Rename *ll* and *ul* to ll and ul in poles-in-interval
[maxima.git] / src / schatc.lisp
blobae58b30c1fc9fba43df3cfe0844f717d0cb44020
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module schatc)
15 ;;;; I think this is described in Chapter 3 of J. Moses' thesis,
16 ;;;; "Symbolic Integration", MIT-LCS-TR-047. A scanned version of the
17 ;;;; thesis is available at
18 ;;;; http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-047.pdf.
19 ;;;;
20 ;;;; Unfortunately, some important pages in the scan are all black.
21 ;;;;
22 ;;;; A version with the missing pages is available (2008-12-14) from
23 ;;;; http://www.softwarepreservation.org/projects/LISP/MIT
24 ;;;;
25 ;;;; Schatchen is Yiddish for "matchmaker" and Schatchen here is a
26 ;;;; pattern matching routine.
28 (declare-top (special *schatc-ans*))
30 (defvar *schatfactor* nil) ;DETERMINES WHETHER FACTORING SHOULD BE USED.
32 (defmacro push-context ()
33 '(push nil *schatc-ans*))
35 (defmacro push-loop-context ()
36 '(rplacd *schatc-ans* (cons '*loop (cdr *schatc-ans*))))
38 (defmacro preserve (z)
39 `(rplacd *schatc-ans* (cons (cons ,z (cdr ,z)) (cdr *schatc-ans*))))
41 (defmacro add-to (var val)
42 `(rplacd *schatc-ans* (cons (cons ,var ,val) (cdr *schatc-ans*))))
44 (defmacro var-pat (x)
45 `(atom (car ,x)))
47 ;;VARIOUS SIMPLE PATTERNS
49 (defun free1 (a)
50 (declare (special var))
51 (and (null (pzerop a)) (free a var)))
53 (defun not-zero-free (a var)
54 (declare (special var))
55 (free1 a))
57 (defun linear* (e var)
58 (declare(special var))
59 (prog (a n)
60 (setq n ($ratcoef e var))
61 (when (null (free n var))
62 (return nil))
63 (setq a (simplus (list '(mplus) e (list '(mtimes) -1 n var)) 1 nil))
64 (return (cond ((free a var) (cons a n))))))
66 (defun dvcoe (e pat args)
67 (m1 ($ratsimp (list '(mtimes) e args)) pat))
69 ;;; SCHATCHEN pattern matcher.
70 ;;;
71 ;;; Match the (maxima) expression in E with the pattern given by P.
72 ;;;
73 ;;; The pattern language is partially described in Moses thesis. We
74 ;;; summarize here some of the main ideas. (This is mostly taken from
75 ;;; his thesis.)
76 ;;;
77 ;;; A variable in the pattern is written in the form (VAR name pred
78 ;;; arg1 arg2 ... argn)
79 ;;;
80 ;;; where
81 ;;;
82 ;;; name = name of variable
83 ;;; pred = predicate associated with the variable
84 ;;; argi = arguments 2 through n+1 for pred
85 ;;;
86 ;;; The first arg of pred is assumed to the expression that the match
87 ;;; assigns to the variable.
88 ;;;
89 ;;; If the variable has a mode, it is written in prefix form. Thus
90 ;;; A*x, where A is a number and is a coefficient of plus or times
91 ;;; becomes (coeffpt (var a number) x).
92 ;;;
93 ;;; Some modes:
94 ;;;
95 ;;; coefft - coefficient of TIMES (matches A in A*x) coeffp -
96 ;;; coefficient of PLUS (matches B in x + B) coeffpt - coefficient of
97 ;;; PLUS and TIMES (like coefft and coeffp and matches things like
98 ;;; 2*x^2+sqrt(2)*x^2 so that the coefficient of x^2 is 2+sqrt(2).
99 ;;;
100 ;;; A brief description of the algorithm:
102 ;;; If E equals P, the match succeeds.
