Add note that the lapack package needs to loaded to get the functions.
[maxima.git] / doc / info / Polynomials.texi
blob35c3ce166db3fc012dcb729e8c20d1c42fedf574
1 @c FOR THE FUNCTIONS WHICH RETURN A CRE, BE SURE TO MENTION THAT
2 @menu
3 * Introduction to Polynomials::  
4 * Functions and Variables for Polynomials::  
5 * Introduction to algebraic extensions::
6 * Functions and Variables for algebraic extensions::
8 @end menu
10 @c -----------------------------------------------------------------------------
11 @node Introduction to Polynomials, Functions and Variables for Polynomials, , Polynomials
12 @section Introduction to Polynomials
13 @c -----------------------------------------------------------------------------
15 Polynomials are stored in Maxima either in General Form or as Canonical
16 Rational Expressions (CRE) form. The latter is a standard form, and is
17 used internally by operations such as @mref{factor}, @mref{ratsimp}, and
18 so on.
20 Canonical Rational Expressions constitute a kind of representation
21 which is especially suitable for expanded polynomials and rational
22 functions (as well as for partially factored polynomials and rational
23 functions when @mref{ratfac} is set to @code{true}). In this CRE form an
24 ordering of variables (from most to least main) is assumed for each
25 expression.
27 Polynomials are represented recursively by a list consisting of the main
28 variable followed by a series of pairs of expressions, one for each term
29 of the polynomial. The first member of each pair is the exponent of the
30 main variable in that term and the second member is the coefficient of
31 that term which could be a number or a polynomial in another variable
32 again represented in this form. Thus the principal part of the CRE form
33 of @code{3*x^2-1} is @code{(X 2 3 0 -1)} and that of @code{2*x*y+x-3}
34 is @code{(Y 1 (X 1 2) 0 (X 1 1 0 -3))} assuming @code{y} is the main
35 variable, and is @code{(X 1 (Y 1 2 0 1) 0 -3)} assuming @code{x} is the
36 main variable. "Main"-ness is usually determined by reverse alphabetical
37 order.
39 The "variables" of a CRE expression needn't be atomic. In fact any
40 subexpression whose main operator is not @code{+}, @code{-}, @code{*},
41 @code{/} or @code{^} with integer power will be considered a "variable"
42 of the expression (in CRE form) in which it occurs. For example the CRE
43 variables of the expression @code{x+sin(x+1)+2*sqrt(x)+1} are @code{x},
44 @code{sqrt(X)}, and @code{sin(x+1)}. If the user does not specify an
45 ordering of variables by using the @mref{ratvars} function Maxima will
46 choose an alphabetic one.
48 In general, CRE's represent rational expressions, that is, ratios of
49 polynomials, where the numerator and denominator have no common factors,
50 and the denominator is positive. The internal form is essentially a pair
51 of polynomials (the numerator and denominator) preceded by the variable
52 ordering list. If an expression to be displayed is in CRE form or if it
53 contains any subexpressions in CRE form, the symbol @code{/R/} will follow the
54 line label.
56 @c TODO: An example of some code that yields the /R/ form.
58 See the @mref{rat} function for converting an expression to CRE form.
60 An extended CRE form is used for the representation of Taylor
61 series. The notion of a rational expression is extended so that the
62 exponents of the variables can be positive or negative rational numbers
63 rather than just positive integers and the coefficients can themselves
64 be rational expressions as described above rather than just polynomials.
65 These are represented internally by a recursive polynomial form which is
66 similar to and is a generalization of CRE form, but carries additional
67 information such as the degree of truncation. As with CRE form, the
68 symbol @code{/T/} follows the line label of such expressions.
70 @c TODO: An example of some code that yields the /T/ form.
72 @opencatbox{Categories:}
73 @category{Polynomials}
74 @category{Rational expressions}
75 @closecatbox
77 @c end concepts Polynomials
79 @c -----------------------------------------------------------------------------
80 @node Functions and Variables for Polynomials,  Introduction to algebraic extensions, Introduction to Polynomials, Polynomials
81 @section Functions and Variables for Polynomials
82 @c -----------------------------------------------------------------------------
84 @c -----------------------------------------------------------------------------
85 @anchor{algebraic}
86 @defvr {Option variable} algebraic
87 Default value: @code{false}
89 @code{algebraic} must be set to @code{true} in order for the simplification of
90 algebraic integers to take effect.
92 @opencatbox{Categories:}
93 @category{Simplification flags and variables}
94 @closecatbox
95 @end defvr
97 @anchor{berlefact}
98 @c -----------------------------------------------------------------------------
99 @defvr {Option variable} berlefact
100 Default value: @code{true}
102 When @code{berlefact} is @code{false} then the Kronecker factoring
103 algorithm will be used otherwise the Berlekamp algorithm, which is the
104 default, will be used.
106 @opencatbox{Categories:}
107 @category{Polynomials}
108 @closecatbox
109 @end defvr
111 @c WHAT IS THIS ABOUT EXACTLY ??
113 @c -----------------------------------------------------------------------------
114 @anchor{bezout}
115 @deffn {Function} bezout (@var{p1}, @var{p2}, @var{x})
117 an alternative to the @mref{resultant} command.  It
118 returns a matrix.  @code{determinant} of this matrix is the desired resultant.
120 Examples:
122 @c ===beg===
123 @c bezout(a*x+b, c*x^2+d, x);
124 @c determinant(%);
125 @c resultant(a*x+b, c*x^2+d, x);
126 @c ===end===
127 @example
128 (%i1) bezout(a*x+b, c*x^2+d, x);
129                          [ b c  - a d ]
130 (%o1)                    [            ]
131                          [  a     b   ]
132 (%i2) determinant(%);
133                             2      2
134 (%o2)                      a  d + b  c
135 (%i3) resultant(a*x+b, c*x^2+d, x);
136                             2      2
137 (%o3)                      a  d + b  c
138 @end example
139 @opencatbox{Categories:}
140 @category{Polynomials}
141 @closecatbox
142 @end deffn
144 @c REWORD THIS ITEM -- COULD BE MORE CONCISE
146 @c -----------------------------------------------------------------------------
147 @anchor{bothcoef}
148 @deffn {Function} bothcoef (@var{expr}, @var{x})
150 Returns a list whose first member is the coefficient of @var{x} in @var{expr}
151 (as found by @code{ratcoef} if @var{expr} is in CRE form
152 otherwise by @code{coeff}) and whose second member is the remaining part of
153 @var{expr}.  That is, @code{[A, B]} where @code{@var{expr} = A*@var{x} + B}.
155 Example:
157 @c ===beg===
158 @c islinear (expr, x) := block ([c],
159 @c         c: bothcoef (rat (expr, x), x),
160 @c         is (freeof (x, c) and c[1] # 0))$
161 @c islinear ((r^2 - (x - r)^2)/x, x);
162 @c ===end===
163 @example
164 (%i1) islinear (expr, x) := block ([c],
165         c: bothcoef (rat (expr, x), x),
166         is (freeof (x, c) and c[1] # 0))$
167 (%i2) islinear ((r^2 - (x - r)^2)/x, x);
168 (%o2)                         true
169 @end example
171 @opencatbox{Categories:}
172 @category{Polynomials}
173 @closecatbox
174 @end deffn
176 @c -----------------------------------------------------------------------------
177 @deffn  {Function} coeff @
178 @fname{coeff} (@var{expr}, @var{x}, @var{n}) @
179 @fname{coeff} (@var{expr}, @var{x})
181 Returns the coefficient of @code{@var{x}^@var{n}} in @var{expr},
182 where @var{expr} is a polynomial or a monomial term in @var{x}.
183 Other than @mref{ratcoef} @code{coeff} is a strictly syntactical
184 operation and will only find literal instances of
185 @code{@var{x}^@var{n}} in the internal representation of @var{expr}.
187 @code{coeff(@var{expr}, @var{x}^@var{n})} is equivalent
188 to @code{coeff(@var{expr}, @var{x}, @var{n})}.
189 @code{coeff(@var{expr}, @var{x}, 0)} returns the remainder of @var{expr}
190 which is free of @var{x}.
191 If omitted, @var{n} is assumed to be 1.
193 @var{x} may be a simple variable or a subscripted variable,
194 or a subexpression of @var{expr} which
195 comprises an operator and all of its arguments.
197 It may be possible to compute coefficients of expressions which are equivalent
198 to @var{expr} by applying @code{expand} or @code{factor}.  @code{coeff} itself
199 does not apply @code{expand} or @code{factor} or any other function.
201 @code{coeff} distributes over lists, matrices, and equations.
203 See also @mrefdot{ratcoef}
205 Examples:
207 @code{coeff} returns the coefficient @code{@var{x}^@var{n}} in @var{expr}.
209 @c ===beg===
210 @c coeff (b^3*a^3 + b^2*a^2 + b*a + 1, a^3);
211 @c ===end===
212 @example
213 @group
214 (%i1) coeff (b^3*a^3 + b^2*a^2 + b*a + 1, a^3);
215                                 3
216 (%o1)                          b
217 @end group
218 @end example
220 @code{coeff(@var{expr}, @var{x}^@var{n})} is equivalent
221 to @code{coeff(@var{expr}, @var{x}, @var{n})}.
223 @c ===beg===
224 @c coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z, 3);
225 @c coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z^3);
226 @c ===end===
227 @example
228 @group
229 (%i1) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z, 3);
230 (%o1)                         - c
231                                  3
232 @end group
233 @group
234 (%i2) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z^3);
235 (%o2)                         - c
236                                  3
237 @end group
238 @end example
240 @code{coeff(@var{expr}, @var{x}, 0)} returns the remainder of @var{expr}
241 which is free of @var{x}.
243 @c ===beg===
244 @c coeff (a*u + b^2*u^2 + c^3*u^3, b, 0);
245 @c ===end===
246 @example
247 @group
248 (%i1) coeff (a*u + b^2*u^2 + c^3*u^3, b, 0);
249                             3  3
250 (%o1)                      c  u  + a u
251 @end group
252 @end example
254 @var{x} may be a simple variable or a subscripted variable,
255 or a subexpression of @var{expr} which
256 comprises an operator and all of its arguments.
258 @c ===beg===
259 @c coeff (h^4 - 2*%pi*h^2 + 1, h, 2);
260 @c coeff (v[1]^4 - 2*%pi*v[1]^2 + 1, v[1], 2);
261 @c coeff (sin(1+x)*sin(x) + sin(1+x)^3*sin(x)^3, sin(1+x)^3);
262 @c coeff ((d - a)^2*(b + c)^3 + (a + b)^4*(c - d), a + b, 4);
263 @c ===end===
264 @example
265 @group
266 (%i1) coeff (h^4 - 2*%pi*h^2 + 1, h, 2);
267 (%o1)                        - 2 %pi
268 @end group
269 @group
270 (%i2) coeff (v[1]^4 - 2*%pi*v[1]^2 + 1, v[1], 2);
271 (%o2)                        - 2 %pi
272 @end group
273 @group
274 (%i3) coeff (sin(1+x)*sin(x) + sin(1+x)^3*sin(x)^3, sin(1+x)^3);
275                                 3
276 (%o3)                        sin (x)
277 @end group
278 @group
279 (%i4) coeff ((d - a)^2*(b + c)^3 + (a + b)^4*(c - d), a + b, 4);
280 (%o4)                         c - d
281 @end group
282 @end example
284 @code{coeff} itself does not apply @code{expand} or @code{factor} or any other
285 function.
287 @c ===beg===
288 @c coeff (c*(a + b)^3, a);
289 @c expand (c*(a + b)^3);
290 @c coeff (%, a);
291 @c coeff (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c, (a + b)^3);
292 @c factor (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c);
293 @c coeff (%, (a + b)^3);
294 @c ===end===
295 @example
296 @group
297 (%i1) coeff (c*(a + b)^3, a);
298 (%o1)                           0
299 @end group
300 @group
301 (%i2) expand (c*(a + b)^3);
302                  3          2        2        3
303 (%o2)           b  c + 3 a b  c + 3 a  b c + a  c
304 @end group
305 @group
306 (%i3) coeff (%, a);
307                                 2
308 (%o3)                        3 b  c
309 @end group
310 @group
311 (%i4) coeff (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c, (a + b)^3);
312 (%o4)                           0
313 @end group
314 @group
315 (%i5) factor (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c);
316                                   3
317 (%o5)                      (b + a)  c
318 @end group
319 @group
320 (%i6) coeff (%, (a + b)^3);
321 (%o6)                           c
322 @end group
323 @end example
325 @code{coeff} distributes over lists, matrices, and equations.
327 @c ===beg===
328 @c coeff ([4*a, -3*a, 2*a], a);
329 @c coeff (matrix ([a*x, b*x], [-c*x, -d*x]), x);
330 @c coeff (a*u - b*v = 7*u + 3*v, u);
331 @c ===end===
332 @example
333 @group
334 (%i1) coeff ([4*a, -3*a, 2*a], a);
335 (%o1)                      [4, - 3, 2]
336 @end group
337 @group
338 (%i2) coeff (matrix ([a*x, b*x], [-c*x, -d*x]), x);
339                           [  a    b  ]
340 (%o2)                     [          ]
341                           [ - c  - d ]
342 @end group
343 @group
344 (%i3) coeff (a*u - b*v = 7*u + 3*v, u);
345 (%o3)                         a = 7
346 @end group
347 @end example
349 @opencatbox{Categories:}
350 @category{Polynomials}
351 @closecatbox
352 @end deffn
354 @c -----------------------------------------------------------------------------
355 @anchor{content}
356 @deffn {Function} content (@var{p_1}, @var{x_1}, @dots{}, @var{x_n})
358 Returns a list whose first element is
359 the greatest common divisor of the coefficients of the terms of the
360 polynomial @var{p_1} in the variable @var{x_n} (this is the content) and whose
361 second element is the polynomial @var{p_1} divided by the content.
362 @c APPEARS TO WORK AS ADVERTISED -- ONLY x_n HAS ANY EFFECT ON THE RESULT
363 @c WHAT ARE THE OTHER VARIABLES x_1 THROUGH x_{n-1} FOR ??
