadr a))))
1790 (bcons a))
1791 (t a)))
1793 (defun fparcsimp (e) ; needed for e.g. ASIN(.123567812345678B0) with
1794 ;; FPPREC 16, to get rid of the miniscule imaginary
1795 ;; part of the a+bi answer.
1796 (if (and (mplusp e) (null (cdddr e))
1797 (mtimesp (caddr e)) (null (cdddr (caddr e)))
1798 ($bfloatp (cadr (caddr e)))
1799 (eq (caddr (caddr e)) '$%i)
1800 (< (caddr (cadr (caddr e))) (+ (- fpprec) 2)))
1801 (cadr e)
1804 (defun sinbigfloat (x)
1805 (*fpsin (car x) t))
1807 (defun cosbigfloat (x)
1808 (*fpsin (car x) nil))
1810 ;; THIS VERSION OF FPSIN COMPUTES SIN OR COS TO PRECISION FPPREC,
1811 ;; BUT CHECKS FOR THE POSSIBILITY OF CATASTROPHIC CANCELLATION DURING
1812 ;; ARGUMENT REDUCTION (E.G. SIN(N*%PI+EPSILON))
1813 ;; *FPSINCHECK* WILL CAUSE PRINTOUT OF ADDITIONAL INFO WHEN
1814 ;; EXTRA PRECISION IS NEEDED FOR SIN/COS CALCULATION. KNOWN
1815 ;; BAD FEATURES: IT IS NOT NECESSARY TO USE EXTRA PRECISION FOR, E.G.
1816 ;; SIN(PI/2), WHICH IS NOT NEAR ZERO, BUT EXTRA
1817 ;; PRECISION IS USED SINCE IT IS NEEDED FOR COS(PI/2).
1818 ;; PRECISION SEEMS TO BE 100% SATSIFACTORY FOR LARGE ARGUMENTS, E.G.
1819 ;; SIN(31415926.0B0), BUT LESS SO FOR SIN(3.1415926B0). EXPLANATION
1820 ;; NOT KNOWN. (9/12/75 RJF)
1822 (defvar *fpsincheck* nil)
1824 ;; FL is a T for sin and NIL for cos.
1825 (defun fpsin (x fl)
1826 (prog (piby2 r sign res k *cancelled)
1827 (setq sign (cond (fl (signp g (car x)))
1828 (t))
1829 x (fpabs x))
1830 (when (equal (car x) 0)
1831 (return (if fl (intofp 0) (intofp 1))))
1832 (return
1833 (cdr
1834 (bigfloatp
1835 (let ((fpprec (max fpprec (+ fpprec (cadr x))))
1836 (xt (bcons x))
1837 (*cancelled 0)
1838 (oldprec fpprec))
1839 (prog (x)
1840 loop (setq x (cdr (bigfloatp xt)))
1841 (setq piby2 (fpquotient (fppi) (intofp 2)))
1842 (setq r (fpintpart (fpquotient x piby2) :skip-exponent-check-p t))
1843 (setq x (fpplus x (fptimes* (intofp (- r)) piby2)))
1844 (setq k *cancelled)
1845 (fpplus x (fpminus piby2))
1846 (setq *cancelled (max k *cancelled))
1847 (when *fpsincheck*
1848 (print `(*canc= ,*cancelled fpprec= ,fpprec oldprec= ,oldprec)))
1849 (cond ((not (> oldprec (- fpprec *cancelled)))
1850 (setq r (rem r 4))
1851 (setq res
1852 (cond (fl (cond ((= r 0) (fpsin1 x))
1853 ((= r 1) (fpcos1 x))
1854 ((= r 2) (fpminus (fpsin1 x)))
1855 ((= r 3) (fpminus (fpcos1 x)))))
1856 (t (cond ((= r 0) (fpcos1 x))
1857 ((= r 1) (fpminus (fpsin1 x)))
1858 ((= r 2) (fpminus (fpcos1 x)))
1859 ((= r 3) (fpsin1 x))))))
1860 (return (bcons (if sign res (fpminus res)))))
1862 (incf fpprec *cancelled)
1863 (go loop))))))))))
1865 (defun fpcos1 (x)
1866 (fpsincos1 x nil))
1868 ;; Compute SIN or COS in (0,PI/2). FL is T for SIN, NIL for COS.
