1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 ;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
13 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
15 ;;; Miscellaneous Out-of-core Files ;;;
17 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
19 (macsyma-module outmis
)
22 (declare-top (special $exptisolate
))
24 (defmvar $exptisolate nil
26 :properties
((evflag t
)))
27 (defmvar $isolate_wrt_times nil
29 :properties
((evflag t
)))
31 (defmfun $isolate
(e *xvar
)
32 (iso1 e
(getopr *xvar
)))
35 (cond ((specrepp e
) (iso1 (specdisrep e
) *xvar
))
36 ((and (free e
'mplus
) (or (null $isolate_wrt_times
) (free e
'mtimes
))) e
)
37 ((freeof *xvar e
) (mgen2 e
))
38 ((alike1 *xvar e
) *xvar
)
39 ((member (caar e
) '(mplus mtimes
) :test
#'eq
) (iso2 e
*xvar
))
41 (cond ((null (atom (cadr e
))) (list (car e
) (iso1 (cadr e
) *xvar
) (caddr e
)))
42 ((or (alike1 (cadr e
) *xvar
) (not $exptisolate
)) e
)
43 (t (let ((x ($rat
(caddr e
) *xvar
)) (u 0) (h 0))
44 (setq u
(ratdisrep ($ratnumer x
)) x
(ratdisrep ($ratdenom x
)))
46 (setq u
($multthru
(list '(mexpt) x -
1) u
)))
48 (setq u
($partition u
*xvar
) h
(cadr u
) u
(caddr u
)))
49 (setq u
(power* (cadr e
) (iso1 u
*xvar
)))
50 (cond ((not (equal h
0))
51 (mul2* (mgen2 (power* (cadr e
) h
)) u
))
53 (t (cons (car e
) (mapcar #'(lambda (e1) (iso1 e1
*xvar
)) (cdr e
))))))
56 (prog (hasit doesnt op
)
57 (setq op
(ncons (caar e
)))
58 (do ((i (cdr e
) (cdr i
))) ((null i
))
59 (cond ((freeof *xvar
(car i
)) (setq doesnt
(cons (car i
) doesnt
)))
60 (t (setq hasit
(cons (iso1 (car i
) *xvar
) hasit
)))))
61 (cond ((null doesnt
) (go ret
))
62 ((and (null (cdr doesnt
)) (atom (car doesnt
))) (go ret
))
63 ((prog2 (setq doesnt
(simplify (cons op doesnt
)))
64 (and (free doesnt
'mplus
)
65 (or (null $isolate_wrt_times
)
66 (free doesnt
'mtimes
)))))
67 (t (setq doesnt
(mgen2 doesnt
))))
68 (setq doesnt
(ncons doesnt
))
69 ret
(return (simplifya (cons op
(nconc hasit doesnt
)) nil
))))
72 (cond ((memsimilarl h
(cdr $labels
) (getlabcharn $linechar
)))
73 (t (setq h
(displine h
)) (and $dispflag
(mterpri)) h
)))
75 (defun memsimilarl (item list linechar
)
76 (cond ((null list
) nil
)
77 ((and (char= (getlabcharn (car list
)) linechar
)
79 (memsimilar item
(car list
) (symbol-value (car list
)))))
80 (t (memsimilarl item
(cdr list
) linechar
))))
82 (defun memsimilar (item1 item2 item2ev
)
83 (cond ((equal item2ev
0) nil
)
84 ((alike1 item1 item2ev
) item2
)
85 (t (let ((errorsw t
) r
)
86 (setq r
(catch 'errorsw
(div item2ev item1
)))
87 (and (mnump r
) (not (zerop1 r
)) (div item2 r
))))))
89 (defmfun $pickapart
(x lev
)
91 (cond ((not (fixnump lev
))
92 (merror (intl:gettext
"pickapart: second argument must be an integer; found: ~M") lev
))
93 ((or (atom x
) (and (eq (caar x
) 'mminus
) (atom (cadr x
)))) x
)
95 ((and (atom (cdr x
)) (cdr x
)) x
)
96 (t (cons (car x
) (mapcar #'(lambda (y) ($pickapart y
(1- lev
))) (cdr x
))))))
98 (defmfun $reveal
(e lev
)
100 (if (and (fixnump lev
) (plusp lev
))
102 (merror (intl:gettext
"reveal: second argument must be a positive integer; found: ~M") lev
)))
105 (or (atom x
) (member (caar x
) '(rat bigfloat
) :test
#'eq
)))
107 (defun reveal (e nn lev
)
110 (cond ((eq (caar e
) 'mplus
) (cons '(|$Sum| simp
) (ncons (length (cdr e
)))))
111 ((eq (caar e
) 'mtimes
) (cons '(|$Product| simp
) (ncons (length (cdr e
)))))
112 ((eq (caar e
) 'mexpt
) '|$Expt|
)
113 ((eq (caar e
) 'mquotient
) '|$Quotient|
)
114 ((eq (caar e
) 'mminus
) '|$Negterm|
)
115 ((eq (caar e
) 'mlist
)
116 (cons '(|$List| simp
) (ncons (length (cdr e
)))))
117 (t (getop (mop e
)))))
118 (t (let ((u (cond ((member 'simp
(cdar e
) :test
#'eq
) (car e
))
119 (t (cons (caar e
) (cons 'simp
(cdar e
))))))
120 (v (mapcar #'(lambda (x) (reveal (format1 x
) (1+ nn
) lev
))
122 (cond ((eq (caar e
) 'mqapply
) (cons u
(cons (cadr e
) v
)))
123 ((eq (caar e
) 'mplus
) (cons u
(nreverse v
)))
126 (defmspec $properties
(x)
127 (setq x
(getopr (fexprcheck x
)))
128 (unless (or (symbolp x
) (stringp x
))
130 (intl:gettext
"properties: argument must be a symbol or a string.")))