365 Examples:
367 @c ===beg===
368 @c content (2*x*y + 4*x^2*y^2, y);
369 @c ===end===
370 @example
371 (%i1) content (2*x*y + 4*x^2*y^2, y);
372 @group
373                                    2
374 (%o1)                   [2 x, 2 x y  + y]
375 @end group
376 @end example
378 @opencatbox{Categories:}
379 @category{Polynomials}
380 @closecatbox
381 @end deffn
383 @c -----------------------------------------------------------------------------
384 @anchor{denom}
385 @deffn {Function} denom (@var{expr})
387 Returns the denominator of the rational expression @var{expr}.
389 See also @mref{num}
391 @c ===beg===
392 @c g1:(x+2)*(x+1)/((x+3)^2);
393 @c denom(g1);
394 @c g2:sin(x)/10*cos(x)/y;
395 @c denom(g2);
396 @c ===end===
397 @example
398 @group
399 (%i1) g1:(x+2)*(x+1)/((x+3)^2);
400                          (x + 1) (x + 2)
401 (%o1)                    ---------------
402                                    2
403                             (x + 3)
404 @end group
405 @group
406 (%i2) denom(g1);
407                                    2
408 (%o2)                       (x + 3)
409 @end group
410 @group
411 (%i3) g2:sin(x)/10*cos(x)/y;
412                           cos(x) sin(x)
413 (%o3)                     -------------
414                               10 y
415 @end group
416 @group
417 (%i4) denom(g2);
418 (%o4)                         10 y
419 @end group
420 @end example
422 @opencatbox{Categories:}
423 @category{Expressions}
424 @closecatbox
425 @end deffn
427 @c -----------------------------------------------------------------------------
428 @anchor{divide}
429 @deffn {Function} divide (@var{p_1}, @var{p_2}, @var{x_1}, @dots{}, @var{x_n})
431 computes the quotient and remainder
432 of the polynomial @var{p_1} divided by the polynomial @var{p_2}, in a main
433 polynomial variable, @var{x_n}.
434 @c SPELL OUT THE PURPOSE OF THE OTHER VARIABLES
435 The other variables are as in the @code{ratvars} function.
436 The result is a list whose first element is the quotient
437 and whose second element is the remainder.
439 Examples:
441 @c ===beg===
442 @c divide (x + y, x - y, x);
443 @c divide (x + y, x - y);
444 @c ===end===
445 @example
446 (%i1) divide (x + y, x - y, x);
447 (%o1)                       [1, 2 y]
448 (%i2) divide (x + y, x - y);
449 (%o2)                      [- 1, 2 x]
450 @end example
452 @noindent
453 Note that @code{y} is the main variable in the second example.
455 @opencatbox{Categories:}
456 @category{Polynomials}
457 @closecatbox
458 @end deffn
460 @anchor{eliminate}
461 @c -----------------------------------------------------------------------------
462 @deffn {Function} eliminate ([@var{eqn_1}, @dots{}, @var{eqn_n}], [@var{x_1}, @dots{}, @var{x_k}])
464 Eliminates variables from equations (or expressions assumed equal to zero) by
465 taking successive resultants. This returns a list of @code{@var{n} - @var{k}}
466 expressions with the @var{k} variables @var{x_1}, @dots{}, @var{x_k} eliminated.
467 First @var{x_1} is eliminated yielding @code{@var{n} - 1} expressions, then
468 @code{x_2} is eliminated, etc.  If @code{@var{k} = @var{n}} then a single
469 expression in a list is returned free of the variables @var{x_1}, @dots{},
470 @var{x_k}.  In this case @code{solve} is called to solve the last resultant for
471 the last variable.
473 Example:
475 @c ===beg===
476 @c expr1: 2*x^2 + y*x + z;
477 @c expr2: 3*x + 5*y - z - 1;
478 @c expr3: z^2 + x - y^2 + 5;
479 @c eliminate ([expr3, expr2, expr1], [y, z]);
480 @c ===end===
481 @example
482 (%i1) expr1: 2*x^2 + y*x + z;
483                                       2
484 (%o1)                    z + x y + 2 x
485 (%i2) expr2: 3*x + 5*y - z - 1;
486 (%o2)                  - z + 5 y + 3 x - 1
487 (%i3) expr3: z^2 + x - y^2 + 5;
488                           2    2
489 (%o3)                    z  - y  + x + 5
490 (%i4) eliminate ([expr3, expr2, expr1], [y, z]);
491              8         7         6          5          4
492 (%o4) [7425 x  - 1170 x  + 1299 x  + 12076 x  + 22887 x
494                                     3         2
495                             - 5154 x  - 1291 x  + 7688 x + 15376]
496 @end example
498 @opencatbox{Categories:}
499 @category{Polynomials}
500 @category{Algebraic equations}
501 @closecatbox
502 @end deffn
504 @c -----------------------------------------------------------------------------
505 @anchor{ezgcd}
506 @deffn {Function} ezgcd (@var{p_1}, @var{p_2}, @var{p_3}, @dots{})
508 Returns a list whose first element is the greatest common divisor of the
509 polynomials @var{p_1}, @var{p_2}, @var{p_3}, @dots{} and whose remaining
510 elements are the polynomials divided by the greatest common divisor.  This
511 always uses the @code{ezgcd} algorithm.
513 See also @mrefcomma{gcd} @mrefcomma{gcdex} @mrefcomma{gcdivide} and
514 @mrefdot{poly_gcd}
516 Examples:
518 The three polynomials have the greatest common divisor @code{2*x-3}.  The
519 gcd is first calculated with the function @code{gcd} and then with the function
520 @code{ezgcd}.
522 @c ===beg===
523 @c p1 : 6*x^3-17*x^2+14*x-3;
524 @c p2 : 4*x^4-14*x^3+12*x^2+2*x-3;
525 @c p3 : -8*x^3+14*x^2-x-3;
526 @c gcd(p1, gcd(p2, p3));
527 @c ezgcd(p1, p2, p3);
528 @c ===end===
529 @example
530 (%i1) p1 : 6*x^3-17*x^2+14*x-3;
531                         3       2
532 (%o1)                6 x  - 17 x  + 14 x - 3
533 (%i2) p2 : 4*x^4-14*x^3+12*x^2+2*x-3;
534                     4       3       2
535 (%o2)            4 x  - 14 x  + 12 x  + 2 x - 3
536 (%i3) p3 : -8*x^3+14*x^2-x-3;
537                           3       2
538 (%o3)                - 8 x  + 14 x  - x - 3
540 (%i4) gcd(p1, gcd(p2, p3));
541 (%o4)                        2 x - 3
543 (%i5) ezgcd(p1, p2, p3);
544                    2               3      2           2
545 (%o5) [2 x - 3, 3 x  - 4 x + 1, 2 x  - 4 x  + 1, - 4 x  + x + 1]
546 @end example
548 @opencatbox{Categories:}
549 @category{Polynomials}
550 @closecatbox
551 @end deffn
553 @c -----------------------------------------------------------------------------
554 @defvr {Option variable} facexpand
555 Default value: @code{true}
557 @code{facexpand} controls whether the irreducible factors returned by
558 @code{factor} are in expanded (the default) or recursive (normal CRE) form.
560 @opencatbox{Categories:}
561 @category{Polynomials}
562 @closecatbox
563 @end defvr
565 @c -----------------------------------------------------------------------------
566 @anchor{factor}
567 @deffn  {Function} factor @
568 @fname{factor} (@var{expr}) @
569 @fname{factor} (@var{expr}, @var{p})
571 Factors the expression @var{expr}, containing any number of variables or 
572 functions, into factors irreducible over the integers.
573 @code{factor (@var{expr}, @var{p})} factors @var{expr} over the field of 
574 rationals with an element adjoined whose minimum polynomial is @var{p}.
576 @code{factor} uses @mref{ifactors} function for factoring integers.
578 @mref{factorflag} if @code{false} suppresses the factoring of integer factors
579 of rational expressions.
581 @mref{dontfactor} may be set to a list of variables with respect to which
582 factoring is not to occur.  (It is initially empty).  Factoring also
583 will not take place with respect to any variables which are less
584 important (using the variable ordering assumed for CRE form) than
585 those on the @code{dontfactor} list.
587 @mref{savefactors} if @code{true} causes the factors of an expression which
588 is a product of factors to be saved by certain functions in order to
589 speed up later factorizations of expressions containing some of the
590 same factors.
592 @mref{berlefact} if @code{false} then the Kronecker factoring algorithm will
593 be used otherwise the Berlekamp algorithm, which is the default, will
594 be used.
596 @mref{intfaclim} if @code{true} maxima will give up factorization of
597 integers if no factor is found after trial divisions and Pollard's rho
598 method.  If set to @code{false} (this is the case when the user calls
599 @code{factor} explicitly), complete factorization of the integer will be
600 attempted.  The user's setting of @code{intfaclim} is used for internal
601 calls to @code{factor}.  Thus, @code{intfaclim} may be reset to prevent
602 Maxima from taking an inordinately long time factoring large integers.
604 @mref{factor_max_degree} if set to a positive integer @code{n} will
605 prevent certain polynomials from being factored if their degree in any
606 variable exceeds @code{n}.
608 See also @mref{collectterms} and @mref{sqfr}
610 Examples:
612 @c ===beg===
613 @c factor (2^63 - 1);
614 @c factor (-8*y - 4*x + z^2*(2*y + x));
615 @c -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2;
616 @c block ([dontfactor: [x]], factor (%/36/(1 + 2*y + y^2)));
617 @c factor (1 + %e^(3*x));
618 @c factor (1 + x^4, a^2 - 2);
619 @c factor (-y^2*z^2 - x*z^2 + x^2*y^2 + x^3);
620 @c (2 + x)/(3 + x)/(b + x)/(c + x)^2;
621 @c ratsimp (%);
622 @c partfrac (%, x);
623 @c map ('factor, %);
624 @c ratsimp ((x^5 - 1)/(x - 1));
625 @c subst (a, x, %);
626 @c factor (%th(2), %);
627 @c factor (1 + x^12);
628 @c factor (1 + x^99);
629 @c ===end===
630 @example
631 (%i1) factor (2^63 - 1);
632                     2
633 (%o1)              7  73 127 337 92737 649657
634 (%i2) factor (-8*y - 4*x + z^2*(2*y + x));
635 (%o2)               (2 y + x) (z - 2) (z + 2)
636 (%i3) -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2;
637                 2  2        2    2    2
638 (%o3)          x  y  + 2 x y  + y  - x  - 2 x - 1
639 (%i4) block ([dontfactor: [x]], factor (%/36/(1 + 2*y + y^2)));
640 @group
641                        2
642                      (x  + 2 x + 1) (y - 1)
643 (%o4)                ----------------------
644                            36 (y + 1)
645 @end group
646 (%i5) factor (1 + %e^(3*x));
647                       x         2 x     x
648 (%o5)              (%e  + 1) (%e    - %e  + 1)
649 (%i6) factor (1 + x^4, a^2 - 2);
650                     2              2
651 (%o6)             (x  - a x + 1) (x  + a x + 1)
652 (%i7) factor (-y^2*z^2 - x*z^2 + x^2*y^2 + x^3);
653                        2
654 (%o7)              - (y  + x) (z - x) (z + x)
655 (%i8) (2 + x)/(3 + x)/(b + x)/(c + x)^2;
656                              x + 2
657 (%o8)               ------------------------
658                                            2
659                     (x + 3) (x + b) (x + c)
660 (%i9) ratsimp (%);
661 @group
662                 4                  3
663 (%o9) (x + 2)/(x  + (2 c + b + 3) x
665      2                       2             2                   2
666  + (c  + (2 b + 6) c + 3 b) x  + ((b + 3) c  + 6 b c) x + 3 b c )
667 @end group
668 (%i10) partfrac (%, x);
669            2                   4                3
670 (%o10) - (c  - 4 c - b + 6)/((c  + (- 2 b - 6) c
672      2              2         2                2
673  + (b  + 12 b + 9) c  + (- 6 b  - 18 b) c + 9 b ) (x + c))
675                  c - 2
676  - ---------------------------------
677      2                             2
678    (c  + (- b - 3) c + 3 b) (x + c)
680                          b - 2
681  + -------------------------------------------------
682              2             2       3      2
683    ((b - 3) c  + (6 b - 2 b ) c + b  - 3 b ) (x + b)
685                          1
686  - ----------------------------------------------
687              2
688    ((b - 3) c  + (18 - 6 b) c + 9 b - 27) (x + 3)
689 (%i11) map ('factor, %);
690 @group
691               2
692              c  - 4 c - b + 6                 c - 2
693 (%o11) - ------------------------- - ------------------------
694                 2        2                                  2
695          (c - 3)  (c - b)  (x + c)   (c - 3) (c - b) (x + c)
697                        b - 2                        1
698             + ------------------------ - ------------------------
699                              2                          2
700               (b - 3) (c - b)  (x + b)   (b - 3) (c - 3)  (x + 3)
701 @end group
702 (%i12) ratsimp ((x^5 - 1)/(x - 1));
703                        4    3    2
704 (%o12)                x  + x  + x  + x + 1
705 (%i13) subst (a, x, %);
706                        4    3    2
707 (%o13)                a  + a  + a  + a + 1
708 (%i14) factor (%th(2), %);
709                        2        3        3    2
710 (%o14)   (x - a) (x - a ) (x - a ) (x + a  + a  + a + 1)
711 (%i15) factor (1 + x^12);
712                        4        8    4
713 (%o15)               (x  + 1) (x  - x  + 1)
714 (%i16) factor (1 + x^99);
715                  2            6    3
716 (%o16) (x + 1) (x  - x + 1) (x  - x  + 1)
718    10    9    8    7    6    5    4    3    2
719  (x   - x  + x  - x  + x  - x  + x  - x  + x  - x + 1)
721    20    19    17    16    14    13    11    10    9    7    6
722  (x   + x   - x   - x   + x   + x   - x   - x   - x  + x  + x
724     4    3            60    57    51    48    42    39    33
725  - x  - x  + x + 1) (x   + x   - x   - x   + x   + x   - x
727     30    27    21    18    12    9    3
728  - x   - x   + x   + x   - x   - x  + x  + 1)
729 @end example
731 @opencatbox{Categories:}
732 @category{Polynomials}
733 @closecatbox
734 @end deffn
736 @anchor{factor_max_degree}
739 @c -----------------------------------------------------------------------------
740 @defvr {Option variable} factor_max_degree
741 Default value: @code{1000}
743 When factor_max_degree is set to a positive integer @code{n}, it will prevent
744 Maxima from attempting to factor certain polynomials whose degree in any
745 variable exceeds @code{n}. If @mref{factor_max_degree_print_warning} is true,
746 a warning message will be printed. @code{factor_max_degree} can be used to
747 prevent excessive memory usage and/or computation time and stack overflows.