1870 ;; Use Taylor series
1871 (defun fpsincos1 (x fl)
1872 (prog (ans term oans x2)
1873 (setq ans (if fl x (intofp 1))
1874 x2 (fpminus(fptimes* x x)))
1875 (setq term ans)
1876 (do ((n (if fl 3 2) (+ n 2)))
1877 ((equal ans oans))
1878 (setq term (fptimes* term (fpquotient x2 (intofp (* n (1- n))))))
1879 (setq oans ans
1880 ans (fpplus ans term)))
1881 (return ans)))
1883 (defun fpsin1(x)
1884 (fpsincos1 x t))
1886 (defun fpabs (x)
1887 (if (signp ge (car x))
1889 (cons (- (car x)) (cdr x))))
1891 (defun fpentier (f)
1892 (let ((fpprec (bigfloat-prec f)))
1893 (fpintpart (cdr f))))
1895 ;; Calculate the integer part of a floating point number that is represented as
1896 ;; a list
1898 ;; (MANTISSA EXPONENT)
1900 ;; The special variable fpprec should be bound to the precision (in bits) of the
1901 ;; number. This encodes how many bits are known of the result and also a right
1902 ;; shift. The pair denotes the number MANTISSA * 2^(EXPONENT - FPPREC), of which
1903 ;; FPPREC bits are known.
1905 ;; If EXPONENT is large and positive then we might not have enough
1906 ;; information to calculate the integer part. Specifically, we only
1907 ;; have enough information if EXPONENT < FPPREC. If that isn't the
1908 ;; case, we signal a Maxima error. However, if SKIP-EXPONENT-CHECK-P
1909 ;; is non-NIL, this check is skipped, and we compute the integer part
1910 ;; as requested.
1912 ;; For the bigfloat code here, skip-exponent-check-p should be true.
1913 ;; For other uses (see commit 576c7508 and bug #2784), this should be
1914 ;; nil, which is the default.
1915 (defun fpintpart (f &key skip-exponent-check-p)
1916 (destructuring-bind (mantissa exponent)
1918 (let ((m (- fpprec exponent)))
1919 (if (plusp m)
1920 (quotient mantissa (expt 2 (- fpprec exponent)))
1921 (if (and (not skip-exponent-check-p) (< exponent fpprec))
1922 (merror "~M doesn't have enough precision to compute its integer part"
1923 `((bigfloat ,fpprec) ,mantissa ,exponent))
1924 (* mantissa (expt 2 (- m))))))))
1926 (defun logbigfloat (a)
1927 (cond (($bfloatp (car a))
1928 (big-float-log ($bfloat (car a))))
1930 (list '(%log) (car a)))))
1933 ;;; Computes the log of a bigfloat number.
1935 ;;; Uses the series
1937 ;;; log(1+x) = sum((x/(x+2))^(2*n+1)/(2*n+1),n,0,inf);
1940 ;;; INF x 2 n + 1
1941 ;;; ==== (-----)
1942 ;;; \ x + 2
1943 ;;; = 2 > --------------
1944 ;;; / 2 n + 1
1945 ;;; ====
1946 ;;; n = 0
1949 ;;; which converges for x > 0.
1951 ;;; Note that FPLOG is given 1+X, not X.
1953 ;;; However, to aid convergence of the series, we scale 1+x until 1/e
1954 ;;; < 1+x <= e.
1956 (defun fplog (x)
1957 (prog (over two ans oldans term e sum)
1958 (unless (> (car x) 0)
1959 (merror (intl:gettext "fplog: argument must be positive; found: ~M") (car x)))
1960 (setq e (fpe)
1961 over (fpquotient (fpone) e)
1962 ans 0)
1963 ;; Scale X until 1/e < X <= E. ANS keeps track of how
1964 ;; many factors of E were used. Set X to NIL if X is E.
1965 (do ()
1966 (nil)
1967 (cond ((equal x e) (setq x nil) (return nil))
1968 ((and (fplessp x e) (fplessp over x))
1969 (return nil))
1970 ((fplessp x over)
1971 (setq x (fptimes* x e))
1972 (decf ans))
1974 (incf ans)
1975 (setq x (fpquotient x e)))))
1976 (when (null x) (return (intofp (1+ ans))))
1977 ;; Prepare X for the series. The series is for 1 + x, so
1978 ;; get x from our X. TERM is (x/(x+2)). X becomes
1979 ;; (x/(x+2))^2.