104 ;;; If P is of the form (VAR name pred arg1 ... argn), then (pred e
105 ;;; arg1 arg2 ... argn) is evaluated. If the value of the pred is
106 ;;; true, the match succeeds and ((name . e) is appended to the
107 ;;; answer. Otherwise the match fails.
109 ;;; If P is of the form (op p1 ... pn) and op is not PLUS, TIMES, or
110 ;;; EXPT, then E must be of the form (op1 e1 ... en) and each pi must
111 ;;; match i1 and op must match op1. Otherwise the match fails.
113 ;;; If the pattern is of the form (EXPT p1 p2) then
114 ;;; 1) e is (EXPT e1 e2) and p1 matches e1 and p2 matches e2 or
115 ;;; 2) e is 0 and p1 matches 0 or
116 ;;; 3) e is 1 and
117 ;;; a) p2 matches 0 or
118 ;;; b) p1 matches 1
119 ;;; 4) p2 matches 1 and p1 matches e
121 ;;; Otherwise the match fails
123 ;;; If the pattern is of the form (op p1 p2 ... pn) and op = PLUS or
124 ;;; TIMES, then if E is not of the form (op e1 ... em), E is
125 ;;; transformed to (op E). In this case an attempt is made to match
126 ;;; each pi with some ej. The scan starts with p1 matched with e1.
127 ;;; If that fails p1 is matched with e2. If pi matches some ej, ej is
128 ;;; deleted (destructively) from E and the scan continues with pi=1
129 ;;; matched with he first subexpression remaining in E. If for some
130 ;;; pi no ej can be found to match it, then pi is matched with 0 if op
131 ;;; = PLUS or 1 if op = TIMES. If that also fails, the match fails.
132 ;;; If all the pi have been matched, but some ej have not, the match
133 ;;; fails.
135 ;;; Exceptions to the above are due to modes. If op = PLUS, and pi is
136 ;;; of the form (coeffpt (var name pred arg1 ... argn) p1 ... pk),
137 ;;; then the remaining expression is traversed with the pattern
138 ;;; (coefft (var name pred arg1 ... argn) p1 ... pk). Each
139 ;;; subexpression that is thus matched is deleted from the expression.
140 ;;; The simplified sum of the result of the scan becomes the value of
141 ;;; the variable. If no subexpression could thuse be matched, then
142 ;;; (pred 0 arg1 ... argn) is attempted. If this too fails, the match
143 ;;; fails.
145 ;;; If op = PLUS and pn is of the form (coeffp (var name pred arg1
146 ;;; ... argn), then if e is currently of the form (PLUS ei ... en),
147 ;;; then (pred e arg1 ... argn) is evaluated. If the value of pred is
148 ;;; true, ((name . e)) is appended. If no subexpressions remain in e,
149 ;;; then pred 0 arg1 ... argn) is attempted. If it succeeds, ((name
150 ;;; . )) is appended. Otherwise, the match fails.
152 ;;; If op = PLUS and pi is of the form (coefft (var name pred arg1
153 ;;; ... argn) p1 ... pk) then (times p1 .... pk) is matched with e.
154 ;;; If the match succeeds and e remains of the form (times e1 ... en),
155 ;;; then (pred e arg1 ... argn) is attempted. If it fails, the match
156 ;;; fails. If no subexpressions remain in e, then (pred 1 arg1
157 ;;; ... argn) is attempted. If this succeeds, ((name . 1) is
158 ;;; appended.