748 Note that "obvious" factoring of polynomials such as @code{x^2000+x^2001} to
749 @code{x^2000*(x+1)} will still take place. To disable this behavior, set
750 @code{factor_max_degree} to @code{0}.
752 Example:
753 @c ===beg===
754 @c factor_max_degree : 100$
755 @c factor(x^100-1);
756 @c factor(x^101-1);
757 @c ===end===
758 @example
759 (%i1) factor_max_degree : 100$
760 @group
761 (%i2) factor(x^100-1);
762                         2        4    3    2
763 (%o2) (x - 1) (x + 1) (x  + 1) (x  - x  + x  - x + 1)
764    4    3    2            8    6    4    2
765  (x  + x  + x  + x + 1) (x  - x  + x  - x  + 1)
766    20    15    10    5        20    15    10    5
767  (x   - x   + x   - x  + 1) (x   + x   + x   + x  + 1)
768    40    30    20    10
769  (x   - x   + x   - x   + 1)
770 @end group
771 @group
772 (%i3) factor(x^101-1);
773                                101
774 Refusing to factor polynomial x    - 1
775                because its degree exceeds factor_max_degree (100)
776                              101
777 (%o3)                       x    - 1
778 @end group
779 @end example
781 See also: @mref{factor_max_degree_print_warning}
783 @opencatbox{Categories:}
784 @category{Polynomials}
785 @closecatbox
786 @end defvr
788 @anchor{factor_max_degree_print_warning}
789 @c -----------------------------------------------------------------------------
790 @defvr {Option variable} factor_max_degree_print_warning
791 Default value: @code{true}
793 When factor_max_degree_print_warning is true, then Maxima will print a
794 warning message when the factoring of a polynomial is prevented because
795 its degree exceeds the value of factor_max_degree.
797 See also: @mref{factor_max_degree}
799 @opencatbox{Categories:}
800 @category{Polynomials}
801 @closecatbox
802 @end defvr 
804 @anchor{factorflag}
805 @c -----------------------------------------------------------------------------
806 @defvr {Option variable} factorflag
807 Default value: @code{false}
809 @c WHAT IS THIS ABOUT EXACTLY ??
810 When @code{factorflag} is @code{false}, suppresses the factoring of
811 integer factors of rational expressions.
813 @opencatbox{Categories:}
814 @category{Polynomials}
815 @closecatbox
816 @end defvr
818 @c -----------------------------------------------------------------------------
819 @anchor{factorout}
820 @deffn {Function} factorout (@var{expr}, @var{x_1}, @var{x_2}, @dots{})
822 Rearranges the sum @var{expr} into a sum of terms of the form 
823 @code{f (@var{x_1}, @var{x_2}, @dots{})*g} where @code{g} is a product of 
824 expressions not containing any @var{x_i} and @code{f} is factored.
826 Note that the option variable @code{keepfloat} is ignored by @code{factorout}.
828 Example:
830 @c ===beg===
831 @c expand (a*(x+1)*(x-1)*(u+1)^2);
832 @c factorout(%,x);
833 @c ===end===
834 @example
835 @group
836 (%i1) expand (a*(x+1)*(x-1)*(u+1)^2);
837              2  2          2      2      2
838 (%o1)     a u  x  + 2 a u x  + a x  - a u  - 2 a u - a
839 @end group
840 @group
841 (%i2) factorout(%,x);
842          2
843 (%o2) a u  (x - 1) (x + 1) + 2 a u (x - 1) (x + 1)
844                                               + a (x - 1) (x + 1)
845 @end group
846 @end example
848 @opencatbox{Categories:}
849 @category{Expressions}
850 @closecatbox
851 @end deffn
853 @c -----------------------------------------------------------------------------
854 @anchor{factorsum}
855 @deffn {Function} factorsum (@var{expr})
857 Tries to group terms in factors of @var{expr} which are sums into groups of
858 terms such that their sum is factorable.  @code{factorsum} can recover the
859 result of @code{expand ((x + y)^2 + (z + w)^2)} but it can't recover
860 @code{expand ((x + 1)^2 + (x + y)^2)} because the terms have variables in
861 common.
863 Example:
865 @c ===beg===
866 @c expand ((x + 1)*((u + v)^2 + a*(w + z)^2));
867 @c factorsum (%);
868 @c ===end===
869 @example
870 (%i1) expand ((x + 1)*((u + v)^2 + a*(w + z)^2));
871            2      2                            2      2
872 (%o1) a x z  + a z  + 2 a w x z + 2 a w z + a w  x + v  x
874                                      2        2    2            2
875                         + 2 u v x + u  x + a w  + v  + 2 u v + u
876 (%i2) factorsum (%);
877                                    2          2
878 (%o2)            (x + 1) (a (z + w)  + (v + u) )
879 @end example
881 @opencatbox{Categories:}
882 @category{Expressions}
883 @closecatbox
884 @end deffn
886 @c -----------------------------------------------------------------------------
887 @anchor{fasttimes}
888 @deffn {Function} fasttimes (@var{p_1}, @var{p_2})
890 Returns the product of the polynomials @var{p_1} and @var{p_2} by using a
891 special algorithm for multiplication of polynomials.  @code{p_1} and @code{p_2}
892 should be multivariate, dense, and nearly the same size.  Classical
893 multiplication is of order @code{n_1 n_2} where
894 @code{n_1} is the degree of @code{p_1}
895 and @code{n_2} is the degree of @code{p_2}.
896 @code{fasttimes} is of order @code{max (n_1, n_2)^1.585}.
898 @opencatbox{Categories:}
899 @category{Polynomials}
900 @closecatbox
901 @end deffn
903 @c -----------------------------------------------------------------------------
904 @anchor{fullratsimp}
905 @deffn {Function} fullratsimp (@var{expr})
907 @code{fullratsimp} repeatedly
908 applies @code{ratsimp} followed by non-rational simplification to an
909 expression until no further change occurs,
910 and returns the result.
912 When non-rational expressions are involved, one call
913 to @code{ratsimp} followed as is usual by non-rational ("general")
914 simplification may not be sufficient to return a simplified result.
915 Sometimes, more than one such call may be necessary.
916 @code{fullratsimp} makes this process convenient.
918 @code{fullratsimp (@var{expr}, @var{x_1}, ..., @var{x_n})} takes one or more
919 arguments similar to @code{ratsimp} and @code{rat}.
921 Example:
923 @c ===beg===
924 @c expr: (x^(a/2) + 1)^2*(x^(a/2) - 1)^2/(x^a - 1);
925 @c ratsimp (expr);
926 @c fullratsimp (expr);
927 @c rat (expr);
928 @c ===end===
929 @example
930 (%i1) expr: (x^(a/2) + 1)^2*(x^(a/2) - 1)^2/(x^a - 1);
931                        a/2     2   a/2     2
932                      (x    - 1)  (x    + 1)
933 (%o1)                -----------------------
934                               a
935                              x  - 1
936 (%i2) ratsimp (expr);
937                           2 a      a
938                          x    - 2 x  + 1
939 (%o2)                    ---------------
940                               a
941                              x  - 1
942 (%i3) fullratsimp (expr);
943                               a
944 (%o3)                        x  - 1
945 (%i4) rat (expr);
946                        a/2 4       a/2 2
947                      (x   )  - 2 (x   )  + 1
948 (%o4)/R/             -----------------------
949                               a
950                              x  - 1
951 @end example
953 @opencatbox{Categories:}
954 @category{Simplification functions}
955 @category{Rational expressions}
956 @closecatbox
957 @end deffn
959 @c -----------------------------------------------------------------------------
960 @anchor{fullratsubst}
961 @deffn {Function} fullratsubst (@var{new}, @var{old}, @var{expr}) @
962 @fname{fullratsubst} (@code{@var{old} = @var{new}}, @var{expr}) @
963 @fname{fullratsubst} (@code{[ @var{old_1} = @var{new_1}, @dots{}, @var{old_n} = @var{new_n} ]}, @var{expr})
965 @code{fullratsubst} applies @mref{lratsubst} repeatedly until @var{expr}
966 stops changing (or @mref{lrats_max_iter} is reached). This function is
967 useful when the replacement expression and the replaced expression have
968 one or more variables in common.
970 @code{fullratsubst} accepts its arguments in the format of
971 @mref{ratsubst} or @mref{lratsubst}.
973 @c EXPRESSIONS ADAPTED FROM demo ("lrats")
975 Examples:
977 @itemize @bullet
978 @item
979 @code{subst} can carry out multiple substitutions.
980 @code{lratsubst} is analogous to @code{subst}.
981 @end itemize
982 @c ===beg===
983 @c subst ([a = b, c = d], a + c);
984 @c lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
985 @c ===end===
986 @example
987 (%i2) subst ([a = b, c = d], a + c);
988 (%o2)                         d + b
989 (%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
990 (%o3)                (d + a c) e + a d + b c
991 @end example
992 @itemize @bullet
993 @item
994 If only one substitution is desired, then a single
995 equation may be given as first argument.
996 @end itemize
997 @c ===beg===
998 @c lratsubst (a^2 = b, a^3);
999 @c ===end===
1000 @example
1001 (%i4) lratsubst (a^2 = b, a^3);
1002 (%o4)                          a b
1003 @end example
1004 @itemize @bullet
1005 @item
1006 @code{fullratsubst} is equivalent to @code{ratsubst}
1007 except that it recurses until its result stops changing.
1008 @end itemize
1009 @c ===beg===
1010 @c ratsubst (b*a, a^2, a^3);
1011 @c fullratsubst (b*a, a^2, a^3);
1012 @c ===end===
1013 @example
1014 (%i5) ratsubst (b*a, a^2, a^3);
1015                                2
1016 (%o5)                         a  b
1017 (%i6) fullratsubst (b*a, a^2, a^3);
1018                                  2
1019 (%o6)                         a b
1020 @end example
1021 @itemize @bullet
1022 @item
1023 @code{fullratsubst} also accepts a list of equations or a single
1024 equation as first argument.
1025 @end itemize
1026 @c ===beg===
1027 @c fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
1028 @c fullratsubst (a^2 = b*a, a^3);
1029 @c ===end===
1030 @example
1031 (%i7) fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
1032 (%o7)                           b
1033 (%i8) fullratsubst (a^2 = b*a, a^3);
1034                                  2
1035 (%o8)                         a b
1036 @end example
1037 @itemize @bullet
1038 @item
1039 @code{fullratsubst} catches potential infinite recursions. @ref{lrats_max_iter}.
1040 @end itemize
1041 @c ===beg===
1042 @c fullratsubst (b*a^2, a^2, a^3), lrats_max_iter=15;
1043 @c ===end===
1044 @example
1045 (%i9) fullratsubst (b*a^2, a^2, a^3), lrats_max_iter=15;
1046 Warning: fullratsubst1(substexpr,forexpr,expr): reached maximum iterations of 15 . Increase `lrats_max_iter' to increase this limit.
1047                                      3  15
1048 (%o7)                               a  b
1049 @end example
1051 See also @mref{lrats_max_iter} and @mref{fullratsubstflag}.
1053 @opencatbox{Categories:}
1054 @category{Rational expressions}
1055 @closecatbox
1056 @end deffn
1058 @c FULLRATSUBSTFLAG was undocumented until 2020-01
1060 @c -----------------------------------------------------------------------------
1061 @anchor{fullratsubstflag}
1062 @defvr {Option variable} fullratsubstflag
1063 Default value: @code{false}
1065 An option variable that is set to @code{true} in @mref{fullratsubst}.
1067 @opencatbox{Categories:}
1068 @category{Polynomials}
1069 @category{Rational expressions}
1070 @closecatbox
1071 @end defvr
1075 @c GCD IS A VARIABLE AND A FUNCTION
1076 @c THIS ITEM NEEDS A LOT OF WORK
1078 @c -----------------------------------------------------------------------------
1079 @anchor{gcd}
1080 @deffn {Function} gcd (@var{p_1}, @var{p_2}, @var{x_1}, @dots{})
1082 Returns the greatest common divisor of @var{p_1} and @var{p_2}.  The flag
1083 @code{gcd} determines which algorithm is employed.  Setting @code{gcd} to
1084 @code{ez}, @code{subres}, @code{red}, or @code{spmod} selects the @code{ezgcd},
1085 subresultant @code{prs}, reduced, or modular algorithm, respectively.  If
1086 @code{gcd} @code{false} then @code{gcd (@var{p_1}, @var{p_2}, @var{x})} always
1087 returns 1 for all @var{x}.  Many functions (e.g. @mrefcomma{ratsimp}@w{}
1088 @mrefcomma{factor} etc.) cause gcd's to be taken implicitly.  For homogeneous
1089 polynomials it is recommended that @code{gcd} equal to @code{subres} be used.
1090 To take the gcd when an algebraic is present, e.g.,
1091 @code{gcd (@var{x}^2 - 2*sqrt(2)* @var{x} + 2, @var{x} - sqrt(2))}, the option
1092 variable @mref{algebraic} must be @code{true} and @code{gcd} must not be
1093 @code{ez}.
1095 The @code{gcd} flag, default: @code{spmod}, if @code{false} will also prevent
1096 the greatest common divisor from being taken when expressions are converted to
1097 canonical rational expression (CRE) form.  This will sometimes speed the
1098 calculation if gcds are not required.
1100 See also @mrefcomma{ezgcd} @mrefcomma{gcdex} @mrefcomma{gcdivide} and
1101 @mrefdot{poly_gcd}
1103 Example:
1105 @c ===beg===
1106 @c p1:6*x^3+19*x^2+19*x+6; 
1107 @c p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;
1108 @c gcd(p1, p2);
1109 @c p1/gcd(p1, p2), ratsimp;
1110 @c p2/gcd(p1, p2), ratsimp;
1111 @c ===end===
1112 @example
1113 (%i1) p1:6*x^3+19*x^2+19*x+6; 
1114                         3       2
1115 (%o1)                6 x  + 19 x  + 19 x + 6
1116 (%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;
1117                   5       4       3       2
1118 (%o2)          6 x  + 13 x  + 12 x  + 13 x  + 6 x
1119 (%i3) gcd(p1, p2);
1120                             2
1121 (%o3)                    6 x  + 13 x + 6
1122 (%i4) p1/gcd(p1, p2), ratsimp;
1123 (%o4)                         x + 1
1124 (%i5) p2/gcd(p1, p2), ratsimp;
1125                               3
1126 (%o5)                        x  + x
1127 @end example
1129 @mref{ezgcd} returns a list whose first element is the greatest common divisor
1130 of the polynomials @var{p_1} and @var{p_2}, and whose remaining elements are
1131 the polynomials divided by the greatest common divisor.