1980 (setq x (fpdifference x (fpone))
1981 ans (intofp ans))
1982 (setq x (fpexpt (setq term (fpquotient x (fpplus x (setq two (intofp 2))))) 2))
1983 ;; Sum the series until the sum (in ANS) doesn't change
1984 ;; anymore.
1985 (setq sum (intofp 0))
1986 (do ((n 1 (+ n 2)))
1987 ((equal sum oldans))
1988 (setq oldans sum)
1989 (setq sum (fpplus sum (fpquotient term (intofp n))))
1990 (setq term (fptimes* term x)))
1991 (return (fpplus ans (fptimes* two sum)))))
1993 (defun mabsbigfloat (l)
1994 (prog (r)
1995 (setq r (bigfloatp (car l)))
1996 (return (if (null r)
1997 (list '(mabs) (car l))
1998 (bcons (fpabs (cdr r)))))))
2001 ;;;; Bigfloat implementations of special functions.
2002 ;;;;
2004 ;;; This is still a bit messy. Some functions here take bigfloat
2005 ;;; numbers, represented by ((bigfloat) <mant> <exp>), but others want
2006 ;;; just the FP number, represented by (<mant> <exp>). Likewise, some
2007 ;;; return a bigfloat, some return just the FP.
2009 ;;; This needs to be systemized somehow. It isn't helped by the fact
2010 ;;; that some of the routines above also do the samething.
2012 ;;; The implementation for the special functions for a complex
2013 ;;; argument are mostly taken from W. Kahan, "Branch Cuts for Complex
2014 ;;; Elementary Functions or Much Ado About Nothing's Sign Bit", in
2015 ;;; Iserles and Powell (eds.) "The State of the Art in Numerical
2016 ;;; Analysis", pp 165-211, Clarendon Press, 1987
2018 ;; Compute exp(x) - 1, but do it carefully to preserve precision when
2019 ;; |x| is small. X is a FP number, and a FP number is returned. That
2020 ;; is, no bigfloat stuff.
2021 (defun fpexpm1 (x)
2022 ;; What is the right breakpoint here? Is 1 ok? Perhaps 1/e is better?
2023 (cond ((fpgreaterp (fpabs x) (fpone))
2024 ;; exp(x) - 1
2025 (fpdifference (fpexp x) (fpone)))
2027 ;; Use Taylor series for exp(x) - 1
2028 (let ((ans x)
2029 (oans nil)
2030 (term x))
2031 (do ((n 2 (1+ n)))
2032 ((equal ans oans))
2033 (setf term (fpquotient (fptimes* x term) (intofp n)))
2034 (setf oans ans)
2035 (setf ans (fpplus ans term)))
2036 ans))))
2038 ;; log(1+x) for small x. X is FP number, and a FP number is returned.
2039 (defun fplog1p (x)
2040 ;; Use the same series as given above for fplog. For small x we use
2041 ;; the series, otherwise fplog is accurate enough.
2042 (cond ((fpgreaterp (fpabs x) (fpone))
2043 (fplog (fpplus x (fpone))))
2045 (let* ((sum (intofp 0))
2046 (term (fpquotient x (fpplus x (intofp 2))))
2047 (f (fptimes* term term))
2048 (oldans nil))
2049 (do ((n 1 (+ n 2)))
2050 ((equal sum oldans))
2051 (setq oldans sum)
2052 (setq sum (fpplus sum (fpquotient term (intofp n))))
2053 (setq term (fptimes* term f)))
2054 (fptimes* sum (intofp 2))))))
2056 ;; sinh(x) for real x. X is a bigfloat, and a bigfloat is returned.
2057 (defun fpsinh (x)
2058 ;; X must be a maxima bigfloat
2060 ;; See, for example, Hart et al., Computer Approximations, 6.2.27:
2062 ;; sinh(x) = 1/2*(D(x) + D(x)/(1+D(x)))
2064 ;; where D(x) = exp(x) - 1.
2066 ;; But for negative x, use sinh(x) = -sinh(-x) because D(x)
2067 ;; approaches -1 for large negative x.
2068 (cond ((equal 0 (cadr x))
2069 ;; Special case: x=0. Return immediately.