131 (let ((u (properties x
)) (v (or (safe-get x
'noun
) (safe-get x
'verb
))))
132 (if v
(nconc u
(cdr (properties v
))) u
)))
134 (defun properties (x)
136 ; AT THIS POINT WE MIGHT WANT TO TRY TO TEST ALL CHARS IN STRING ...
137 (if (and (> (length x
) 0) (member (char x
0) *alphabet
*))
138 '((mlist) $alphabetic
)
140 (do ((y (symbol-plist x
) (cddr y
))
141 (l (cons '(mlist simp
) (and (boundp x
)
142 (if (optionp x
) (ncons "system value")
146 (if (member x
(cdr $features
) :test
#'eq
) (nconc l
(ncons '$feature
)))
147 (if (member x
(cdr $contexts
) :test
#'eq
) (nconc l
(ncons '$context
)))
148 (if (member x
(cdr $activecontexts
) :test
#'eq
)
149 (nconc l
(ncons '$activecontext
)))
150 (cond ((null (symbol-plist x
))
151 (if (fboundp x
) (nconc l
(list "system function")))))
154 ;; TOP-LEVEL PROPERTIES
157 `((bindtest . $bindtest
)
159 (sp2subs . $deftaylor
)
160 (assign .
"assign property")
161 (nonarray . $nonarray
)
163 (integral . $integral
)
164 (distribute_over .
"distributes over bags")
165 (simplim%function .
"limit function")
166 (conjugate-function .
"conjugate function")
167 (commutes-with-conjugate .
"mirror symmetry")
168 (risplit-function .
"complex characteristic")
172 (op . $operator
)) :test
#'eq
))
173 (nconc l
(ncons (cdr prop
))))
174 ((setq prop
(member (car y
) opers
:test
#'eq
))
175 (nconc l
(list (car prop
))))
176 ((and (eq (car y
) 'operators
) (not (or (eq (cadr y
) 'simpargs1
) (eq (cadr y
) nil
))))
177 (nconc l
(list '$rule
)))
178 ((and (member (car y
) '(fexpr fsubr mfexpr
*s mfexpr
*) :test
#'eq
)
179 (nconc l
(ncons "special evaluation form"))
181 ((and (or (get (car y
) 'mfexpr
*) (fboundp x
))
182 ;; Do not add more than one entry to the list.
183 (not (member '$transfun l
))
184 (not (member '$rule l
))
185 (not (member "system function" l
:test
#'equal
)))
187 (list (cond ((get x
'translated
) '$transfun
)
188 ((mgetl x
'($rule ruleof
)) '$rule
)
189 (t "system function")))))
190 ((and (eq (car y
) 'autoload
)
191 (not (member "system function" l
:test
#'equal
)))
192 (nconc l
(ncons (if (member x
(cdr $props
) :test
#'eq
)
193 "user autoload function"
194 "system function"))))
195 ((and (eq (car y
) 'reversealias
)
196 (member (car y
) (cdr $aliases
) :test
#'eq
))
197 (nconc l
(ncons '$alias
)))
199 (nconc l
(cons "database info" (cdr ($facts x
)))))
200 ((eq (car y
) 'mprops
)
206 (cond ((setq prop
(assoc (car y
)
207 `((mexpr . $function
)
209 (hashar .