1133 @c ===beg===
1134 @c ezgcd(p1, p2);
1135 @c ===end===
1136 @example
1137 (%i6) ezgcd(p1, p2);
1138                     2                     3
1139 (%o6)           [6 x  + 13 x + 6, x + 1, x  + x]
1140 @end example
1142 @opencatbox{Categories:}
1143 @category{Polynomials}
1144 @category{Rational expressions}
1145 @closecatbox
1146 @end deffn
1148 @c IN NEED OF SERIOUS CLARIFICATION HERE
1150 @c -----------------------------------------------------------------------------
1151 @anchor{gcdex}
1152 @deffn  {Function} gcdex @
1153 @fname{gcdex} (@var{f}, @var{g}) @
1154 @fname{gcdex} (@var{f}, @var{g}, @var{x})
1156 Returns a list @code{[@var{a}, @var{b}, @var{u}]} where @var{u} is the greatest
1157 common divisor (gcd) of @var{f} and @var{g}, and @var{u} is equal to
1158 @code{@var{a} @var{f} + @var{b} @var{g}}.  The arguments @var{f} and @var{g}
1159 should be univariate polynomials, or else polynomials in @var{x} a supplied
1160 main variable since we need to be in a principal ideal domain for this to
1161 work.  The gcd means the gcd regarding @var{f} and @var{g} as univariate
1162 polynomials with coefficients being rational functions in the other variables.
1164 @code{gcdex} implements the Euclidean algorithm, where we have a sequence of
1165 @code{L[i]: [a[i], b[i], r[i]]} which are all perpendicular to @code{[f, g, -1]}
1166 and the next one is built as if @code{q = quotient(r[i]/r[i+1])} then
1167 @code{L[i+2]: L[i] - q L[i+1]}, and it terminates at @code{L[i+1]} when the
1168 remainder @code{r[i+2]} is zero.
1170 The arguments @var{f} and @var{g} can be integers.  For this case the function
1171 @mref{igcdex} is called by @code{gcdex}.
1173 See also @mrefcomma{ezgcd} @mrefcomma{gcd} @mrefcomma{gcdivide} and
1174 @mrefdot{poly_gcd}
1176 Examples:
1178 @c ===beg===
1179 @c gcdex (x^2 + 1, x^3 + 4);
1180 @c % . [x^2 + 1, x^3 + 4, -1];
1181 @c ===end===
1182 @example
1183 @group
1184 (%i1) gcdex (x^2 + 1, x^3 + 4);
1185                        2
1186                       x  + 4 x - 1  x + 4
1187 (%o1)/R/           [- ------------, -----, 1]
1188                            17        17
1189 @end group
1190 @group
1191 (%i2) % . [x^2 + 1, x^3 + 4, -1];
1192 (%o2)/R/                        0
1193 @end group
1194 @end example
1196 @c SORRY FOR BEING DENSE BUT WHAT IS THIS ABOUT EXACTLY
1197 Note that the gcd in the following is @code{1} since we work in @code{k(y)[x]},
1198 not the  @code{y+1} we would expect in @code{k[y, x]}.
1200 @c ===beg===
1201 @c gcdex (x*(y + 1), y^2 - 1, x);
1202 @c ===end===
1203 @example
1204 @group
1205 (%i1) gcdex (x*(y + 1), y^2 - 1, x);
1206                                1
1207 (%o1)/R/                 [0, ------, 1]
1208                               2
1209                              y  - 1
1210 @end group
1211 @end example
1213 @opencatbox{Categories:}
1214 @category{Polynomials}
1215 @category{Rational expressions}
1216 @closecatbox
1217 @end deffn
1219 @c CHOOSE ONE CHARACTERIZATION OF "GAUSSIAN INTEGERS" AND USE IT WHERE GAUSSIAN INTEGERS ARE REFERENCED
1221 @c -----------------------------------------------------------------------------
1222 @anchor{gcfactor}
1223 @deffn {Function} gcfactor (@var{n})
1225 Factors the Gaussian integer @var{n} over the Gaussian integers, i.e., numbers
1226 of the form @code{@var{a} + @var{b} @code{%i}} where @var{a} and @var{b} are
1227 rational integers (i.e.,  ordinary integers).  Factors are normalized by making
1228 @var{a} and @var{b} non-negative.
1229 @c NEED EXAMPLES HERE
1231 @opencatbox{Categories:}
1232 @category{Integers}
1233 @closecatbox
1234 @end deffn
1236 @c CHOOSE ONE CHARACTERIZATION OF "GAUSSIAN INTEGERS" AND USE IT WHERE GAUSSIAN INTEGERS ARE REFERENCED
1238 @c -----------------------------------------------------------------------------
1239 @anchor{gfactor}
1240 @deffn {Function} gfactor (@var{expr})
1242 Factors the polynomial @var{expr} over the Gaussian integers
1243 (that is, the integers with the imaginary unit @code{%i} adjoined).
1244 @c "This is like" -- IS IT THE SAME OR NOT ??
1245 This is like @code{factor (@var{expr}, @var{a}^2+1)} where @var{a} is @code{%i}.
1247 Example:
1249 @c ===beg===
1250 @c gfactor (x^4 - 1);
1251 @c ===end===
1252 @example
1253 (%i1) gfactor (x^4 - 1);
1254 (%o1)           (x - 1) (x + 1) (x - %i) (x + %i)
1255 @end example
1257 @opencatbox{Categories:}
1258 @category{Polynomials}
1259 @closecatbox
1260 @end deffn
1262 @c DESCRIBE THIS INDEPENDENTLY OF factorsum
1263 @c THIS ITEM NEEDS MORE WORK
1265 @c -----------------------------------------------------------------------------
1266 @anchor{gfactorsum}
1267 @deffn {Function} gfactorsum (@var{expr})
1269 is similar to @code{factorsum} but applies @code{gfactor} instead
1270 of @code{factor}.
1272 @opencatbox{Categories:}
1273 @category{Expressions}
1274 @closecatbox
1275 @end deffn
1277 @c -----------------------------------------------------------------------------
1278 @anchor{hipow}
1279 @deffn {Function} hipow (@var{expr}, @var{x})
1281 Returns the highest explicit exponent of @var{x} in @var{expr}.
1282 @var{x} may be a variable or a general expression.
1283 If @var{x} does not appear in @var{expr},
1284 @code{hipow} returns @code{0}.
1286 @code{hipow} does not consider expressions equivalent to @code{expr}.  In
1287 particular, @code{hipow} does not expand @code{expr}, so 
1288 @code{hipow (@var{expr}, @var{x})} and
1289 @code{hipow (expand (@var{expr}, @var{x}))} may yield different results.
1291 Examples:
1293 @c ===beg===
1294 @c hipow (y^3 * x^2 + x * y^4, x);
1295 @c hipow ((x + y)^5, x);
1296 @c hipow (expand ((x + y)^5), x);
1297 @c hipow ((x + y)^5, x + y);
1298 @c hipow (expand ((x + y)^5), x + y);
1299 @c ===end===
1300 @example
1301 (%i1) hipow (y^3 * x^2 + x * y^4, x);
1302 (%o1)                           2
1303 (%i2) hipow ((x + y)^5, x);
1304 (%o2)                           1
1305 (%i3) hipow (expand ((x + y)^5), x);
1306 (%o3)                           5
1307 (%i4) hipow ((x + y)^5, x + y);
1308 (%o4)                           5
1309 (%i5) hipow (expand ((x + y)^5), x + y);
1310 (%o5)                           0
1311 @end example
1313 @opencatbox{Categories:}
1314 @category{Expressions}
1315 @closecatbox
1316 @end deffn
1318 @c I SUSPECT THE FOLLOWING TEXT IS OUTDATED DUE TO CHANGES IN INTEGER FACTORING CODE
1320 @anchor{intfaclim}
1321 @c -----------------------------------------------------------------------------
1322 @defvr {Option variable} intfaclim
1323 Default value: true
1325 If @code{true}, maxima will give up factorization of
1326 integers if no factor is found after trial divisions and Pollard's rho
1327 method and factorization will not be complete.
1329 When @code{intfaclim} is @code{false} (this is the case when the user
1330 calls @code{factor} explicitly), complete factorization will be
1331 attempted.  @code{intfaclim} is set to @code{false} when factors are
1332 computed in @code{divisors}, @code{divsum} and @code{totient}.
1333 @c ANY OTHERS ??
1335 @c WHAT ARE THESE MYSTERIOUS INTERNAL CALLS ?? (LET'S JUST LIST THE FUNCTIONS INVOLVED)
1336 Internal calls to @code{factor} respect the user-specified value of
1337 @code{intfaclim}.  Setting @code{intfaclim} to @code{true} may reduce
1338 the time spent factoring large integers.
1339 @c NEED EXAMPLES HERE
1341 @opencatbox{Categories:}
1342 @category{Integers}
1343 @closecatbox
1344 @end defvr
1346 @c -----------------------------------------------------------------------------
1347 @anchor{keepfloat}
1348 @defvr {Option variable} keepfloat
1349 Default value: @code{false}
1351 When @code{keepfloat} is @code{true}, prevents floating
1352 point numbers from being rationalized when expressions which contain
1353 them are converted to canonical rational expression (CRE) form.
1355 Note that the function @code{solve} and those functions calling it 
1356 (@code{eigenvalues}, for example) currently ignore this flag, converting 
1357 floating point numbers anyway.
1359 Examples:
1361 @c ===beg===
1362 @c rat(x/2.0);
1363 @c rat(x/2.0), keepfloat;
1364 @c ===end===
1365 @example
1366 @group
1367 (%i1) rat(x/2.0);
1369 rat: replaced 0.5 by 1/2 = 0.5
1370                                 x
1371 (%o1)/R/                        -
1372                                 2
1373 @end group
1374 @group
1375 (%i2) rat(x/2.0), keepfloat;
1376 (%o2)/R/                      0.5 x
1377 @end group
1378 @end example
1380 @code{solve} ignores @code{keepfloat}:
1382 @c ===beg===
1383 @c solve(1.0-x,x), keepfloat;
1384 @c ===end===
1385 @example
1386 @group
1387 (%i1) solve(1.0-x,x), keepfloat;
1389 rat: replaced 1.0 by 1/1 = 1.0
1390 (%o1)                        [x = 1]
1391 @end group
1392 @end example
1394 @opencatbox{Categories:}
1395 @category{Numerical evaluation}
1396 @closecatbox
1397 @end defvr
1399 @c -----------------------------------------------------------------------------
1400 @anchor{lowpow}
1401 @deffn {Function} lopow (@var{expr}, @var{x})
1403 Returns the lowest exponent of @var{x} which explicitly appears in
1404 @var{expr}.  Thus
1406 @c ===beg===
1407 @c lopow ((x+y)^2 + (x+y)^a, x+y);
1408 @c ===end===
1409 @example
1410 (%i1) lopow ((x+y)^2 + (x+y)^a, x+y);
1411 (%o1)                       min(a, 2)
1412 @end example
1414 @opencatbox{Categories:}
1415 @category{Expressions}
1416 @closecatbox
1417 @end deffn
1419 @c DESCRIBE lratsubst INDEPENDENTLY OF subst
1420 @c THIS ITEM NEEDS MORE WORK
1422 @c -----------------------------------------------------------------------------
1423 @anchor{lratsubst}
1424 @deffn {Function} lratsubst (@var{new}, @var{old}, @var{expr}) @
1425 @fname{lratsubst} (@code{@var{old} = @var{new}}, @var{expr}) @
1426 @fname{lratsubst} (@code{[ @var{old_1} = @var{new_1}, @dots{}, @var{old_n} = @var{new_n} ]}, @var{expr})
1428 @code{lratsubst} is analogous to @mref{subst} except that it uses
1429 @code{ratsubst} to perform substitutions.
1431 The first argument of @code{lratsubst} is an equation, a list of
1432 equations or a list of unit length whose first element is a list of
1433 equations (that is, the first argument is identical in format to that
1434 accepted by @code{subst}). The substitutions are made in the order given
1435 by the list of equations, that is, from left to right.
1437 Examples:
1439 @c EXPRESSIONS ADAPTED FROM demo ("lrats")
1440 @c THIS STUFF CAN PROBABLY STAND REVISION -- EXAMPLES DON'T SEEM VERY ENLIGHTENING
1442 @itemize @bullet
1443 @item
1444 @code{subst} can carry out multiple substitutions.
1445 @code{lratsubst} is analogous to @code{subst}.
1446 @end itemize
1447 @c ===beg===
1448 @c lratsubst ([a = b, c = d], a + c);
1449 @c lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
1450 @c ===end===
1451 @example
1452 (%i2) lratsubst ([a = b, c = d], a + c);
1453 (%o2)                         d + b
1454 (%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
1455 (%o3)                (d + a c) e + a d + b c
1456 @end example
1457 @itemize @bullet
1458 @item
1459 If only one substitution is desired, then a single
1460 equation may be given as first argument.
1461 @end itemize
1462 @c ===beg===
1463 @c lratsubst (a^2 = b, a^3);
1464 @c ===end===
1465 @example
1466 (%i4) lratsubst (a^2 = b, a^3);
1467 (%o4)                          a b
1468 @end example
1469 @itemize @bullet
1470 @item
1471 A nested list of substitutions can be used--but it must contain only one list.
1472 @end itemize
1473 @c ===beg===
1474 @c lratsubst ([[a^2=b*a, b=c]], a^3);
1475 @c lratsubst ([[a^2=b*a, b=c],[a=b]], a^3);
1476 @c ===end===
1477 @example
1478 (%i5) lratsubst ([[a^2=b*a, b=c]], a^3);
1480                                       2
1481 (%o5)                               a  c
1482 (%i6) lratsubst ([[a^2=b*a, b=c],[a=b]], a^3);
1485                                  2
1486 lratsubst: improper argument: [[a  = a b, b = c], [a = b]]
1487 #0: lratsubst(listofeqns=[[a^2 = a*b,b = c],[a = b]],expr=a^3)
1488  -- an error. To debug this try: debugmode(true);
1490 @end example
1492 See also @mref{fullratsubst}.
1494 @opencatbox{Categories:}
1495 @category{Polynomials}
1496 @category{Rational expressions}
1497 @closecatbox
1498 @end deffn
1501 @c -----------------------------------------------------------------------------
1502 @anchor{lrats_max_iter}
1503 @defvr {Option variable} lrats_max_iter
1504 Default value: @code{100000}
1506 The upper limit on the number of iterations that @mref{fullratsubst} and
1507 @mref{lratsubst} may perform. It must be set to a positive integer. See
1508 the example for @mref{fullratsubst}.