2070 (bigfloatp x))
2071 ((fpposp (cdr x))
2072 ;; x is positive.
2073 (let ((d (fpexpm1 (cdr (bigfloatp x)))))
2074 (bcons (fpquotient (fpplus d (fpquotient d (fpplus d (fpone))))
2075 (intofp 2)))))
2077 ;; x is negative.
2078 (bcons
2079 (fpminus (cdr (fpsinh (bcons (fpminus (cdr (bigfloatp x)))))))))))
2081 (defun big-float-sinh (x &optional y)
2082 ;; The rectform for sinh for complex args should be numerically
2083 ;; accurate, so return nil in that case.
2084 (unless y
2085 (fpsinh x)))
2087 ;; asinh(x) for real x. X is a bigfloat, and a bigfloat is returned.
2088 (defun fpasinh (x)
2089 ;; asinh(x) = sign(x) * log(|x| + sqrt(1+x*x))
2091 ;; And
2093 ;; asinh(x) = x, if 1+x*x = 1
2094 ;; = sign(x) * (log(2) + log(x)), large |x|
2095 ;; = sign(x) * log(2*|x| + 1/(|x|+sqrt(1+x*x))), if |x| > 2
2096 ;; = sign(x) * log1p(|x|+x^2/(1+sqrt(1+x*x))), otherwise.
2098 ;; But I'm lazy right now and we only implement the last 2 cases.
2099 ;; We should implement all cases.
2100 (let* ((fp-x (cdr (bigfloatp x)))
2101 (absx (fpabs fp-x))
2102 (one (fpone))
2103 (two (intofp 2))
2104 (minus (minusp (car fp-x)))
2105 result)
2106 ;; We only use two formulas here. |x| <= 2 and |x| > 2. Should
2107 ;; we add one for very big x and one for very small x, as given above.
2108 (cond ((fpgreaterp absx two)
2109 ;; |x| > 2
2111 ;; log(2*|x| + 1/(|x|+sqrt(1+x^2)))
2112 (setf result (fplog (fpplus (fptimes* absx two)
2113 (fpquotient one
2114 (fpplus absx
2115 (fproot (bcons (fpplus one
2116 (fptimes* absx absx)))
2117 2)))))))
2119 ;; |x| <= 2
2121 ;; log1p(|x|+x^2/(1+sqrt(1+x^2)))
2122 (let ((x*x (fptimes* absx absx)))
2123 (setq result (fplog1p (fpplus absx
2124 (fpquotient x*x
2125 (fpplus one
2126 (fproot (bcons (fpplus one x*x))
2127 2)))))))))
2128 (if minus
2129 (bcons (fpminus result))
2130 (bcons result))))
2132 (defun complex-asinh (x y)
2133 ;; asinh(z) = -%i * asin(%i*z)
2134 (multiple-value-bind (u v)
2135 (complex-asin (mul -1 y) x)
2136 (values v (bcons (fpminus (cdr u))))))
2138 (defun big-float-asinh (x &optional y)
2139 (if y
2140 (multiple-value-bind (u v)
2141 (complex-asinh x y)
2142 (add u (mul '$%i v)))
2143 (fpasinh x)))
2145 (defun fpasin-core (x)
2146 ;; asin(x) = atan(x/(sqrt(1-x^2))
2147 ;; = sgn(x)*[%pi/2 - atan(sqrt(1-x^2)/abs(x))]
2149 ;; Use the first for 0 <= x < 1/2 and the latter for 1/2 < x <= 1.
2151 ;; If |x| > 1, we need to do something else.
2153 ;; asin(x) = -%i*log(sqrt(1-x^2)+%i*x)
2154 ;; = -%i*log(%i*x + %i*sqrt(x^2-1))
2155 ;; = -%i*[log(|x + sqrt(x^2-1)|) + %i*%pi/2]
2156 ;; = %pi/2 - %i*log(|x+sqrt(x^2-1)|)
2158 (let ((fp-x (cdr (bigfloatp x))))
2159 (cond ((minusp (car fp-x))
2160 ;; asin(-x) = -asin(x);
2161 (mul -1 (fpasin (bcons (fpminus fp-x)))))
2162 ((fplessp fp-x (cdr bfhalf))
2163 ;; 0 <= x < 1/2
2164 ;; asin(x) = atan(x/sqrt(1-x^2))
2165 (bcons
2166 (fpatan (fpquotient fp-x
2167 (fproot (bcons
2168 (fptimes* (fpdifference (fpone) fp-x)
2169 (fpplus (fpone) fp-x)))
2170 2)))))
2171 ((fpgreaterp fp-x (fpone))
2172 ;; x > 1
2173 ;; asin(x) = %pi/2 - %i*log(|x+sqrt(x^2-1)|)
2175 ;; Should we try to do something a little fancier with the
2176 ;; argument to log and use log1p for better accuracy?