160 (defun schatchen (e p)
161 (m2 e p))
163 ;;THE RESTORE FUNCTIONS RESTORE THE SPEC-VAR ANS
164 ;;AND RETURN TRUE OR FALSE AS FOLLOWS
165 ;;RESTORE - FLASE
166 ;;RESTORE1 - TRUE AND CLEARS UP ANS
167 ;;RESTORE2 - TRUE AND CLEARS OFF *LOOP INDICATORS
168 ;; DOES NOT FIX UP THE EXPRESSION AND
169 ;; IS THUS TO BE USED ONLY INTERNALLY
171 ;;TO INSURE THAT THERE IS NO CONFLICT IN SPECIAL VARIABLES,
172 ;;ESPECIALLY WITH THE VAR* (SET) MODE ALL SCHATCHEN VARIABLES
173 ;;ARE TO BE PRECEDED BY A "%"
175 (defvar *splist*)
177 (defun m2 (e p)
178 (let ((*schatc-ans* (list nil))
179 (*splist* nil))
180 (declare (special *splist*))
181 (cond ((null (m1 (copy-tree e) p)) nil)
182 ((null (cdr *schatc-ans*)))
183 ((cdr *schatc-ans*)))))
185 (defun sav&del (x)
186 (preserve x)
187 (rplacd x (cddr x)))
189 (defun m1 (e p)
190 (cond ((equal e p) t)
191 ((atom p) nil)
192 ((var-pat p)
193 (push-context)
194 (cond ((testa p e nil)
195 (restore1))
196 ((restore))))
197 ((atom (caar p))
198 (cond ((member 'simp (cdar p) :test #'eq) (alike1 e p))
199 ((member (caar p) '(mplus mtimes) :test #'eq)
200 (loopp e p))
201 ((member (caar p) '(mexpt zepow) :test #'eq) (zepow e p t))
202 ((and (not (atom e)) (eq (caar e) (caar p))) (eachp e p))
203 ((eq (caar p) 'coefft) (coefft e p t))
204 ((eq (caar p) 'coeffpt) (coeffpt e p t))
205 ((eq (caar p) 'coeffp) (coeffp e p t))
206 ((eq (caar p) 'coefftt)
207 (coefftt e (cadr p) t 'mtimes))
208 ((eq (caar p) 'coeffpp)
209 (coefftt e (cadr p) t 'mplus))))
210 ((var-pat (caar p)) ;HAIRY OPERATOR MATCHING SCHEME
211 (cond ((atom e) nil) ;NO OPERATOR TO MATCH
212 ((prog2 (push-context) ;BIND THE CONTEXT
213 (testa (caar p) (car e) nil)) ;TRY IT
214 (cond ((member (caar e) '(mplus mtimes) :test #'eq) ;CHECK FOR COMMUTIVITY
215 (cond ((loopp e (cons (car e) (cdr p)))
216 (restore1))
217 ((restore))))
218 ((eachp e p)
219 (restore1))
220 ((restore))))
221 ((restore))))))
223 (defun loopp (e p)
224 (prog (x z)
225 (setq e (cond ((atom e) (list (car p) e))
226 ((null (eq (caar p) (caar e)))
227 (cond ((and *schatfactor*
228 (eq (caar e) 'mplus)
229 (mtimesp (setq x ($factor e))))
231 ((list (car p) e))))
232 (e)))
233 (push-context)
234 (setq z p)
235 loop (setq z (cdr z))
236 (cond ((null z)
237 (return (cond ((null (cdr e)) (restore1))
238 ((restore))))))
239 (setq x e)
240 l5 (cond ((null (cdr x))
241 (let ((ident (opident (caar p))))
242 (cond ((and ident (m1 ident (car z)))