1510 @opencatbox{Categories:}
1511 @category{Polynomials}
1512 @category{Rational expressions}
1513 @closecatbox
1514 @end defvr
1517 @c -----------------------------------------------------------------------------
1518 @anchor{modulus}
1519 @defvr {Option variable} modulus
1520 Default value: @code{false}
1522 When @code{modulus} is a positive number @var{p}, operations on canonical rational
1523 expressions (CREs, as returned by @code{rat} and related functions) are carried out
1524 modulo @var{p}, using the so-called "balanced" modulus system in which @code{@var{n}
1525 modulo @var{p}} is defined as an integer @var{k} in
1526 @code{[-(@var{p}-1)/2, ..., 0, ..., (@var{p}-1)/2]} when @var{p} is odd, or
1527 @code{[-(@var{p}/2 - 1), ..., 0, ...., @var{p}/2]} when @var{p} is even, such
1528 that @code{@var{a} @var{p} + @var{k}} equals @var{n} for some integer @var{a}.
1529 @c NEED EXAMPLES OF "BALANCED MODULUS" HERE
1531 @c WHAT CAN THIS MEAN ?? IS THE MODULUS STORED WITH THE EXPRESSION ??
1532 @c "... in order to get correct results" -- WHAT DO YOU GET IF YOU DON'T RE-RAT ??
1533 If @var{expr} is already in canonical rational expression (CRE) form when
1534 @code{modulus} is reset, then you may need to re-rat @var{expr}, e.g.,
1535 @code{expr: rat (ratdisrep (expr))}, in order to get correct results.
1537 Typically @code{modulus} is set to a prime number.  If @code{modulus} is set to
1538 a positive non-prime integer, this setting is accepted, but a warning message is
1539 displayed.  Maxima signals an error, when zero or a negative integer is
1540 assigned to @code{modulus}.
1542 Examples:
1544 @c ===beg===
1545 @c modulus:7;
1546 @c polymod([0,1,2,3,4,5,6,7]);
1547 @c modulus:false;
1548 @c poly:x^6+x^2+1;
1549 @c factor(poly);
1550 @c modulus:13;
1551 @c factor(poly);
1552 @c polymod(%);
1553 @c ===end===
1554 @example
1555 (%i1) modulus:7;
1556 (%o1)                           7
1557 (%i2) polymod([0,1,2,3,4,5,6,7]);
1558 (%o2)            [0, 1, 2, 3, - 3, - 2, - 1, 0]
1559 (%i3) modulus:false;
1560 (%o3)                         false
1561 (%i4) poly:x^6+x^2+1;
1562                             6    2
1563 (%o4)                      x  + x  + 1
1564 (%i5) factor(poly);
1565                             6    2
1566 (%o5)                      x  + x  + 1
1567 (%i6) modulus:13;
1568 (%o6)                          13
1569 (%i7) factor(poly);
1570                       2        4      2
1571 (%o7)               (x  + 6) (x  - 6 x  - 2)
1572 (%i8) polymod(%);
1573                             6    2
1574 (%o8)                      x  + x  + 1
1575 @end example
1576 @opencatbox{Categories:}
1577 @category{Integers}
1578 @closecatbox
1579 @end defvr
1581 @c APPARENTLY OBSOLETE: ONLY EFFECT OF $newfac COULD BE TO CAUSE NONEXISTENT FUNCTION NMULTFACT
1582 @c TO BE CALLED (IN FUNCTION FACTOR72 IN src/factor.lisp CIRCA LINE 1400)
1583 @c $newfac NOT USED IN ANY OTHER CONTEXT (ASIDE FROM DECLARATIONS)
1584 @c COMMENT IT OUT NOW, CUT IT ON THE NEXT PASS THROUGH THIS FILE
1585 @c @defvar newfac
1586 @c Default value: @code{false}
1587 @c 
1588 @c When @code{newfac} is @code{true}, @code{factor} will use the new factoring
1589 @c routines.
1590 @c 
1591 @c @end defvar
1593 @c -----------------------------------------------------------------------------
1594 @anchor{num}
1595 @deffn {Function} num (@var{expr})
1597 Returns the numerator of @var{expr} if it is a ratio.
1598 If @var{expr} is not a ratio, @var{expr} is returned.
1600 @code{num} evaluates its argument.
1602 See also @mref{denom}
1604 @c ===beg===
1605 @c g1:(x+2)*(x+1)/((x+3)^2);
1606 @c num(g1);
1607 @c g2:sin(x)/10*cos(x)/y;
1608 @c num(g2);
1609 @c ===end===
1610 @example
1611 @group
1612 (%i1) g1:(x+2)*(x+1)/((x+3)^2);
1613                          (x + 1) (x + 2)
1614 (%o1)                    ---------------
1615                                    2
1616                             (x + 3)
1617 @end group
1618 @group
1619 (%i2) num(g1);
1620 (%o2)                    (x + 1) (x + 2)
1621 @end group
1622 @group
1623 (%i3) g2:sin(x)/10*cos(x)/y;
1624                           cos(x) sin(x)
1625 (%o3)                     -------------
1626                               10 y
1627 @end group
1628 @group
1629 (%i4) num(g2);
1630 (%o4)                     cos(x) sin(x)
1631 @end group
1632 @end example
1634 @c NEED SOME EXAMPLES HERE
1635 @opencatbox{Categories:}
1636 @category{Expressions}
1637 @closecatbox
1638 @end deffn
1640 @c -----------------------------------------------------------------------------
1641 @anchor{polydecomp}
1642 @deffn {Function} polydecomp (@var{p}, @var{x})
1644 Decomposes the polynomial @var{p} in the variable @var{x}
1645 into the functional composition of polynomials in @var{x}.
1646 @code{polydecomp} returns a list @code{[@var{p_1}, ..., @var{p_n}]} such that
1648 @example
1649 lambda ([x], p_1) (lambda ([x], p_2) (... (lambda ([x], p_n) (x))
1650   ...))
1651 @end example
1653 is equal to @var{p}.
1654 The degree of @var{p_i} is greater than 1 for @var{i} less than @var{n}.
1656 Such a decomposition is not unique.
1658 Examples:
1660 @c ===beg===
1661 @c polydecomp (x^210, x);
1662 @c p : expand (subst (x^3 - x - 1, x, x^2 - a));
1663 @c polydecomp (p, x);
1664 @c ===end===
1665 @example
1666 @group
1667 (%i1) polydecomp (x^210, x);
1668                           7   5   3   2
1669 (%o1)                   [x , x , x , x ]
1670 @end group
1671 @group
1672 (%i2) p : expand (subst (x^3 - x - 1, x, x^2 - a));
1673                 6      4      3    2
1674 (%o2)          x  - 2 x  - 2 x  + x  + 2 x - a + 1
1675 @end group
1676 @group
1677 (%i3) polydecomp (p, x);
1678                         2       3
1679 (%o3)                 [x  - a, x  - x - 1]
1680 @end group
1681 @end example
1683 The following function composes @code{L = [e_1, ..., e_n]} as functions in
1684 @code{x}; it is the inverse of polydecomp:
1686 @c ===beg===
1687 @c compose (L, x) :=
1688 @c   block ([r : x], for e in L do r : subst (e, x, r), r) $
1689 @c ===end===
1690 @example
1691 @group
1692 (%i1) compose (L, x) :=
1693   block ([r : x], for e in L do r : subst (e, x, r), r) $
1694 @end group
1695 @end example
1697 Re-express above example using @code{compose}:
1699 @c ===beg===
1700 @c polydecomp (compose ([x^2 - a, x^3 - x - 1], x), x);
1701 @c ===end===
1702 @example
1703 @group
1704 (%i1) polydecomp (compose ([x^2 - a, x^3 - x - 1], x), x);
1705                           2       3
1706 (%o1)          [compose([x  - a, x  - x - 1], x)]
1707 @end group
1708 @end example
1710 Note that though @code{compose (polydecomp (@var{p}, @var{x}), @var{x})} always
1711 returns @var{p} (unexpanded), @code{polydecomp (compose ([@var{p_1}, ...,
1712 @var{p_n}], @var{x}), @var{x})} does @i{not} necessarily return
1713 @code{[@var{p_1}, ..., @var{p_n}]}:
1715 @c ===beg===
1716 @c polydecomp (compose ([x^2 + 2*x + 3, x^2], x), x);
1717 @c polydecomp (compose ([x^2 + x + 1, x^2 + x + 1], x), x);
1718 @c ===end===
1719 @example
1720 @group
1721 (%i1) polydecomp (compose ([x^2 + 2*x + 3, x^2], x), x);
1722                            2             2
1723 (%o1)           [compose([x  + 2 x + 3, x ], x)]
1724 @end group
1725 @group
1726 (%i2) polydecomp (compose ([x^2 + x + 1, x^2 + x + 1], x), x);
1727                         2           2
1728 (%o2)        [compose([x  + x + 1, x  + x + 1], x)]
1729 @end group
1730 @end example
1732 @opencatbox{Categories:}
1733 @category{Polynomials}
1734 @closecatbox
1735 @end deffn
1737 @c -----------------------------------------------------------------------------
1738 @anchor{polymod}
1739 @deffn  {Function} polymod @
1740 @fname{polymod} (@var{p}) @
1741 @fname{polymod} (@var{p}, @var{m})
1743 Converts the polynomial @var{p} to a modular representation with respect to the
1744 current modulus which is the value of the variable @code{modulus}.
1746 @code{polymod (@var{p}, @var{m})} specifies a modulus @var{m} to be used 
1747 instead of the current value of @code{modulus}.
1749 See @mrefdot{modulus}
1751 @opencatbox{Categories:}
1752 @category{Polynomials}
1753 @closecatbox
1754 @end deffn
1756 @c ISN'T THERE AN EQUIVALENT FUNCTION SOMEWHERE ??
1757 @c NEEDS WORK (IF KEPT)
1759 @c -----------------------------------------------------------------------------
1760 @anchor{polynomialp}
1761 @deffn  {Function} polynomialp @
1762 @fname{polynomialp} (@var{p}, @var{L}, @var{coeffp}, @var{exponp}) @
1763 @fname{polynomialp} (@var{p}, @var{L}, @var{coeffp}) @
1764 @fname{polynomialp} (@var{p}, @var{L})
1766 Return @code{true} if @var{p} is a polynomial in the variables in the list
1767 @var{L}.  The predicate @var{coeffp} must evaluate to @code{true} for each
1768 coefficient, and the predicate @var{exponp} must evaluate to @code{true} for all
1769 exponents of the variables in @var{L}.  If you want to use a non-default value
1770 for @var{exponp}, you must supply @var{coeffp} with a value even if you want
1771 to use the default for @var{coeffp}.
1773 @c WORK THE FOLLOWING INTO THE PRECEDING
1774 The command @code{polynomialp (@var{p}, @var{L}, @var{coeffp})} is equivalent to
1775 @code{polynomialp (@var{p}, @var{L}, @var{coeffp}, 'nonnegintegerp)} and the
1776 command @code{polynomialp (@var{p}, @var{L})} is equivalent to
1777 @code{polynomialp (@var{p}, L@var{,} 'constantp, 'nonnegintegerp)}.
1779 The polynomial needn't be expanded:
1781 @c ===beg===
1782 @c polynomialp ((x + 1)*(x + 2), [x]);
1783 @c polynomialp ((x + 1)*(x + 2)^a, [x]);
1784 @c ===end===
1785 @example
1786 (%i1) polynomialp ((x + 1)*(x + 2), [x]);
1787 (%o1)                         true
1788 (%i2) polynomialp ((x + 1)*(x + 2)^a, [x]);
1789 (%o2)                         false
1790 @end example
1792 An example using non-default values for coeffp and exponp:
1794 @c ===beg===
1795 @c polynomialp ((x + 1)*(x + 2)^(3/2), [x], numberp, numberp);
1796 @c polynomialp ((x^(1/2) + 1)*(x + 2)^(3/2), [x], numberp, 
1797 @c                                                        numberp);
1798 @c ===end===
1799 @example
1800 (%i1) polynomialp ((x + 1)*(x + 2)^(3/2), [x], numberp, numberp);
1801 (%o1)                         true
1802 (%i2) polynomialp ((x^(1/2) + 1)*(x + 2)^(3/2), [x], numberp,
1803                                                         numberp);
1804 (%o2)                         true
1805 @end example
1807 Polynomials with two variables:
1809 @c ===beg===
1810 @c polynomialp (x^2 + 5*x*y + y^2, [x]);
1811 @c polynomialp (x^2 + 5*x*y + y^2, [x, y]);
1812 @c ===end===
1813 @example
1814 (%i1) polynomialp (x^2 + 5*x*y + y^2, [x]);
1815 (%o1)                         false
1816 (%i2) polynomialp (x^2 + 5*x*y + y^2, [x, y]);
1817 (%o2)                         true
1818 @end example
1820 Polynomial in one variable and accepting any expression free of @code{x} as a coefficient.
1822 @c ===beg===
1823 @c polynomialp (a*x^2 + b*x + c, [x]);
1824 @c polynomialp (a*x^2 + b*x + c, [x], lambda([ex], freeof(x, ex)));
1825 @c ===end===
1826 @example
1827 (%i1) polynomialp (a*x^2 + b*x + c, [x]);
1828 (%o1)                         false
1829 (%i2) polynomialp (a*x^2 + b*x + c, [x], lambda([ex], freeof(x, ex)));
1830 (%o2)                         true
1831 @end example
1833 @opencatbox{Categories:}
1834 @category{Predicate functions}
1835 @category{Polynomials}
1836 @closecatbox
1837 @end deffn
1839 @c -----------------------------------------------------------------------------
1840 @anchor{quotient}
1841 @deffn  {Function} quotient @
1842 @fname{quotient} (@var{p_1}, @var{p_2}) @
1843 @fname{quotient} (@var{p_1}, @var{p_2}, @var{x_1}, @dots{}, @var{x_n})
1845 Returns the polynomial @var{p_1} divided by the polynomial @var{p_2}.  The
1846 arguments @var{x_1}, @dots{}, @var{x_n} are interpreted as in @code{ratvars}.
1848 @code{quotient} returns the first element of the two-element list returned by
1849 @mref{divide}.