2177 (let ((arg (fpplus fp-x
2178 (fproot (bcons (fptimes* (fpdifference fp-x (fpone))
2179 (fpplus fp-x (fpone))))
2180 2))))
2181 (add (div '$%pi 2)
2182 (mul -1 '$%i (bcons (fplog arg))))))
2185 ;; 1/2 <= x <= 1
2186 ;; asin(x) = %pi/2 - atan(sqrt(1-x^2)/x)
2187 (add (div '$%pi 2)
2188 (mul -1
2189 (bcons
2190 (fpatan
2191 (fpquotient (fproot (bcons (fptimes* (fpdifference (fpone) fp-x)
2192 (fpplus (fpone) fp-x)))
2194 fp-x)))))))))
2196 ;; asin(x) for real x. X is a bigfloat, and a maxima number (real or
2197 ;; complex) is returned.
2198 (defun fpasin (x)
2199 ;; asin(x) = atan(x/(sqrt(1-x^2))
2200 ;; = sgn(x)*[%pi/2 - atan(sqrt(1-x^2)/abs(x))]
2202 ;; Use the first for 0 <= x < 1/2 and the latter for 1/2 < x <= 1.
2204 ;; If |x| > 1, we need to do something else.
2206 ;; asin(x) = -%i*log(sqrt(1-x^2)+%i*x)
2207 ;; = -%i*log(%i*x + %i*sqrt(x^2-1))
2208 ;; = -%i*[log(|x + sqrt(x^2-1)|) + %i*%pi/2]
2209 ;; = %pi/2 - %i*log(|x+sqrt(x^2-1)|)
2211 ($bfloat (fpasin-core x)))
2213 ;; Square root of a complex number (xx, yy). Both are bigfloats. FP
2214 ;; (non-bigfloat) numbers are returned.
2215 (defun complex-sqrt (xx yy)
2216 (let* ((x (cdr (bigfloatp xx)))
2217 (y (cdr (bigfloatp yy)))
2218 (rho (fpplus (fptimes* x x)
2219 (fptimes* y y))))
2220 (setf rho (fpplus (fpabs x) (fproot (bcons rho) 2)))
2221 (setf rho (fpplus rho rho))
2222 (setf rho (fpquotient (fproot (bcons rho) 2) (intofp 2)))
2224 (let ((eta rho)
2225 (nu y))
2226 (when (fpgreaterp rho (intofp 0))
2227 (setf nu (fpquotient (fpquotient nu rho) (intofp 2)))
2228 (when (fplessp x (intofp 0))
2229 (setf eta (fpabs nu))
2230 (setf nu (if (minusp (car y))
2231 (fpminus rho)
2232 rho))))
2233 (values eta nu))))
2235 ;; asin(z) for complex z = x + %i*y. X and Y are bigfloats. The real
2236 ;; and imaginary parts are returned as bigfloat numbers.
2237 (defun complex-asin (x y)
2238 (let ((x (cdr (bigfloatp x)))
2239 (y (cdr (bigfloatp y))))
2240 (multiple-value-bind (re-sqrt-1-z im-sqrt-1-z)
2241 (complex-sqrt (bcons (fpdifference (intofp 1) x))
2242 (bcons (fpminus y)))
2243 (multiple-value-bind (re-sqrt-1+z im-sqrt-1+z)
2244 (complex-sqrt (bcons (fpplus (intofp 1) x))
2245 (bcons y))
2246 ;; Realpart is atan(x/Re(sqrt(1-z)*sqrt(1+z)))
2247 ;; Imagpart is asinh(Im(conj(sqrt(1-z))*sqrt(1+z)))
2248 (values (bcons
2249 (let ((d (fpdifference (fptimes* re-sqrt-1-z
2250 re-sqrt-1+z)
2251 (fptimes* im-sqrt-1-z
2252 im-sqrt-1+z))))
2253 ;; Check for division by zero. If we would divide
2254 ;; by zero, return pi/2 or -pi/2 according to the
2255 ;; sign of X.