243 (go loop))
244 ((return (restore))))))
245 ((or (atom (car z)) (var-pat (car z)))
246 (when (m1 (cadr x) (car z))
247 (sav&del x)
248 (go loop)))
249 ((eq (caaar z) 'coefft)
250 (cond ((coefft e (car z) nil)
251 (go loop))
252 ((return (restore)))))
253 ((eq (caaar z) 'coeffp)
254 (cond ((coeffp e (car z) nil)
255 (go loop))
256 ((return (restore)))))
257 ((eq (caaar z) 'coeffpt)
258 (cond ((coeffpt e (car z) nil) (go loop))
259 ((return (restore)))))
260 ((eq (caaar z) 'coefftt)
261 (cond ((coefftt e (cadar z) nil 'mtimes) (go loop))
262 ((return (restore)))))
263 ((eq (caaar z) 'coeffpp)
264 (cond ((coefftt e (cadar z) nil 'mplus) (go loop))
265 ((return (restore)))))
266 ((member (caaar z) '(mexpt zepow) :test #'eq)
267 (when (zepow (cadr x) (car z) t)
268 (sav&del x)
269 (go loop)))
270 ((eq (caaar z) 'loop)
271 (cond ((sch-loop e (cdar z)) (go loop))
272 ((return (restore)))))
273 ((m1 (cadr x) (car z))
274 (sav&del x)
275 (go loop)))
276 (setq x (cdr x))
277 (go l5)))
279 ;;; IND = T MEANS AN INTERNAL CALL (USUALLY FROM LOOPP)
281 (defun coeffp (e p ind)
282 (push-context)
283 (cond ((or (and (null (mplusp e)) ;;;WITH IND SET, OR E = (PLUS <EXPR>)
284 (setq e (list '(mplus) e)))
285 ind (null (cddr e)))
286 (coeffport e p 0 ind)) ;;; USE COEFFPORT
287 ((and (null (cddr p)) ;;; P = ((COEFFP) (<VAR> <PRED> . . .))
288 (var-pat (cadr p))) ;;; SO CALL TESTA
289 (cond ((testa (cadr p) e nil)
290 (cond ((mplusp e)
291 (preserve e)
292 (rplacd e nil)
294 ((merror "COEFFP: incorrect arguments; E=~M, P=~M, IND=~M" e p ind))))))
295 ((do ((x e (cdr x)))
296 ((null (cdr x))
297 (cond ((m1 0 p) (restore2))
298 ((restore))))
299 (cond ((coeffp (cadr x) p t)
300 (sav&del x)
301 (return (restore2))))))))
303 (defun coefft (e p ind)
304 (push-context)
305 (cond ((and (null ind) (null (atom e)) (member (caar e) '(mplus mtimes) :test #'eq))
306 (do ((x e (cdr x)))
307 ((null (cdr x))
308 (cond ((m1 1 p) (restore2))
309 ((restore))))
310 (cond ((coefft (cadr x) p t)
311 (sav&del x)
312 (return (restore2))))))
313 ((and (mplusp e) (cddr e))
314 (cond ((and *schatfactor* (mtimesp (setq e ($factor e))))
315 (coeffport e p 1 ind))
316 ((restore))))
317 (t (coeffport (if (mtimesp e) e (list '(mtimes) e)) p 1 ind))))
319 (defun coeffport (e p ident ind)
320 (do ((z (cddr p) (cdr z))
321 (x e e))
322 ((null z)
323 (coeffret e (cadr p) ident ind))
324 l ;;; EACH TIME HERE WE HAVE CDR'D DOWN THE EXP.