1851 @c NEED SOME EXAMPLES HERE
1852 @opencatbox{Categories:}
1853 @category{Polynomials}
1854 @closecatbox
1855 @end deffn
1857 @c THIS ITEM CAN PROBABLY BE IMPROVED
1859 @c -----------------------------------------------------------------------------
1860 @anchor{rat}
1861 @deffn  {Function} rat @
1862 @fname{rat} (@var{expr}) @
1863 @fname{rat} (@var{expr}, @var{x_1}, @dots{}, @var{x_n})
1865 Converts @var{expr} to canonical rational expression (CRE) form by expanding and
1866 combining all terms over a common denominator and cancelling out the
1867 greatest common divisor of the numerator and denominator, as well as
1868 converting floating point numbers to rational numbers within a
1869 tolerance of @code{ratepsilon}.
1870 The variables are ordered according
1871 to the @var{x_1}, @dots{}, @var{x_n}, if specified, as in @code{ratvars}.
1873 @code{rat} does not generally simplify functions other than addition @code{+},
1874 subtraction @code{-}, multiplication @code{*}, division @code{/}, and
1875 exponentiation to an integer power,
1876 whereas @code{ratsimp} does handle those cases.
1877 Note that atoms (numbers and variables) in CRE form are not the
1878 same as they are in the general form.
1879 For example, @code{rat(x)- x} yields 
1880 @code{rat(0)} which has a different internal representation than 0.
1882 @c WHAT'S THIS ABOUT EXACTLY ??
1883 When @code{ratfac} is @code{true}, @code{rat} yields a partially factored
1884 form for CRE.  During rational operations the expression is
1885 maintained as fully factored as possible without an actual call to the
1886 factor package.  This should always save space and may save some time
1887 in some computations.  The numerator and denominator are still made
1888 relatively prime
1889 (e.g.,  @code{rat((x^2 - 1)^4/(x + 1)^2)} yields @code{(x - 1)^4 (x + 1)^2}
1890 when @code{ratfac} is @code{true}),
1891 but the factors within each part may not be relatively prime.
1893 @code{ratprint} if @code{false} suppresses the printout of the message
1894 informing the user of the conversion of floating point numbers to
1895 rational numbers.
1897 @code{keepfloat} if @code{true} prevents floating point numbers from being
1898 converted to rational numbers.
1900 See also @code{ratexpand} and  @code{ratsimp}.
1902 Examples:
1903 @c ===beg===
1904 @c ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) /
1905 @c       (4*y^2 + x^2);
1906 @c rat (%, y, a, x);
1907 @c ===end===
1908 @example
1909 @group
1910 (%i1) ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) /
1911       (4*y^2 + x^2);
1912                                            4
1913                                   (x - 2 y)
1914               (y + a) (2 y + x) (------------ + 1)
1915                                    2      2 2
1916                                  (x  - 4 y )
1917 (%o1)         ------------------------------------
1918                               2    2
1919                            4 y  + x
1920 @end group
1921 @group
1922 (%i2) rat (%, y, a, x);
1923                             2 a + 2 y
1924 (%o2)/R/                    ---------
1925                              x + 2 y
1926 @end group
1927 @end example
1929 @opencatbox{Categories:}
1930 @category{Rational expressions}
1931 @closecatbox
1932 @end deffn
1934 @defvr {Option variable} ratalgdenom
1935 Default value: @code{true}
1937 When @code{ratalgdenom} is @code{true}, allows rationalization of denominators
1938 with respect to radicals to take effect.  @code{ratalgdenom} has an effect only
1939 when canonical rational expressions (CRE) are used in algebraic mode.
1941 @opencatbox{Categories:}
1942 @category{Simplification flags and variables}
1943 @closecatbox
1944 @end defvr
1946 @c THIS ITEM NEEDS MORE WORK
1948 @c -----------------------------------------------------------------------------
1949 @anchor{ratcoef}
1950 @deffn  {Function} ratcoef @
1951 @fname{ratcoef} (@var{expr}, @var{x}, @var{n}) @
1952 @fname{ratcoef} (@var{expr}, @var{x})
1954 Returns the coefficient of the expression @code{@var{x}^@var{n}}
1955 in the expression @var{expr}.
1956 If omitted, @var{n} is assumed to be 1.
1958 The return value is free
1959 (except possibly in a non-rational sense) of the variables in @var{x}.
1960 If no coefficient of this type exists, 0 is returned.
1962 @code{ratcoef}
1963 expands and rationally simplifies its first argument and thus it may
1964 produce answers different from those of @code{coeff} which is purely
1965 syntactic.
1966 @c MOVE THIS TO EXAMPLES SECTION
1967 Thus @code{ratcoef ((x + 1)/y + x, x)} returns @code{(y + 1)/y} whereas
1968 @code{coeff} returns 1.
1970 @code{ratcoef (@var{expr}, @var{x}, 0)}, viewing @var{expr} as a sum,
1971 returns a sum of those terms which do not contain @var{x}.
1972 @c "SHOULD NOT" -- WHAT DOES THIS MEAN ??
1973 Therefore if @var{x} occurs to any negative powers, @code{ratcoef} should not
1974 be used.
1976 @c WHAT IS THE INTENT HERE ??
1977 Since @var{expr} is rationally
1978 simplified before it is examined, coefficients may not appear quite
1979 the way they were envisioned.
1981 Example:
1983 @c ===beg===
1984 @c s: a*x + b*x + 5$
1985 @c ratcoef (s, a + b);
1986 @c ===end===
1987 @example
1988 (%i1) s: a*x + b*x + 5$
1989 (%i2) ratcoef (s, a + b);
1990 (%o2)                           x
1991 @end example
1992 @c NEED MORE EXAMPLES HERE
1994 @opencatbox{Categories:}
1995 @category{Polynomials}
1996 @category{Rational expressions}
1997 @closecatbox
1998 @end deffn
2000 @c -----------------------------------------------------------------------------
2001 @anchor{ratdenom}
2002 @deffn {Function} ratdenom (@var{expr})
2004 Returns the denominator of @var{expr},
2005 after coercing @var{expr} to a canonical rational expression (CRE).
2006 The return value is a CRE.
2008 @c ACTUALLY THE CONVERSION IS CARRIED OUT BY ratf BUT THAT'S WHAT $rat CALLS
2009 @var{expr} is coerced to a CRE by @code{rat}
2010 if it is not already a CRE.
2011 This conversion may change the form of @var{expr} by putting all terms
2012 over a common denominator.
2014 @code{denom} is similar, but returns an ordinary expression instead of a CRE.
2015 Also, @code{denom} does not attempt to place all terms over a common
2016 denominator, and thus some expressions which are considered ratios by
2017 @code{ratdenom} are not considered ratios by @code{denom}.
2019 @c NEEDS AN EXAMPLE HERE
2020 @opencatbox{Categories:}
2021 @category{Rational expressions}
2022 @closecatbox
2023 @end deffn
2025 @c -----------------------------------------------------------------------------
2026 @defvr {Option variable} ratdenomdivide
2027 Default value: @code{true}
2029 When @code{ratdenomdivide} is @code{true},
2030 @code{ratexpand} expands a ratio in which the numerator is a sum 
2031 into a sum of ratios,
2032 all having a common denominator.
2033 Otherwise, @code{ratexpand} collapses a sum of ratios into a single ratio,
2034 the numerator of which is the sum of the numerators of each ratio.
2036 Examples:
2038 @c ===beg===
2039 @c expr: (x^2 + x + 1)/(y^2 + 7);
2040 @c ratdenomdivide: true$
2041 @c ratexpand (expr);
2042 @c ratdenomdivide: false$
2043 @c ratexpand (expr);
2044 @c expr2: a^2/(b^2 + 3) + b/(b^2 + 3);
2045 @c ratexpand (expr2);
2046 @c ===end===
2047 @example
2048 (%i1) expr: (x^2 + x + 1)/(y^2 + 7);
2049                             2
2050                            x  + x + 1
2051 (%o1)                      ----------
2052                               2
2053                              y  + 7
2054 (%i2) ratdenomdivide: true$
2055 (%i3) ratexpand (expr);
2056                        2
2057                       x        x        1
2058 (%o3)               ------ + ------ + ------
2059                      2        2        2
2060                     y  + 7   y  + 7   y  + 7
2061 (%i4) ratdenomdivide: false$
2062 (%i5) ratexpand (expr);
2063 @group
2064                             2
2065                            x  + x + 1
2066 (%o5)                      ----------
2067                               2
2068                              y  + 7
2069 @end group
2070 (%i6) expr2: a^2/(b^2 + 3) + b/(b^2 + 3);
2071                                      2
2072                            b        a
2073 (%o6)                    ------ + ------
2074                           2        2
2075                          b  + 3   b  + 3
2076 (%i7) ratexpand (expr2);
2077                                   2
2078                              b + a
2079 (%o7)                        ------
2080                               2
2081                              b  + 3
2082 @end example
2084 @opencatbox{Categories:}
2085 @category{Simplification flags and variables}
2086 @category{Rational expressions}
2087 @closecatbox
2088 @end defvr
2090 @c -----------------------------------------------------------------------------
2091 @anchor{ratdiff}
2092 @deffn {Function} ratdiff (@var{expr}, @var{x})
2094 Differentiates the rational expression @var{expr} with respect to @var{x}.
2095 @var{expr} must be a ratio of polynomials or a polynomial in @var{x}.
2096 The argument @var{x} may be a variable or a subexpression of @var{expr}.
2097 @c NOT CLEAR (FROM READING CODE) HOW x OTHER THAN A VARIABLE IS HANDLED --
2098 @c LOOKS LIKE (a+b), 10*(a+b), (a+b)^2 ARE ALL TREATED LIKE (a+b);
2099 @c HOW TO DESCRIBE THAT ??
2101 The result is equivalent to @code{diff}, although perhaps in a different form.
2102 @code{ratdiff} may be faster than @code{diff}, for rational expressions.
2104 @code{ratdiff} returns a canonical rational expression (CRE) if @code{expr} is
2105 a CRE.  Otherwise, @code{ratdiff} returns a general expression.
2107 @code{ratdiff} considers only the dependence of @var{expr} on @var{x},
2108 and ignores any dependencies established by @code{depends}.
2110 @c WHAT THIS IS ABOUT -- ratdiff (rat (factor (expr)), x) AND ratdiff (factor (rat (expr)), x) BOTH SUCCEED
2111 @c COMMENTING THIS OUT UNTIL SOMEONE CAN ESTABLISH SOME CRE'S FOR WHICH ratdiff FAILS
2112 @c However, @code{ratdiff} should not be used on factored CRE forms;
2113 @c use @code{diff} instead for such expressions.
2115 Example:
2117 @c ===beg===
2118 @c expr: (4*x^3 + 10*x - 11)/(x^5 + 5);
2119 @c ratdiff (expr, x);
2120 @c expr: f(x)^3 - f(x)^2 + 7;
2121 @c ratdiff (expr, f(x));
2122 @c expr: (a + b)^3 + (a + b)^2;
2123 @c ratdiff (expr, a + b);
2124 @c ===end===
2125 @example
2126 (%i1) expr: (4*x^3 + 10*x - 11)/(x^5 + 5);
2127 @group
2128                            3
2129                         4 x  + 10 x - 11
2130 (%o1)                   ----------------
2131                               5
2132                              x  + 5
2133 @end group
2134 (%i2) ratdiff (expr, x);
2135                     7       5       4       2
2136                  8 x  + 40 x  - 55 x  - 60 x  - 50
2137 (%o2)          - ---------------------------------
2138                           10       5
2139                          x   + 10 x  + 25
2140 (%i3) expr: f(x)^3 - f(x)^2 + 7;
2141                          3       2
2142 (%o3)                   f (x) - f (x) + 7
2143 (%i4) ratdiff (expr, f(x));
2144                            2
2145 (%o4)                   3 f (x) - 2 f(x)
2146 (%i5) expr: (a + b)^3 + (a + b)^2;
2147                               3          2
2148 (%o5)                  (b + a)  + (b + a)
2149 (%i6) ratdiff (expr, a + b);
2150                     2                    2
2151 (%o6)            3 b  + (6 a + 2) b + 3 a  + 2 a
2152 @end example
2154 @opencatbox{Categories:}
2155 @category{Rational expressions}
2156 @closecatbox
2157 @end deffn
2159 @c -----------------------------------------------------------------------------
2160 @anchor{ratdisrep}
2161 @deffn {Function} ratdisrep (@var{expr})
2163 Returns its argument as a general expression.
2164 If @var{expr} is a general expression, it is returned unchanged.
2166 Typically @code{ratdisrep} is called to convert a canonical rational expression
2167 (CRE) into a general expression.
2168 @c NOT REALLY FOND OF YOU-CAN-DO-THIS-YOU-CAN-DO-THAT STATEMENTS
2169 This is sometimes convenient if one wishes to stop the "contagion", or
2170 use rational functions in non-rational contexts.
2172 See also @mrefdot{totaldisrep}
2174 @opencatbox{Categories:}
2175 @category{Rational expressions}
2176 @closecatbox
2177 @end deffn
2179 @c -----------------------------------------------------------------------------
2180 @anchor{ratexpand}
2181 @deffn  {Function} ratexpand (@var{expr})
2182 @deffnx {Option variable} ratexpand
2184 Expands @var{expr} by multiplying out products of sums and
2185 exponentiated sums, combining fractions over a common denominator,
2186 cancelling the greatest common divisor of the numerator and
2187 denominator, then splitting the numerator (if a sum) into its
2188 respective terms divided by the denominator.
2190 The return value of @code{ratexpand} is a general expression,
2191 even if @var{expr} is a canonical rational expression (CRE).
2193 @c WHAT DOES THE FOLLOWING MEAN EXACTLY ??
2194 The switch @code{ratexpand} if @code{true} will cause CRE
2195 expressions to be fully expanded when they are converted back to
2196 general form or displayed, while if it is @code{false} then they will be put
2197 into a recursive form.
2198 See also @mrefdot{ratsimp}
2200 When @code{ratdenomdivide} is @code{true},
2201 @code{ratexpand} expands a ratio in which the numerator is a sum 
2202 into a sum of ratios,
2203 all having a common denominator.
2204 Otherwise, @code{ratexpand} collapses a sum of ratios into a single ratio,
2205 the numerator of which is the sum of the numerators of each ratio.
2207 When @code{keepfloat} is @code{true}, prevents floating
2208 point numbers from being rationalized when expressions which contain
2209 them are converted to canonical rational expression (CRE) form.