"hashed array")
210 (aexpr .
"array function")
211 (atvalues . $atvalue
)
212 ($atomgrad . $atomgrad
)
214 (depends . $dependency
)
215 ($nonscalar . $nonscalar
)
217 (matchdeclare . $matchdeclare
)
218 (mode . $modedeclare
)) :test
#'eq
))
219 (nconc l
(list (cdr prop
))))
222 (list (cond ((get x
'array
) "complete array")
223 (t "declared array")))))
224 ((and (eq (car y
) '$props
) (cdadr y
))
226 (do ((y (cdadr y
) (cddr y
))
227 (l (list '(mlist) "user properties")))
229 (nconc l
(list (car y
)))))))))))))
231 (defmspec $propvars
(x)
232 (setq x
(fexprcheck x
))
233 (do ((iteml (cdr $props
) (cdr iteml
)) (propvars (ncons '(mlist))))
234 ((null iteml
) propvars
)
235 (and (among x
(meval (list '($properties
) (car iteml
))))
236 (nconc propvars
(ncons (car iteml
))))))
238 (defmspec $printprops
(r) (setq r
(cdr r
))
239 (if (null (cdr r
)) (merror (intl:gettext
"printprops: requires two arguments.")))
242 (setq r
(cond ((atom r
)
244 (cond ((eq s
'$gradef
) (mapcar 'caar
(cdr $gradefs
)))
245 (t (cdr (meval (list '($propvars
) s
))))))
248 (cond ((eq s
'$atvalue
) (dispatvalues r
))
249 ((eq s
'$atomgrad
) (dispatomgrads r
))
250 ((eq s
'$gradef
) (dispgradefs r
))
251 ((eq s
'$matchdeclare
) (dispmatchdeclares r
))
252 (t (merror (intl:gettext
"printprops: unknown property ~:M") s
)))))
254 (defun dispatvalues (l)
257 (do ((ll (mget (car l
) 'atvalues
) (cdr ll
)))
262 (atdecode (car l
) (caar ll
) (cadar ll
)) (caddar ll
))))))
265 (defun atdecode (fun dl vl
)
266 (setq vl
(copy-list vl
))
268 (let ((eqs nil
) (nvarl nil
))
269 (cond ((not (member nil
(mapcar #'(lambda (x) (signp e x
)) dl
) :test
#'eq
))
270 (do ((vl vl
(cdr vl
)) (varl atvars
(cdr varl
)))
272 (and (eq (car vl
) munbound
) (rplaca vl
(car varl
))))
273 (cons (list fun
) vl
))
274 (t (setq fun
(cons (list fun
)
275 (do ((n (length vl
) (1- n
))
276 (varl atvars
(cdr varl
))
277 (l nil
(cons (car varl
) l
)))
278 ((zerop n
) (nreverse l
)))))
279 (do ((vl vl
(cdr vl
)) (varl atvars
(cdr varl
)))
281 (and (not (eq (car vl
) munbound
))
282 (setq eqs
(cons (list '(mequal) (car varl
) (car vl
)) eqs
))))
283 (setq eqs
(cons '(mlist) (nreverse eqs
)))
284 (do ((varl atvars
(cdr varl
)) (dl dl
(cdr dl
)))
285 ((null dl
) (setq nvarl
(nreverse nvarl
)))
286 (and (not (zerop (car dl
)))
287 (setq nvarl
(cons (car dl
) (cons (car varl
) nvarl
)))))
288 (list '(%at
) (cons '(%derivative
) (cons fun nvarl
)) eqs
)))))
290 (defun dispatomgrads (l)
293 (do ((j (mget (car i
) '$atomgrad
) (cdr j
)))
298 (list '(%derivative
) (car i
) (caar j
) 1) (cdar j
))))))
301 (defun dispgradefs (l)
304 (setq l
(get (car i
) 'grad
))
305 (do ((j (car l
) (cdr j
))
307 (thing (cons (ncons (car i
)) (car l
))))
308 ((or (null k
) (null j
)))
311 nil
(list '(mequal) (list '(%derivative
) thing
(car j
) 1.