2256 (cond ((equal d '(0 0))
2257 (if (fplessp x '(0 0))
2258 (fpminus (fpquotient (fppi) (intofp 2)))
2259 (fpquotient (fppi) (intofp 2))))
2261 (fpatan (fpquotient x d))))))
2262 (fpasinh (bcons
2263 (fpdifference (fptimes* re-sqrt-1-z
2264 im-sqrt-1+z)
2265 (fptimes* im-sqrt-1-z
2266 re-sqrt-1+z)))))))))
2268 (defun big-float-asin (x &optional y)
2269 (if y
2270 (multiple-value-bind (u v) (complex-asin x y)
2271 (add u (mul '$%i v)))
2272 (fpasin x)))
2275 ;; tanh(x) for real x. X is a bigfloat, and a bigfloat is returned.
2276 (defun fptanh (x)
2277 ;; X is Maxima bigfloat
2278 ;; tanh(x) = D(2*x)/(2+D(2*x))
2279 (let* ((two (intofp 2))
2280 (fp (cdr (bigfloatp x)))
2281 (d (fpexpm1 (fptimes* fp two))))
2282 (bcons (fpquotient d (fpplus d two)))))
2284 ;; tanh(z), z = x + %i*y. X, Y are bigfloats, and a maxima number is
2285 ;; returned.
2286 (defun complex-tanh (x y)
2287 (let* ((tv (cdr (tanbigfloat (list y))))
2288 (beta (fpplus (fpone) (fptimes* tv tv)))
2289 (s (cdr (fpsinh x)))
2290 (s^2 (fptimes* s s))
2291 (rho (fproot (bcons (fpplus (fpone) s^2)) 2))
2292 (den (fpplus (fpone) (fptimes* beta s^2))))
2293 (values (bcons (fpquotient (fptimes* beta (fptimes* rho s)) den))
2294 (bcons (fpquotient tv den)))))
2296 (defun big-float-tanh (x &optional y)
2297 (if y
2298 (multiple-value-bind (u v) (complex-tanh x y)
2299 (add u (mul '$%i v)))
2300 (fptanh x)))
2302 ;; atanh(x) for real x, |x| <= 1. X is a bigfloat, and a bigfloat is
2303 ;; returned.
2304 (defun fpatanh (x)
2305 ;; atanh(x) = -atanh(-x)
2306 ;; = 1/2*log1p(2*x/(1-x)), x >= 0.5
2307 ;; = 1/2*log1p(2*x+2*x*x/(1-x)), x <= 0.5
2309 (let* ((fp-x (cdr (bigfloatp x))))
2310 (cond ((fplessp fp-x (intofp 0))
2311 ;; atanh(x) = -atanh(-x)
2312 (mul -1 (fpatanh (bcons (fpminus fp-x)))))
2313 ((fpgreaterp fp-x (fpone))
2314 ;; x > 1, so use complex version.
2315 (multiple-value-bind (u v)
2316 (complex-atanh x (bcons (intofp 0)))
2317 (add u (mul '$%i v))))
2318 ((fpgreaterp fp-x (cdr bfhalf))
2319 ;; atanh(x) = 1/2*log1p(2*x/(1-x))
2320 (bcons
2321 (fptimes* (cdr bfhalf)
2322 (fplog1p (fpquotient (fptimes* (intofp 2) fp-x)
2323 (fpdifference (fpone) fp-x))))))
2325 ;; atanh(x) = 1/2*log1p(2*x + 2*x*x/(1-x))
2326 (let ((2x (fptimes* (intofp 2) fp-x)))
2327 (bcons
2328 (fptimes* (cdr bfhalf)
2329 (fplog1p (fpplus 2x
2330 (fpquotient (fptimes* 2x fp-x)
2331 (fpdifference (fpone) fp-x)))))))))))
2333 ;; Stuff which follows is derived from atanh z = (log(1 + z) - log(1 - z))/2
2334 ;; which apparently originates with Kahan's "Much ado" paper.