2211 Examples:
2213 @c ===beg===
2214 @c ratexpand ((2*x - 3*y)^3);
2215 @c expr: (x - 1)/(x + 1)^2 + 1/(x - 1);
2216 @c expand (expr);
2217 @c ratexpand (expr);
2218 @c ===end===
2219 @example
2220 (%i1) ratexpand ((2*x - 3*y)^3);
2221                      3         2       2        3
2222 (%o1)          - 27 y  + 54 x y  - 36 x  y + 8 x
2223 (%i2) expr: (x - 1)/(x + 1)^2 + 1/(x - 1);
2224                          x - 1       1
2225 (%o2)                   -------- + -----
2226                                2   x - 1
2227                         (x + 1)
2228 (%i3) expand (expr);
2229 @group
2230                     x              1           1
2231 (%o3)          ------------ - ------------ + -----
2232                 2              2             x - 1
2233                x  + 2 x + 1   x  + 2 x + 1
2234 @end group
2235 (%i4) ratexpand (expr);
2236                         2
2237                      2 x                 2
2238 (%o4)           --------------- + ---------------
2239                  3    2            3    2
2240                 x  + x  - x - 1   x  + x  - x - 1
2241 @end example
2243 @opencatbox{Categories:}
2244 @category{Rational expressions}
2245 @closecatbox
2246 @end deffn
2248 @c -----------------------------------------------------------------------------
2249 @anchor{ratfac}
2250 @defvr {Option variable} ratfac
2251 Default value: @code{false}
2253 When @code{ratfac} is @code{true}, canonical rational expressions (CRE) are
2254 manipulated in a partially factored form.
2256 During rational operations the expression is maintained as fully factored as
2257 possible without calling @code{factor}.
2258 This should always save space and may save time in some computations.
2259 The numerator and denominator are made relatively prime, for example
2260 @code{factor ((x^2 - 1)^4/(x + 1)^2)} yields @code{(x - 1)^4 (x + 1)^2},
2261 but the factors within each part may not be relatively prime.
2263 In the @code{ctensor} (Component Tensor Manipulation) package,
2264 Ricci, Einstein, Riemann, and Weyl tensors and the scalar curvature 
2265 are factored automatically when @code{ratfac} is @code{true}.
2266 @i{@code{ratfac} should only be
2267 set for cases where the tensorial components are known to consist of
2268 few terms.}
2270 The @code{ratfac} and @code{ratweight} schemes are incompatible and may not
2271 both be used at the same time.
2273 @c NEED EXAMPLES HERE
2274 @opencatbox{Categories:}
2275 @category{Rational expressions}
2276 @closecatbox
2277 @end defvr
2279 @c -----------------------------------------------------------------------------
2280 @anchor{ratnumer}
2281 @deffn {Function} ratnumer (@var{expr})
2283 Returns the numerator of @var{expr},
2284 after coercing @var{expr} to a canonical rational expression (CRE).
2285 The return value is a CRE.
2287 @c ACTUALLY THE CONVERSION IS CARRIED OUT BY ratf BUT THAT'S WHAT $rat CALLS
2288 @var{expr} is coerced to a CRE by @code{rat}
2289 if it is not already a CRE.
2290 This conversion may change the form of @var{expr} by putting all terms
2291 over a common denominator.
2293 @code{num} is similar, but returns an ordinary expression instead of a CRE.
2294 Also, @code{num} does not attempt to place all terms over a common denominator,
2295 and thus some expressions which are considered ratios by @code{ratnumer}
2296 are not considered ratios by @code{num}.
2298 @c NEEDS AN EXAMPLE HERE
2299 @opencatbox{Categories:}
2300 @category{Rational expressions}
2301 @closecatbox
2302 @end deffn
2304 @c -----------------------------------------------------------------------------
2305 @anchor{ratp}
2306 @deffn {Function} ratp (@var{expr})
2308 Returns @code{true} if @var{expr} is a canonical rational expression (CRE) or
2309 extended CRE, otherwise @code{false}.
2311 CRE are created by @code{rat} and related functions.
2312 Extended CRE are created by @code{taylor} and related functions.
2314 @opencatbox{Categories:}
2315 @category{Predicate functions}
2316 @category{Rational expressions}
2317 @closecatbox
2318 @end deffn
2320 @c -----------------------------------------------------------------------------
2321 @anchor{ratprint}
2322 @defvr {Option variable} ratprint
2323 Default value: @code{true}
2325 When @code{ratprint} is @code{true},
2326 a message informing the user of the conversion of floating point numbers
2327 to rational numbers is displayed.
2329 @opencatbox{Categories:}
2330 @category{Rational expressions}
2331 @category{Numerical evaluation}
2332 @category{Console interaction}
2333 @closecatbox
2334 @end defvr
2336 @c -----------------------------------------------------------------------------
2337 @anchor{ratsimp}
2338 @deffn  {Function} ratsimp (@var{expr})
2339 @deffnx {Function} ratsimp (@var{expr}, @var{x_1}, @dots{}, @var{x_n})
2341 Simplifies the expression @var{expr} and all of its subexpressions, including
2342 the arguments to non-rational functions.  The result is returned as the quotient
2343 of two polynomials in a recursive form, that is, the coefficients of the main
2344 variable are polynomials in the other variables.  Variables may include
2345 non-rational functions (e.g., @code{sin (x^2 + 1)}) and the arguments to any
2346 such functions are also rationally simplified.
2348 @code{ratsimp (@var{expr}, @var{x_1}, ..., @var{x_n})}
2349 enables rational simplification with the
2350 specification of variable ordering as in @code{ratvars}.
2352 When @code{ratsimpexpons} is @code{true},
2353 @code{ratsimp} is applied to the exponents of expressions during simplification.
2355 See also @mrefdot{ratexpand}
2356 Note that @code{ratsimp} is affected by some of the
2357 flags which affect @code{ratexpand}.
2359 Examples:
2361 @c ===beg===
2362 @c sin (x/(x^2 + x)) = exp ((log(x) + 1)^2 - log(x)^2);
2363 @c ratsimp (%);
2364 @c ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1));
2365 @c ratsimp (%);
2366 @c x^(a + 1/a), ratsimpexpons: true;
2367 @c ===end===
2368 @example
2369 (%i1) sin (x/(x^2 + x)) = exp ((log(x) + 1)^2 - log(x)^2);
2370 @group
2371                                          2      2
2372                    x         (log(x) + 1)  - log (x)
2373 (%o1)        sin(------) = %e
2374                   2
2375                  x  + x
2376 @end group
2377 (%i2) ratsimp (%);
2378                              1          2
2379 (%o2)                  sin(-----) = %e x
2380                            x + 1
2381 (%i3) ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1));
2382 @group
2383                        3/2
2384                 (x - 1)    - sqrt(x - 1) (x + 1)
2385 (%o3)           --------------------------------
2386                      sqrt((x - 1) (x + 1))
2387 @end group
2388 (%i4) ratsimp (%);
2389                            2 sqrt(x - 1)
2390 (%o4)                    - -------------
2391                                  2
2392                            sqrt(x  - 1)
2393 (%i5) x^(a + 1/a), ratsimpexpons: true;
2394                                2
2395                               a  + 1
2396                               ------
2397                                 a
2398 (%o5)                        x
2399 @end example
2401 @opencatbox{Categories:}
2402 @category{Simplification functions}
2403 @category{Rational expressions}
2404 @closecatbox
2405 @end deffn
2407 @c -----------------------------------------------------------------------------
2408 @defvr {Option variable} ratsimpexpons
2409 Default value: @code{false}
2411 When @code{ratsimpexpons} is @code{true},
2412 @code{ratsimp} is applied to the exponents of expressions during simplification.
2414 @c NEED AN EXAMPLE HERE -- RECYCLE THE ratsimpexpons EXAMPLE FROM ratsimp ABOVE
2415 @opencatbox{Categories:}
2416 @category{Simplification flags and variables}
2417 @category{Rational expressions}
2418 @closecatbox
2419 @end defvr
2421 @c -----------------------------------------------------------------------------
2422 @anchor{radsubstflag}
2423 @defvr {Option variable} radsubstflag
2424 Default value: @code{false}
2426 @code{radsubstflag}, if @code{true}, permits @code{ratsubst} to make
2427 substitutions such as @code{u} for @code{sqrt (x)} in @code{x}.
2429 @opencatbox{Categories:}
2430 @category{Simplification flags and variables}
2431 @closecatbox
2432 @end defvr
2434 @c -----------------------------------------------------------------------------
2435 @anchor{ratsubst}
2436 @deffn {Function} ratsubst (@var{a}, @var{b}, @var{c})
2438 Substitutes @var{a} for @var{b} in @var{c} and returns the resulting expression.
2439 @c "ETC" SUGGESTS THE READER KNOWS WHAT ELSE GOES THERE -- NOT LIKELY THE CASE
2440 @var{b} may be a sum, product, power, etc.
2442 @c WHAT, EXACTLY, DOES ratsubst KNOW ??
2443 @code{ratsubst} knows something of the meaning of expressions
2444 whereas @code{subst} does a purely syntactic substitution.
2445 Thus @code{subst (a, x + y, x + y + z)} returns @code{x + y + z}
2446 whereas @code{ratsubst} returns @code{z + a}.
2448 When @code{radsubstflag} is @code{true},
2449 @code{ratsubst} makes substitutions for radicals in expressions
2450 which don't explicitly contain them.
2452 @code{ratsubst} ignores the value @code{true} of the option variables
2453 @code{keepfloat}, @code{float}, and @code{numer}.
2455 Examples:
2457 @c EXAMPLES BELOW ADAPTED FROM examples (ratsubst)
2458 @c WITH SOME ADDITIONAL STUFF
2460 @c ===beg===
2461 @c ratsubst (a, x*y^2, x^4*y^3 + x^4*y^8);
2462 @c cos(x)^4 + cos(x)^3 + cos(x)^2 + cos(x) + 1;
2463 @c ratsubst (1 - sin(x)^2, cos(x)^2, %);
2464 @c ratsubst (1 - cos(x)^2, sin(x)^2, sin(x)^4);
2465 @c radsubstflag: false$
2466 @c ratsubst (u, sqrt(x), x);
2467 @c radsubstflag: true$
2468 @c ratsubst (u, sqrt(x), x);
2469 @c ===end===
2470 @example
2471 @group
2472 (%i1) ratsubst (a, x*y^2, x^4*y^3 + x^4*y^8);
2473                               3      4
2474 (%o1)                      a x  y + a
2475 @end group
2476 @group
2477 (%i2) cos(x)^4 + cos(x)^3 + cos(x)^2 + cos(x) + 1;
2478                4         3         2
2479 (%o2)       cos (x) + cos (x) + cos (x) + cos(x) + 1
2480 @end group
2481 @group
2482 (%i3) ratsubst (1 - sin(x)^2, cos(x)^2, %);
2483             4           2                     2
2484 (%o3)    sin (x) - 3 sin (x) + cos(x) (2 - sin (x)) + 3
2485 @end group
2486 @group
2487 (%i4) ratsubst (1 - cos(x)^2, sin(x)^2, sin(x)^4);
2488                         4           2
2489 (%o4)                cos (x) - 2 cos (x) + 1
2490 @end group
2491 (%i5) radsubstflag: false$
2492 @group
2493 (%i6) ratsubst (u, sqrt(x), x);
2494 (%o6)                           x
2495 @end group
2496 (%i7) radsubstflag: true$
2497 @group
2498 (%i8) ratsubst (u, sqrt(x), x);
2499                                 2
2500 (%o8)                          u
2501 @end group
2502 @end example
2504 @opencatbox{Categories:}
2505 @category{Rational expressions}
2506 @closecatbox
2507 @end deffn
2509 @c -----------------------------------------------------------------------------
2510 @anchor{ratvars}
2511 @deffn  {Function} ratvars (@var{x_1}, @dots{}, @var{x_n})
2512 @deffnx {Function} ratvars ()
2513 @deffnx {System variable} ratvars
2515 Declares main variables @var{x_1}, @dots{}, @var{x_n} for rational expressions.
2516 @var{x_n}, if present in a rational expression, is considered the main variable.
2517 Otherwise, @var{x_[n-1]} is considered the main variable if present, and so on
2518 through the preceding variables to @var{x_1}, which is considered the main
2519 variable only if none of the succeeding variables are present.
2521 If a variable in a rational expression is not present in the @code{ratvars}
2522 list, it is given a lower priority than @var{x_1}.
2524 The arguments to @code{ratvars} can be either variables or non-rational
2525 functions such as @code{sin(x)}.
2527 The variable @code{ratvars} is a list of the arguments of 
2528 the function @code{ratvars} when it was called most recently.
2529 Each call to the function @code{ratvars} resets the list.
2530 @code{ratvars ()} clears the list.
2532 @c NEED EXAMPLES HERE
2533 @opencatbox{Categories:}
2534 @category{Rational expressions}
2535 @closecatbox
2536 @end deffn
2538 @c -----------------------------------------------------------------------------
2539 @defvr {Option variable} ratvarswitch
2540 Default value: @code{true}
2542 Maxima keeps an internal list in the Lisp variable @code{VARLIST} of the main
2543 variables for rational expressions.  If @code{ratvarswitch} is @code{true}, 
2544 every evaluation starts with a fresh list @code{VARLIST}.  This is the default
2545 behavior.  Otherwise, the main variables from previous evaluations are not 
2546 removed from the internal list @code{VARLIST}.
2548 The main variables, which are declared with the function @code{ratvars} are
2549 not affected by the option variable @code{ratvarswitch}.
2551 Examples:
2553 If @code{ratvarswitch} is @code{true}, every evaluation starts with a fresh
2554 list @code{VARLIST}.
2556 @c ===beg===
2557 @c ratvarswitch:true$
2558 @c rat(2*x+y^2);
2559 @c :lisp varlist
2560 @c rat(2*a+b^2);
2561 @c :lisp varlist
2562 @c ===end===
2563 @example
2564 (%i1) ratvarswitch:true$
2566 (%i2) rat(2*x+y^2);
2567                              2
2568 (%o2)/R/                    y  + 2 x
2569 (%i3) :lisp varlist
2570 ($X $Y)
2572 (%i3) rat(2*a+b^2);
2573                              2
2574 (%o3)/R/                    b  + 2 a
2576 (%i4) :lisp varlist
2577 ($A $B)
2578 @end example
2580 If @code{ratvarswitch} is @code{false}, the main variables from the last 
2581 evaluation are still present.
