1 Start Maxima with the command "maxima". Maxima will display version
2 information and a prompt. End each Maxima command with a semicolon.
3 End the session with the command "@code{quit();}". Here's a sample session:
7 Maxima 5.45.1 https://maxima.sourceforge.io
8 using Lisp SBCL 2.0.1.debian
9 Distributed under the GNU Public License. See the file COPYING.
10 Dedicated to the memory of William Schelter.
11 The function bug_report() provides bug reporting information.
15 (%i2) expand ((x + y)^6);
17 (%o2) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
18 (%i3) factor (x^6 - 1);
20 (%o3) (x - 1) (x + 1) (x - x + 1) (x + x + 1)
25 Maxima can search the info pages. Use the @mref{describe} command to show
26 information about the command or all the commands and variables containing
28 The question mark @mref{?} (exact search) and double question mark @mref{??}@w{}
29 (inexact search) are abbreviations for @code{describe}:
33 0: Functions and Variables for Elliptic Integrals
34 1: Functions and Variables for Integration
35 2: Introduction to Elliptic Functions and Integrals
36 3: Introduction to Integration
37 4: askinteger (Functions and Variables for Simplification)
38 5: integerp (Functions and Variables for Miscellaneous Options)
39 6: integer_partitions (Functions and Variables for Sets)
40 7: integrate (Functions and Variables for Integration)
41 8: integrate_use_rootsof (Functions and Variables for Integration)
42 9: integration_constant_counter (Functions and Variables for
44 10: nonnegintegerp (Functions and Variables for linearalgebra)
45 Enter space-separated numbers, `all' or `none': 5 4
47 -- Function: integerp (<expr>)
48 Returns `true' if <expr> is a literal numeric integer, otherwise
51 `integerp' returns false if its argument is a symbol, even if the
52 argument is declared integer.
70 (%i8) declare (n, integer);
75 -- Function: askinteger (<expr>, integer)
76 -- Function: askinteger (<expr>)
77 -- Function: askinteger (<expr>, even)
78 -- Function: askinteger (<expr>, odd)
79 `askinteger (<expr>, integer)' attempts to determine from the
80 `assume' database whether <expr> is an integer. `askinteger'
81 prompts the user if it cannot tell otherwise, and attempt to
82 install the information in the database if possible. `askinteger
83 (<expr>)' is equivalent to `askinteger (<expr>, integer)'.
85 `askinteger (<expr>, even)' and `askinteger (<expr>, odd)'
86 likewise attempt to determine if <expr> is an even integer or odd
87 integer, respectively.
92 To use a result in later calculations, you can assign it to a variable or
93 refer to it by its automatically supplied label. In addition, @mref{%}@w{}
94 refers to the most recent calculated result:
97 (%i1) u: expand ((x + y)^6);
99 (%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
102 (%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
108 Maxima knows about complex numbers and numerical constants:
117 Maxima can do differential and integral calculus:
120 (%i1) u: expand ((x + y)^6);
122 (%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
125 (%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
126 (%i3) integrate (1/(1 + x^3), x);
129 log(x - x + 1) sqrt(3) log(x + 1)
130 (%o3) - --------------- + ------------- + ----------
134 Maxima can solve linear systems and cubic equations:
137 (%i1) linsolve ([3*x + 4*y = 7, 2*x + a*y = 13], [x, y]);
139 (%o1) [x = --------, y = -------]
141 (%i2) solve (x^3 - 3*x^2 + 5*x = 15, x);
142 (%o2) [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]
145 Maxima can solve nonlinear sets of equations. Note that if you don't
146 want a result printed, you can finish your command with @kbd{$} instead
150 (%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
151 (%i2) eq_2: 3*x + y = 1$
152 (%i3) solve ([eq_1, eq_2]);
153 3 sqrt(5) + 7 sqrt(5) + 3
154 (%o3) [[y = - -------------, x = -----------],
157 3 sqrt(5) - 7 sqrt(5) - 3
158 [y = -------------, x = - -----------]]
162 Maxima can generate plots of one or more functions:
165 (%i1) plot2d (sin(x)/x, [x, -20, 20])$
168 @image{figures/introduction1, 10cm}
171 (%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5], [y, -1.5, 2])$
174 @image{figures/introduction2, 10cm}
178 (%i3) plot3d (sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2),
179 [x, -12, 12], [y, -12, 12])$
183 @image{figures/introduction3, 12cm}
186 @c FOLLOWING TEXT DESCRIBES THE TCL/TK PLOT WINDOW WHICH IS NO LONGER THE DEFAULT
187 @c Moving the cursor to the top left corner of the plot window will pop up
188 @c a menu that will, among other things, let you generate a PostScript file
189 @c of the plot. (By default, the file is placed in your home directory.)
190 @c You can rotate a 3D plot.
192 @opencatbox{Categories:}