325 (cond ((null (cdr x))
326 (and (null (m1 ident (car z)))
327 (return (restore))))
328 ((or (atom (car z))
329 (var-pat (car z))))
330 ((eq (caaar z) 'coefftt)
331 (and (null (coefftt e (cadar z) nil 'mtimes))
332 (return (coeffret e p ident ind))))
333 ((eq (caaar z) 'coeffpp)
334 (and (null (coefftt e (cadar z) nil 'mplus))
335 (return (coeffret e p ident ind)))))
336 (cond ((null (cdr x)))
337 ((m1 (cadr x) (car z))
338 (sav&del x))
339 (t (setq x (cdr x))
340 (go l)))))
342 (defun coeffret (e p ident ind)
343 (cond ((null (cdr e))
344 (cond ((testa p ident nil)
345 (cond (ind (restore1))
346 ((restore2))))
347 ((restore))))
348 ((testa p (cond ((cddr e) (copy-list e ))
349 ((cadr e)))
350 nil)
351 (cond (ind (restore1))
352 (t (preserve e)
353 (rplacd e nil)
354 (restore2))))
355 ((restore))))
357 (defun coeffpt (e p ind) ;THE PATTERN LIST (P) MUST BE OF VAR-PATTERNS
358 (push-context)
359 (do ((z (cond ((mplusp e) e) ((list '(mplus) e))))
360 (zz (cons '(coefft) (cdr p)))) ;THIS ROUTINE IS THE ONE WHICH PUTS
361 ;MOST OF THE THE GARBAGE ON ANS IT
362 ((null (cdr z)) ;IT CANNOT USE THE *SPLIST* HACK
363 (setq z (findit (cond ((eq (caadr p) 'var*) ;BECAUSE IT COULD BE USING
364 (car (cddadr p))) ;MANY DIFFERENT VARIABLES ALTHOUGH
365 ((caadr p))))) ;THOUGHT THE FIRST IS THE ONLY ONE
366 (let ((q (cond ((null z) 0)
367 ((null (cdr z)) (car z))
368 ((simplus (cons '(mplus) z) 1 nil))))
369 (fl (if (and z (cdr z)) 'coeffpt))) ;WHICH BECOMES A SUM AND MIGHT BE RESET
370 (cond ((null (testa (cadr p) q fl))
371 (restore))
372 (ind (restore1))
373 (t (restore2) q))))
374 (cond ((null (m1 (cadr z) zz)) ;THIS IS THE DO BODY
375 (setq z (cdr z)))
376 ((sav&del z)))))
378 (defun zepow (e p fl) ;FL=NIL INDICATES A RECURSIVE CALL
379 (and fl (push-context)) ;SO ANS SHOULD NOT BE MARKED
380 (cond ((atom e)
381 (cond ((equal e 1)
382 (cond ((not (or (m1 0 (caddr p)) (m1 1 (cadr p))))
383 (restore))
384 ((restore1))))
385 ((equal e 0)
386 (cond ((null (m1 0 (cadr p))) (restore))
387 ((restore1))))
388 ((and (m1 e (cadr p)) (m1 1 (caddr p)))
389 (restore1))
390 ((restore))))
391 ((and *schatfactor*
392 (mplusp e)
393 (setq e ($factor e))
394 nil))
395 ((and (eq (caar e) 'mtimes)
396 (mexptp (cadr e)))
397 (do ((e (cddr e) (cdr e))
398 (b (cadadr e))
399 (x (caddr (cadr e)))
400 (z))
401 ((null e) ;OK NOW LETS TRY AGAIN
402 (zepow (list '(mexpt) (simplifya b t)
403 (simplifya x t)) p nil))
404 (cond ((mexptp (car e))
405 (cond ((alike1 (cadar e) b)
406 (setq x (simplus (list '(mplus) x (caddar e)) 1 nil)))
407 ((alike1 (caddar e) x)
408 (setq b (simptimes (list '(mtimes) b (cadar e)) 1 nil)))
409 ((signp e (caddr (setq z ($divide x (caddar e)))))
410 (setq b (simptimes (list '(mtimes) b
411 (list '(mexpt) (cadar e)
412 (list '(mtimes) (caddar e) (cadr z)))) 1 nil)))
413 ((return (restore)))))
414 ((alike1 b (car e))
415 (setq x (simplus (list '(mplus) 1 x) 1 t)))
416 ((return (restore))))))
417 ((or (and (eq (caar e) 'mexpt)
418 (m1 (cadr e) (cadr p))