) (car k
))))))
314 (defun dispmatchdeclares (l)
317 ((null i
) (cons '(mlist) (reverse ret
)))
318 (setq l
(car (mget (car i
) 'matchdeclare
)))
319 (setq ret
(cons (append (cond ((atom l
) (ncons (ncons l
))) ((eq (caar l
) 'lambda
) (list '(mqapply) l
)) (t l
))
323 (declare-top (special *roots
*failures
))
325 (defmfun $changevar
(expr trans nvar ovar
)
327 (cond ((or (atom expr
) (eq (caar expr
) 'rat
) (eq (caar expr
) 'mrat
))
330 (merror (intl:gettext
"changevar: second argument must not be an atom; found: ~M") trans
))
332 (merror (intl:gettext
"changevar: third argument must be an atom; found: ~M") nvar
))
334 (merror (intl:gettext
"changevar: fourth argument must be an atom; found: ~M") ovar
)))
335 (changevar expr trans nvar ovar
)))
337 (defun solvable (l var
&optional
(errswitch nil
))
338 (let (*roots
*failures
)
341 ;; We arbitrarily pick the first root. Should we be more careful?
343 (errswitch (merror (intl:gettext
"changevar: failed to solve for ~M in ~M") var l
))
346 (defun changevar (expr trans nvar ovar
)
347 (cond ((atom expr
) expr
)
348 ((or (not (member (caar expr
) '(%integrate %sum %product
) :test
#'eq
))
349 (not (alike1 (caddr expr
) ovar
)))
350 (recur-apply (lambda (e) (changevar e trans nvar ovar
)) expr
))
352 ;; TRANS is the expression that relates old var and new var
353 ;; and is of the form f(ovar, nvar) = 0. Using TRANS, try to
354 ;; solve for ovar so that ovar = tfun(nvar), if possible.
355 (let* ((tfun (solvable (setq trans
(meqhk trans
)) ovar
))
357 ;; Compute diff(tfun, nvar) = dovar/dnvar if tfun is
358 ;; available. Otherwise, use implicit
362 (neg (div (sdiff trans nvar
) ;IMPLICIT DIFF.
363 (sdiff trans ovar
)))))
364 (sum-product-p (member (caar expr
) '(%sum %product
) :test
#'eq
)))
368 (mformat t
"tfun = ~M~%" tfun
)
369 (mformat t
"deriv = ~M~%" deriv
))
371 ;; For sums and products, we want deriv to be +/-1 because
372 ;; I think that means that integers will map into integers
373 ;; (roughly), so that we don't need to express the
374 ;; summation index or limits in some special way to account
376 (when (and (member (caar expr
) '(%sum %product
) :test
#'eq
)
377 (not (or (equal deriv
1)
379 (merror (intl:gettext
"changevar: illegal change in summation or product")))
381 (let ((nfun ($radcan
;NIL IF KERNSUBST FAILS
383 (mul (maxima-substitute tfun ovar
(cadr expr
))
384 ;; Don't multiply by deriv
385 ;; for sums/products because
386 ;; reversing the order of
387 ;; limits doesn't change the
388 ;; sign of the result.
389 (if sum-product-p
1 deriv
))
390 (kernsubst ($ratsimp
(mul (cadr expr
)
395 ;; nfun is basically the result of subtituting ovar
396 ;; with tfun in the integratand (summand).
399 ;; Handle definite integral, summation, or product.
400 ;; invfun expresses nvar in terms of ovar so that
401 ;; we can compute the new lower and upper limits of
402 ;; the integral (sum).
403 (let* ((invfun (solvable trans nvar t
))
404 (lo-limit ($limit invfun ovar
(cadddr expr
) '$plus
))
405 (hi-limit ($limit invfun
409 ;; If this is a sum or product and deriv = -1, we
410 ;; want to reverse the low and high limits.
411 (when (and sum-product-p
(equal deriv -
1))
412 (rotatef lo-limit hi-limit
))
414 ;; Construct the new result.