2336 ;; The formulas for eta and nu below can be easily derived from
2337 ;; rectform(atanh(x+%i*y)) =
2339 ;; 1/4*log(((1+x)^2+y^2)/((1-x)^2+y^2)) + %i/2*(arg(1+x+%i*y)-arg(1-x+%i*(-y)))
2341 ;; Expand the argument of log out and divide it out and we get
2343 ;; log(((1+x)^2+y^2)/((1-x)^2+y^2)) = log(1+4*x/((1-x)^2+y^2))
2345 ;; When y = 0, Im atanh z = 1/2 (arg(1 + x) - arg(1 - x))
2346 ;; = if x < -1 then %pi/2 else if x > 1 then -%pi/2 else 0
2348 ;; Otherwise, arg(1 - x + %i*(-y)) = - arg(1 - x + %i*y),
2349 ;; and Im atanh z = 1/2 (arg(1 + x + %i*y) + arg(1 - x + %i*y)).
2350 ;; Since arg(x)+arg(y) = arg(x*y) (almost), we can simplify the
2351 ;; imaginary part to
2353 ;; arg((1+x+%i*y)*(1-x+%i*y)) = arg((1-x)*(1+x)-y^2+2*y*%i)
2354 ;; = atan2(2*y,((1-x)*(1+x)-y^2))
2356 ;; These are the eta and nu forms below.
2357 (defun complex-atanh (x y)
2358 (let* ((fpx (cdr (bigfloatp x)))
2359 (fpy (cdr (bigfloatp y)))
2360 (beta (if (minusp (car fpx))
2361 (fpminus (fpone))
2362 (fpone)))
2363 (x-lt-minus-1 (mevalp `((mlessp) ,x -1)))
2364 (x-gt-plus-1 (mevalp `((mgreaterp) ,x 1)))
2365 (y-equals-0 (like y '((bigfloat) 0 0)))
2366 (x (fptimes* beta fpx))
2367 (y (fptimes* beta (fpminus fpy)))
2368 ;; Kahan has rho = 4/most-positive-float. What should we do
2369 ;; here about that? Our big floats don't really have a
2370 ;; most-positive float value.
2371 (rho (intofp 0))
2372 (t1 (fpplus (fpabs y) rho))
2373 (t1^2 (fptimes* t1 t1))
2374 (1-x (fpdifference (fpone) x))
2375 ;; eta = log(1+4*x/((1-x)^2+y^2))/4
2376 (eta (fpquotient
2377 (fplog1p (fpquotient (fptimes* (intofp 4) x)
2378 (fpplus (fptimes* 1-x 1-x)
2379 t1^2)))
2380 (intofp 4)))
2381 ;; If y = 0, then Im atanh z = %pi/2 or -%pi/2 or 0 depending
2382 ;; on whether x > 1, x < -1 or |x| <=1, respectively.
2384 ;; Otherwise nu = 1/2*atan2(2*y,(1-x)*(1+x)-y^2)
2385 (nu (if y-equals-0
2386 ;; Extra fpminus here to counteract fpminus in return
2387 ;; value because we don't support signed zeroes.
2388 (fpminus (if x-lt-minus-1
2389 (cdr ($bfloat '((mquotient) $%pi 2)))
2390 (if x-gt-plus-1
2391 (cdr ($bfloat '((mminus) ((mquotient) $%pi 2))))
2392 '(0 0))))
2393 (fptimes* (cdr bfhalf)
2394 (fpatan2 (fptimes* (intofp 2) y)
2395 (fpdifference (fptimes* 1-x (fpplus (fpone) x))
2396 t1^2))))))
2397 (values (bcons (fptimes* beta eta))
2398 ;; Minus sign here because Kahan's algorithm assumed
2399 ;; signed zeroes, which we don't have in maxima.
2400 (bcons (fpminus (fptimes* beta nu))))))
2402 (defun big-float-atanh (x &optional y)
2403 (if y
2404 (multiple-value-bind (u v) (complex-atanh x y)
2405 (add u (mul '$%i v)))
2406 (fpatanh x)))
2408 ;; acos(x) for real x. X is a bigfloat, and a maxima number is returned.