419 (m1 (caddr e) (caddr p)))
420 (and (m1 e (cadr p))
421 (m1 1 (caddr p))))
422 (restore1))
423 ((restore))))
425 (defun eachp (e p)
426 (cond ((= (length e) (length p))
427 (push-context)
428 (do ((e (cdr e) (cdr e)))
429 ((null e) (restore1))
430 (unless (m1 (car e) (cadr p)) (return (restore)))
431 (setq p (cdr p))))))
433 (defun sch-loop (e lp)
434 (push-context) (push-loop-context)
435 (do ((x lp) (z e) (y)) ;Y A PSEUDO SAVE
436 (nil)
437 (cond ((null (m1 (cadr z) (car x))) ;DIDN'T MATCH
438 (setq z (cdr z)) ;NEXT ARG FOR LOOP
439 (cond ((cdr z))
440 ((eq x lp) (return (restore)))
442 (setq x (caar y)
443 z (cdar y))
444 (setq y (cdr y)
445 *schatc-ans* (cdr *schatc-ans*))
446 (pop-loop-context))))
448 (push (cons x z) y)
449 (sav&del z)
450 (setq x (cdr x))
451 (cond ((null x) (return (restore2)))
452 (t (push-loop-context)
453 (setq z e)))))))
455 (defun coefftt (exp pat ind opind) ;OPIND IS MPLUS OR MTIMES
456 (push-context)
457 (when (or (atom exp) (and ind (not (eq (caar exp) opind))))
458 (setq exp (list (list opind) exp)))
459 (push (car pat) *splist*) ;SAVE VAR NAME HERE
460 (do ((z exp) (res))
461 ((null (cdr z))
462 (setq *splist* (cdr *splist*)) ;KILL NAME SAVED
463 (cond (res (setq res (cond ((cdr res) (cons (list opind) res))
464 ((car res))))
465 (cond ((and (eq (car pat) 'var*)
466 (member 'set (cadr pat) :test #'eq))
467 (add-to (caddr pat) (setf (symbol-value (caddr pat)) (simplifya res nil))))
468 ((add-to (car pat) (simplifya res nil))))
469 (cond (ind (restore1))
470 ((restore2))))
471 ((null (testa pat (opident opind) nil))
472 (restore))
473 (ind (restore1))
474 ((restore2))))
475 (cond ((testa pat (cadr z) nil)
476 (push (cadr z) res)
477 (sav&del z))
478 (t (setq z (cdr z))))))
480 (defun restore nil
481 (do ((y (cdr *schatc-ans*) (cdr y)))
482 ((null y) nil)
483 (cond ((eq (car y) '*loop)
484 (rplaca y (cadr y))
485 (rplacd y (cddr y)))
486 ((null (car y))
487 (setq *schatc-ans* y)
488 (return nil))
489 ((null (atom (caar y)))
490 (rplacd (caar y) (cdar y))))))
492 (defun restore1 nil
493 (do ((y *schatc-ans*) (l)) ;L IS A LIST OF VAR'S NOTED
494 ((null (cdr y)) t)
495 (cond ((null (cadr y)) ;END OF CONTEXT
496 (rplacd y (cddr y)) ;SPLICE OUT THE CONTEXT MARKER
497 (return t))
498 ((not (atom (caadr y))) ;FIXUP NECESSARY
499 (rplacd (caadr y) (cdadr y))
500 (rplacd y (cddr y)))
501 ((member (car y) l :test #'eq) ;THIS VAR HAS ALREADY BEEN SEEN
502 (rplacd y (cddr y))) ;SO SPLICE IT OUT TO KEEP ANS CLEAN
503 ((setq y (cdr y)
504 l (cons (caar y) l))))))
506 (defun restore2 nil
507 (do ((y (cdr *schatc-ans*) (cdr y)))
508 ((null (cdr y)) t)
509 (cond ((eq (cadr y) '*loop)
510 (rplacd y (cddr y)))
511 ((null (cadr y))
512 (rplacd y (cddr y))
513 (return t)))))
515 (defun pop-loop-context nil
516 (do ((y *schatc-ans*))
517 ((eq (cadr y) '*loop) nil)
518 (or (atom (caadr y))
519 (rplacd (caadr y) (cdadr y)))
520 (rplacd y (cddr y))))
522 ;;WHEN THE CAR OF ALA IS VAR* THE CADR IS A LIST OF
523 ;;THE VARIOUS SWITCHES WHICH MAY BE SET.