415 (list (ncons (caar expr
))
421 ;; Indefinite integral
422 (list '(%integrate
) nfun nvar
))))
425 (defun kernsubst (expr form ovar
)
426 (let (varlist genvar nvarlist
)
428 (setq nvarlist
(mapcar #'(lambda (x) (if (freeof ovar x
) x
431 (if (member nil nvarlist
:test
#'eq
) nil
432 (prog2 (setq expr
(ratrep* expr
)
434 (rdis (cdr expr
))))))
436 (declare-top (special facfun
))
438 (defmfun $factorsum
(e)
439 (factorsum0 e
'$factor
))
441 (defmfun $gfactorsum
(e)
442 (factorsum0 e
'$gfactor
))
444 (defun factorsum0 (e facfun
)
445 (cond ((mplusp (setq e
(funcall facfun e
)))
446 (factorsum1 (cdr e
)))
449 (defun factorsum1 (e)
450 (prog (f lv llv lex cl lt c
)
451 loop
(setq f
(car e
))
452 (setq lv
(cdr ($showratvars f
)))
453 (cond ((null lv
) (setq cl
(cons f cl
)) (go skip
)))
454 (do ((q llv
(cdr q
)) (r lex
(cdr r
)))
456 (cond ((intersect (car q
) lv
)
457 (rplaca q
(union* (car q
) lv
))
458 (rplaca r
(cons f
(car r
)))
459 (return (setq lv nil
)))))
461 (setq llv
(cons lv llv
) lex
(cons (ncons f
) lex
))
462 skip
(and (setq e
(cdr e
)) (go loop
))
464 (do ((q llv
(cdr q
)) (r lex
(cdr r
)))
466 (cond ((and (null (cdar q
)) (cdar r
))
467 (rplaca r
(nconc cl
(car r
)))
468 (return (setq cl nil
)))))
469 skip2
(setq llv nil lv nil
)
470 (do ((r lex
(cdr r
)))
474 (cons (factorsum2 (funcall facfun
(cons '(mplus) (car r
))))
476 ((or (not (mtimesp (setq f
(caar r
))))
477 (not (mnump (setq c
(cadr f
)))))
478 (setq llv
(cons f llv
)))
479 (t (do ((q lt
(cdr q
)) (s lv
(cdr s
)))
481 (cond ((alike1 (car s
) c
)
482 (rplaca q
(cons (dcon f
) (car q
)))
483 (return (setq f nil
)))))
486 lt
(cons (ncons (dcon f
)) lt
))))))
488 (mapcar #'(lambda (s q
)
489 (simptimes (list '(mtimes) s
495 (return (simplus (cons '(mplus) (nconc cl lex llv
)) 1 nil
))))
498 (cond ((cdddr mt
) (cons (car mt
) (cddr mt
))) (t (caddr mt
))))
500 (defun factorsum2 (e)
501 (cond ((not (mtimesp e
)) e
)
503 (mapcar #'(lambda (f)
505 (factorsum1 (cdr f
)))
509 (declare-top (special $combineflag
))
511 (defmvar $combineflag t
)
513 (defmfun $combine
(e)
514 (cond ((or (atom e
) (eq (caar e
) 'rat
)) e
)
515 ((eq (caar e
) 'mplus
) (combine (cdr e
)))
516 (t (recur-apply #'$combine e
))))
519 (prog (term r ld sw nnu d ln xl
)
520 again
(setq term
(car e
) e
(cdr e
))
521 (when (or (not (or (ratnump term
) (mtimesp term
) (mexptp term
)))
522 (equal (setq d
($denom term
)) 1))
523 (setq r
(cons term r
))
525 (setq nnu
($num term
))
526 (and $combineflag
(integerp d
) (setq xl
(cons term xl
)) (go end
))
527 (do ((q ld
(cdr q
)) (p ln
(cdr p
)))
529 (cond ((alike1 (car q
) d
)
530 (rplaca p
(cons nnu
(car p
)))
531 (return (setq sw t
)))))
533 (setq ld
(cons d ld
) ln
(cons (ncons nnu
) ln
))
535 end
(and e
(go again
))
536 (and xl
(setq xl
(cond ((cdr xl
) ($xthru
(addn xl t
)))
540 (setq r
(cons (mul2 (addn nu nil
) (power* de -
1)) r
)))
542 (return (addn (if xl
(cons xl r
) r
) nil
))))
544 (defmfun $factorout
(e &rest vl
)
545 (prog (el fl cl l f x
)
547 (merror (intl:gettext
"factorout: at least two arguments required.")))
550 (or (null vl
) (mplusp e
) (return e
))
552 loop
(setq f
(car e
) e
(cdr e
))
554 (setq f
(list '(mtimes) 1 f
)))
556 (do ((i (cdr f
) (cdr i
)))
558 (if (and (not (numberp (car i
)))
559 (apply '$freeof
(append vl
(ncons (car i
)))))
560 (setq fl
(cons (car i
) fl
))
561 (setq cl
(cons (car i
) cl
))))
565 (setq fl
(if (cdr fl
)
566 (simptimes (cons '(mtimes) fl
) 1 nil
)
568 (setq cl
(cond ((null cl
) 1)
569 ((cdr cl
) (simptimes (cons '(mtimes) cl
) 1 t
))
574 (when (alike1 (caar i
) fl
)
575 (rplacd (car i
) (cons cl
(cdar i
)))
578 (push (list fl cl
) l
))
579 end
(when e
(go loop
))
582 (push (simptimes (list '(mtimes) (caar i
)
583 ($factorsum
(simplus (cons '(mplus) (cdar i
)) 1 nil
))) 1 nil
) el
))
584 (return (addn el nil
))))