2409 (defun fpacos (x)
2410 ;; acos(x) = %pi/2 - asin(x)
2411 ($bfloat (add (div '$%pi 2) (mul -1 (fpasin-core x)))))
2413 (defun complex-acos (x y)
2414 (let ((x (cdr (bigfloatp x)))
2415 (y (cdr (bigfloatp y))))
2416 (multiple-value-bind (re-sqrt-1-z im-sqrt-1-z)
2417 (complex-sqrt (bcons (fpdifference (intofp 1) x))
2418 (bcons (fpminus y)))
2419 (multiple-value-bind (re-sqrt-1+z im-sqrt-1+z)
2420 (complex-sqrt (bcons (fpplus (intofp 1) x))
2421 (bcons y))
2422 (values (bcons
2423 (fptimes* (intofp 2)
2424 (fpatan (fpquotient re-sqrt-1-z re-sqrt-1+z))))
2425 (fpasinh (bcons
2426 (fpdifference
2427 (fptimes* re-sqrt-1+z im-sqrt-1-z)
2428 (fptimes* im-sqrt-1+z re-sqrt-1-z)))))))))
2431 (defun big-float-acos (x &optional y)
2432 (if y
2433 (multiple-value-bind (u v) (complex-acos x y)
2434 (add u (mul '$%i v)))
2435 (fpacos x)))
2437 (defun complex-log (x y)
2438 (let* ((x (cdr (bigfloatp x)))
2439 (y (cdr (bigfloatp y)))
2440 (t1 (let (($float2bf t))
2441 ;; No warning message, please.
2442 (floattofp 1.2)))
2443 (t2 (intofp 3))
2444 (rho (fpplus (fptimes* x x)
2445 (fptimes* y y)))
2446 (abs-x (fpabs x))
2447 (abs-y (fpabs y))
2448 (beta (fpmax abs-x abs-y))
2449 (theta (fpmin abs-x abs-y)))
2450 (values (if (or (fpgreaterp t1 beta)
2451 (fplessp rho t2))
2452 (fpquotient (fplog1p (fpplus (fptimes* (fpdifference beta (fpone))
2453 (fpplus beta (fpone)))
2454 (fptimes* theta theta)))
2455 (intofp 2))
2456 (fpquotient (fplog rho) (intofp 2)))
2457 (fpatan2 y x))))
2459 (defun big-float-log (x &optional y)
2460 (if y
2461 (multiple-value-bind (u v) (complex-log x y)
2462 (add (bcons u) (mul '$%i (bcons v))))
2463 (flet ((%log (x)
2464 ;; x is (mantissa exp), where mantissa = frac*2^fpprec,
2465 ;; with 1/2 < frac <= 1 and x is frac*2^exp. To
2466 ;; compute log(x), use log(x) = log(frac)+ exp*log(2).
2467 (cdr
2468 (let* ((extra 8)
2469 (fpprec (+ fpprec extra))
2470 (log-frac
2471 (fplog #+nil
2472 (cdr ($bfloat
2473 (cl-rat-to-maxima (/ (car x)
2474 (ash 1 (- fpprec 8))))))
2475 (list (ash (car x) extra) 0)))
2476 (log-exp (fptimes* (intofp (second x)) (fplog2)))
2477 (result (bcons (fpplus log-frac log-exp))))
2478 (let ((fpprec (- fpprec extra)))
2479 (bigfloatp result))))))
2480 (let ((fp-x (cdr (bigfloatp x))))
2481 (cond ((onep1 x)
2482 ;; Special case for log(1). See:
2483 ;; https://sourceforge.net/p/maxima/bugs/2240/
2484 (bcons (intofp 0)))
2485 ((fplessp fp-x (intofp 0))
2486 ;; ??? Do we want to return an exact %i*%pi or a float
2487 ;; approximation?
2488 (add (big-float-log (bcons (fpminus fp-x)))
2489 (mul '$%i (bcons (fppi)))))
2491 (bcons (%log fp-x))))))))
2493 (defun big-float-sqrt (x &optional y)
2494 (if y
2495 (multiple-value-bind (u v) (complex-sqrt x y)
2496 (add (bcons u) (mul '$%i (bcons v))))
2497 (let ((fp-x (cdr (bigfloatp x))))
2498 (if (fplessp fp-x (intofp 0))
2499 (mul '$%i (bcons (fproot (bcons (fpminus fp-x)) 2)))
2500 (bcons (fproot x 2))))))
2502 (eval-when
2503 (:load-toplevel :execute)
2504 (fpprec1 nil $fpprec)) ; Set up user's precision