524 ;;UVAR- INDICATES THIS SHOULD MATCH SOMETHING WHICH IS ALREADY ON ANS.
525 ;;SET - ACTUALLY SET THIS VARIABLE TO ITS VALUE IF IT MATCHES.
526 ;;COEFFPT - SPECIAL ARGUMENT IF IN COEFFPT.
528 (defun testa (ala exp b)
529 (cond ((eq (car ala) 'mvar*)
530 (testa* ala exp t))
531 ((eq (car ala) 'var*)
532 (do ((z (cadr ala) (cdr z))
533 (ala (cddr ala))
534 (y) (set) (uvar))
535 ((null z)
536 (setq y (cond (uvar (m1 exp y))
537 ((testa* ala exp nil))))
538 (cond ((null y) nil)
539 (set (setf (symbol-value (car ala)) exp))
540 (y)))
541 (cond ((eq (car z) 'set) (setq set t))
542 ((eq (car z) 'uvar)
543 (cond ((setq y (cdr (assoc (car ala) *schatc-ans* :test #'equal)))
544 (setq uvar t))))
545 ((eq (car z) 'coeffpt)
546 (and (eq b 'coeffpt)
547 (setq ala (cadr z)))
548 (setq z (cdr z)))
549 ((merror "TESTA: invalid switch ~M in pattern." (car z))))))
550 ((testa* ala exp nil))))
552 ;; ALA IS THE PREDICATE LIST (VAR PREDFN ARG2 ARG3 ARG4 . . .)
554 (defun testa* (ala exp loc)
555 (declare (special var))
556 (cond ((cond ((eq (cadr ala) 'freevar)
557 (cond ((eq var '*novar) (equal exp 1))
558 ((free exp var))))
559 ((eq (cadr ala) 'numberp) (mnump exp))
560 ((eq (cadr ala) 'true) t)
561 ((eq (cadr ala) 'linear*)
562 (setq exp (linear* exp (caddr ala))))
563 ((null loc)
564 (cond ((atom (cadr ala))
565 (cond ((fboundp (cadr ala))
566 (apply (cadr ala)
567 (findthem exp (cddr ala))))
568 ((mget (cadr ala) 'mexpr)
569 (mapply (cadr ala)
570 (findthem exp (cddr ala))
571 (cadr ala)))))
572 ((member (caadr ala) '(lambda function *function quote) :test #'eq)
573 ;;;THE LAMBDA IS HERE ONLY BECAUSE OF SIN!!!
574 (apply (cadr ala) (findthem exp (cddr ala))))
575 ((eval-pred (cadr ala) (car ala) exp)))))
576 (cond ((member (car ala) *splist* :test #'eq))
577 ((add-to (car ala) exp))))
578 ((cond ((and loc (atom (cadr ala))
579 (fboundp (cadr ala)))
580 (mapc #'(lambda (q v) (and (null (member q *splist* :test #'eq))
581 (add-to q v)))
582 (car ala)
583 (apply (cadr ala) (findthem exp (cddr ala)))))))))
585 (defun eval-pred (exp %var value)
586 (progv (list %var) (list value)
587 (eval exp)))
589 (defun findthem (exp args)
590 (cons exp
591 (mapcar #'(lambda (q)
592 (cond ((atom q)
593 (or (cdr (assoc q *schatc-ans* :test #'eq))
594 ;; Evaluate a symbol which has a value.
595 (and (symbolp q) (boundp q) (symbol-value q))
596 ;; Otherwise return the symbol.
598 (q)))
599 args)))
601 (defun findit (a)
602 (do ((y *schatc-ans*) (z))
603 ((or (null (cdr y)) (null (cadr y))) z)
604 (cond ((eq (caadr y) a)
605 (setq z (nconc z (list (cdadr y))))
606 (rplacd y (cddr y)))
607 ((setq y (cdr y))))))
609 (defun sch-replace (dict exp1)
610 (declare (special dict))
611 (replac exp1))
613 (defun replac (exp1)
614 (declare (special dict))
615 (let ((w1 nil))
616 (cond ((null exp1) nil)
617 ((not (atom exp1))
618 (cond ((eq (car exp1) 'eval)
619 (simplifya (eval (replac (cadr exp1))) nil))
620 ((eq (car exp1) 'quote) (cadr exp1))
621 (t (setq w1 (mapcar #'replac (cdr exp1)))
622 (cond ((equal w1 (cdr exp1))
623 exp1)
624 ((simplifya (cons (list (caar exp1)) w1) t))))))
625 ((numberp exp1) exp1)
626 ((setq w1 (assoc exp1 dict :test #'eq))
627 (cdr w1))
628 (exp1))))
630 ;; Execute BODY with the variables in VARS bound using ALIST. If any variable is
631 ;; missing, it is set to NIL.
633 ;; Example usage:
634 ;; (alist-bind (a b c) some-alist (+ a b c))
635 (defmacro alist-bind (vars alist &body body)
636 (let ((alist-sym (gensym)))
637 `(let* ((,alist-sym ,alist)
638 ,@(loop
639 for var in vars
640 collecting `(,var (cdr (assoc ',var ,alist-sym :test #'eq)))))
641 (declare (ignorable ,alist-sym))
642 ,@body)))
644 ;; Factor out the common logic to write a COND statement that uses the Schatchen
645 ;; pattern matcher.
647 ;; Each clause in CLAUSES should match (TEST VARIABLES &body BODY). This will be
648 ;; transformed into a COND clause that first runs TEST and binds the result to
649 ;; W. TEST is assumed to boil down to a call to M2, which returns an alist of
650 ;; results for the matched variables. VARIABLES should be a list of symbols and
651 ;; the clause only matches if each of these symbols is bound in the alist.
653 ;; As a special rule, if the CAR of TEST is of the form (AND F1 F2 .. FN) then
654 ;; the result of evaluating F1 is bound to W and then the clause only matches if
655 ;; F2 .. FN all evaluate to true as well as the test described above.
657 ;; If the clause matches then the result of the cond is that of evaluating BODY
658 ;; (in an implicit PROGN) with each variable bound to the corresponding element
659 ;; of the alist.
661 ;; To add an unconditional form at the bottom, use a clause of the form
663 ;; (T NIL F1 .. FN).
665 ;; This will always match and doesn't try to bind any extra variables.
667 (defmacro schatchen-cond (w &body clauses)
668 `(let ((,w))
669 (cond
670 ,@(loop
671 for clause in clauses
672 collecting
673 (let ((test (car clause))
674 (variables (cadr clause))
675 (body (cddr clause)))
676 ;; A clause matches in the cond if TEST returns non-nil and
677 ;; binds all the expected variables in the alist. As a special
678 ;; syntax, if the car of TEST is 'AND, then we bind W to the
679 ;; result of the first argument and then check the following
680 ;; arguments in an environment where W is bound (but the
681 ;; variables aren't).
682 (let ((cond-test
683 (if (and (not (atom test)) (eq 'and (car test)))
684 `(progn
685 (setf ,w ,(cadr test))
686 (and ,w ,@(loop for var in variables
687 collecting `(cdras ',var ,w))
688 ,@(cddr test)))
689 `(progn
690 (setf ,w ,test)
691 (and ,w ,@(loop for var in variables
692 collecting `(cdras ',var ,w))))))
693 ;; If the clause matched, we explicitly bind all of those
694 ;; variables in a let form and then evaluate the
695 ;; associated body.
696 (cond-body `(alist-bind ,variables ,w ,@body)))
697 `(,cond-test ,cond-body)))))))
699 ;;(declare-top (unspecial var ans))