2583 @c ===beg===
2584 @c ratvarswitch:false$
2585 @c rat(2*x+y^2);
2586 @c :lisp varlist
2587 @c rat(2*a+b^2);
2588 @c :lisp varlist
2589 @c ===end===
2590 @example
2591 (%i4) ratvarswitch:false$
2593 (%i5) rat(2*x+y^2);
2594                              2
2595 (%o5)/R/                    y  + 2 x
2596 (%i6) :lisp varlist
2597 ($X $Y)
2599 (%i6) rat(2*a+b^2);
2600                              2
2601 (%o6)/R/                    b  + 2 a
2603 (%i7) :lisp varlist
2604 ($A $B $X $Y)
2605 @end example
2607 @opencatbox{Categories:}
2608 @category{Rational expressions}
2609 @category{Global flags}
2610 @closecatbox
2611 @end defvr
2613 @c -----------------------------------------------------------------------------
2614 @deffn  {Function} ratweight @
2615 @fname{ratweight} (@var{x_1}, @var{w_1}, @dots{}, @var{x_n}, @var{w_n}) @
2616 @fname{ratweight} ()
2618 Assigns a weight @var{w_i} to the variable @var{x_i}.
2619 This causes a term to be replaced by 0 if its weight exceeds the
2620 value of the variable @code{ratwtlvl} (default yields no truncation).
2621 The weight of a term is the sum of the products of the
2622 weight of a variable in the term times its power.
2623 For example, the weight of @code{3 x_1^2 x_2} is @code{2 w_1 + w_2}.
2624 Truncation according to @code{ratwtlvl} is carried out only when multiplying
2625 or exponentiating canonical rational expressions (CRE).
2627 @code{ratweight ()} returns the cumulative list of weight assignments.
2629 Note: The @code{ratfac} and @code{ratweight} schemes are incompatible and may
2630 not both be used at the same time.
2632 Examples:
2634 @c ===beg===
2635 @c ratweight (a, 1, b, 1);
2636 @c expr1: rat(a + b + 1)$
2637 @c expr1^2;
2638 @c ratwtlvl: 1$
2639 @c expr1^2;
2640 @c ===end===
2641 @example
2642 (%i1) ratweight (a, 1, b, 1);
2643 (%o1)                     [a, 1, b, 1]
2644 (%i2) expr1: rat(a + b + 1)$
2645 (%i3) expr1^2;
2646                   2                  2
2647 (%o3)/R/         b  + (2 a + 2) b + a  + 2 a + 1
2648 (%i4) ratwtlvl: 1$
2649 (%i5) expr1^2;
2650 (%o5)/R/                  2 b + 2 a + 1
2651 @end example
2653 @opencatbox{Categories:}
2654 @category{Rational expressions}
2655 @closecatbox
2656 @end deffn
2658 @c -----------------------------------------------------------------------------
2659 @defvr {System variable} ratweights
2660 Default value: @code{[]}
2662 @code{ratweights} is the list of weights assigned by @code{ratweight}.
2663 The list is cumulative:
2664 each call to @code{ratweight} places additional items in the list.
2666 @c DO WE REALLY NEED TO MENTION THIS ??
2667 @code{kill (ratweights)} and @code{save (ratweights)} both work as expected.
2669 @opencatbox{Categories:}
2670 @category{Rational expressions}
2671 @closecatbox
2672 @end defvr
2674 @c -----------------------------------------------------------------------------
2675 @need 1000
2676 @defvr {Option variable} ratwtlvl
2677 Default value: @code{false}
2679 @code{ratwtlvl} is used in combination with the @code{ratweight}
2680 function to control the truncation of canonical rational expressions (CRE).
2681 For the default value of @code{false}, no truncation occurs.
2683 @opencatbox{Categories:}
2684 @category{Rational expressions}
2685 @closecatbox
2686 @end defvr
2688 @c -----------------------------------------------------------------------------
2689 @deffn  {Function} remainder @
2690 @fname{remainder} (@var{p_1}, @var{p_2}) @
2691 @fname{remainder} (@var{p_1}, @var{p_2}, @var{x_1}, @dots{}, @var{x_n})
2693 Returns the remainder of the polynomial @var{p_1} divided by the polynomial
2694 @var{p_2}.  The arguments @var{x_1}, @dots{}, @var{x_n} are interpreted as in
2695 @code{ratvars}.
2697 @code{remainder} returns the second element
2698 of the two-element list returned by @code{divide}.
2700 @c NEED SOME EXAMPLES HERE
2701 @opencatbox{Categories:}
2702 @category{Polynomials}
2703 @closecatbox
2704 @end deffn
2706 @c -----------------------------------------------------------------------------
2707 @anchor{resultant}
2708 @deffn {Function} resultant (@var{p_1}, @var{p_2}, @var{x})
2710 The function @code{resultant} computes the resultant of the two polynomials
2711 @var{p_1} and @var{p_2}, eliminating the variable @var{x}.  The resultant is a
2712 determinant of the coefficients of @var{x} in @var{p_1} and @var{p_2}, which
2713 equals zero if and only if @var{p_1} and @var{p_2} have a non-constant factor
2714 in common.
2716 If @var{p_1} or @var{p_2} can be factored, it may be desirable to call
2717 @mref{factor} before calling @code{resultant}.
2719 The option variable @code{resultant} controls which algorithm will be used to
2720 compute the resultant.  See the option variable
2721 @mxrefdot{option_resultant, resultant}
2723 The function @mref{bezout} takes the same arguments as @code{resultant} and
2724 returns a matrix.  The determinant of the return value is the desired resultant.
2726 Examples:
2728 @c ===beg===
2729 @c resultant(2*x^2+3*x+1, 2*x^2+x+1, x);
2730 @c resultant(x+1, x+1, x);
2731 @c resultant((x+1)*x, (x+1), x);
2732 @c resultant(a*x^2+b*x+1, c*x + 2, x);
2733 @c bezout(a*x^2+b*x+1, c*x+2, x);
2734 @c determinant(%);
2735 @c ===end===
2736 @example
2737 (%i1) resultant(2*x^2+3*x+1, 2*x^2+x+1, x);
2738 (%o1)                           8
2739 (%i2) resultant(x+1, x+1, x);
2740 (%o2)                           0
2741 (%i3) resultant((x+1)*x, (x+1), x);
2742 (%o3)                           0
2743 (%i4) resultant(a*x^2+b*x+1, c*x + 2, x);
2744                          2
2745 (%o4)                   c  - 2 b c + 4 a
2747 (%i5) bezout(a*x^2+b*x+1, c*x+2, x);
2748 @group
2749                         [ 2 a  2 b - c ]
2750 (%o5)                   [              ]
2751                         [  c      2    ]
2752 @end group
2753 (%i6) determinant(%);
2754 (%o6)                   4 a - (2 b - c) c
2755 @end example
2756 @opencatbox{Categories:}
2757 @category{Polynomials}
2758 @closecatbox
2759 @end deffn
2761 @c -----------------------------------------------------------------------------
2762 @anchor{option_resultant}
2763 @defvr {Option variable} resultant
2764 Default value: @code{subres}
2766 The option variable @code{resultant} controls which algorithm will be used to
2767 compute the resultant with the function @mrefdot{resultant}  The possible
2768 values are:
2770 @table @code
2771 @item subres
2772 for the subresultant polynomial remainder sequence (PRS) algorithm,
2773 @item mod
2774 (not enabled) for the modular resultant algorithm, and 
2775 @item red
2776 for the reduced polynomial remainder sequence (PRS) algorithm.
2777 @end table
2779 On most problems the default value @code{subres} should be best.
2780 @c On some large degree univariate or bivariate problems @code{mod}
2781 @c may be better.
2783 @opencatbox{Categories:}
2784 @category{Polynomials}
2785 @closecatbox
2786 @end defvr
2788 @anchor{savefactors}
2789 @c -----------------------------------------------------------------------------
2790 @defvr {Option variable} savefactors
2791 Default value: @code{false}
2793 @c "certain functions" -- WHICH ONES ??
2794 When @code{savefactors} is @code{true}, causes the factors of an
2795 expression which is a product of factors to be saved by certain
2796 functions in order to speed up later factorizations of expressions
2797 containing some of the same factors.
2799 @opencatbox{Categories:}
2800 @category{Polynomials}
2801 @closecatbox
2802 @end defvr
2804 @c -----------------------------------------------------------------------------
2805 @anchor{showratvars}
2806 @deffn {Function} showratvars (@var{expr})
2808 Returns a list of the canonical rational expression (CRE) variables in
2809 expression @code{expr}.
2811 See also @mrefdot{ratvars}
2813 @opencatbox{Categories:}
2814 @category{Rational expressions}
2815 @category{Display functions}
2816 @closecatbox
2817 @end deffn
2819 @c I CAN'T TELL WHAT THIS IS SUPPOSED TO BE ABOUT
2821 @c -----------------------------------------------------------------------------
2822 @anchor{sqfr}
2823 @deffn {Function} sqfr (@var{expr})
2825 is similar to @mref{factor} except that the polynomial factors are
2826 "square-free."  That is, they have factors only of degree one.
2827 This algorithm, which is also used by the first stage of @mrefcomma{factor} utilizes
2828 the fact that a polynomial has in common with its n'th derivative all
2829 its factors of degree greater than n.  Thus by taking greatest common divisors
2830 with the polynomial of
2831 the derivatives with respect to each variable in the polynomial, all
2832 factors of degree greater than 1 can be found.
2834 Example:
2836 @c ===beg===
2837 @c sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
2838 @c ===end===
2839 @example
2840 (%i1) sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
2841                                 2   2
2842 (%o1)                  (2 x + 1)  (x  - 1)
2843 @end example
2845 @opencatbox{Categories:}
2846 @category{Polynomials}
2847 @closecatbox
2848 @end deffn
2850 @c THIS ITEM STILL NEEDS WORK
2852 @c -----------------------------------------------------------------------------
2853 @deffn  {Function} tellrat @
2854 @fname{tellrat} (@var{p_1}, @dots{}, @var{p_n}) @
2855 @fname{tellrat} ()
2857 Adds to the ring of algebraic integers known to Maxima
2858 the elements which are the solutions of the polynomials @var{p_1}, @dots{},
2859 @var{p_n}.  Each argument @var{p_i} is a polynomial with integer coefficients.
2861 @code{tellrat (@var{x})} effectively means substitute 0 for @var{x} in rational
2862 functions.
2864 @code{tellrat ()} returns a list of the current substitutions.
2866 @code{algebraic} must be set to @code{true} in order for the simplification of
2867 algebraic integers to take effect.
2869 Maxima initially knows about the imaginary unit @code{%i}
2870 and all roots of integers.
2872 There is a command @code{untellrat} which takes kernels and
2873 removes @code{tellrat} properties.
2875 When @code{tellrat}'ing a multivariate
2876 polynomial, e.g., @code{tellrat (x^2 - y^2)}, there would be an ambiguity as to
2877 whether to substitute @code{@var{y}^2} for @code{@var{x}^2}
2878 or vice versa.  
2879 Maxima picks a particular ordering, but if the user wants to specify which, e.g.
2880 @code{tellrat (y^2 = x^2)} provides a syntax which says replace
2881 @code{@var{y}^2} by @code{@var{x}^2}.
2883 @c CAN'T TELL WHAT THIS IS ABOUT -- tellrat(w^3-1)$ algebraic:true$ rat(1/(w^2-w));
2884 @c DOES NOT YIELD AN ERROR, SO WHAT IS THE POINT ABOUT ratalgdenom ??
2885 @c When you @code{tellrat} reducible polynomials, you want to be careful not to
2886 @c attempt to rationalize a denominator with a zero divisor.  E.g.
2887 @c tellrat(w^3-1)$ algebraic:true$ rat(1/(w^2-w)); will give "quotient by
2888 @c zero".  This error can be avoided by setting @code{ratalgdenom} to @code{false}.
2890 Examples:
2892 @c ===beg===
2893 @c 10*(%i + 1)/(%i + 3^(1/3));
2894 @c ev (ratdisrep (rat(%)), algebraic);
2895 @c tellrat (1 + a + a^2);
2896 @c 1/(a*sqrt(2) - 1) + a/(sqrt(3) + sqrt(2));
2897 @c ev (ratdisrep (rat(%)), algebraic);
2898 @c tellrat (y^2 = x^2);
2899 @c ===end===
2900 @example
2901 (%i1) 10*(%i + 1)/(%i + 3^(1/3));
2902                            10 (%i + 1)
2903 (%o1)                      -----------
2904                                   1/3
2905                             %i + 3
2906 (%i2) ev (ratdisrep (rat(%)), algebraic);
2907              2/3      1/3              2/3      1/3
2908 (%o2)    (4 3    - 2 3    - 4) %i + 2 3    + 4 3    - 2
2909 (%i3) tellrat (1 + a + a^2);
2910                             2
2911 (%o3)                     [a  + a + 1]
2912 (%i4) 1/(a*sqrt(2) - 1) + a/(sqrt(3) + sqrt(2));
2913                       1                 a
2914 (%o4)           ------------- + -----------------
2915                 sqrt(2) a - 1   sqrt(3) + sqrt(2)
2916 (%i5) ev (ratdisrep (rat(%)), algebraic);
2917          (7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1
2918 (%o5)    ----------------------------------------------
2919                                7
2920 (%i6) tellrat (y^2 = x^2);
2921                         2    2   2
2922 (%o6)                 [y  - x , a  + a + 1]
2923 @end example
2925 @opencatbox{Categories:}
2926 @category{Polynomials}
2927 @category{Rational expressions}
2928 @closecatbox
2929 @end deffn
2931 @c -----------------------------------------------------------------------------
2932 @anchor{totaldisrep}
2933 @deffn {Function} totaldisrep (@var{expr})
2935 Converts every subexpression of @var{expr} from canonical rational expressions
2936 (CRE) to general form and returns the result.
2937 If @var{expr} is itself in CRE form then @code{totaldisrep} is identical to
2938 @code{ratdisrep}.
2940 @code{totaldisrep} may be useful for
2941 ratdisrepping expressions such as equations, lists, matrices, etc., which
2942 have some subexpressions in CRE form.
2944 @c NEED EXAMPLES HERE
2945 @opencatbox{Categories:}
2946 @category{Rational expressions}
2947 @closecatbox
2948 @end deffn
2950 @c -----------------------------------------------------------------------------
2951 @anchor{untelltat}
2952 @deffn {Function} untellrat (@var{x_1}, @dots{}, @var{x_n})
2954 Removes @code{tellrat} properties from @var{x_1}, @dots{}, @var{x_n}.
2956 @c NEED EXAMPLES HERE
2957 @opencatbox{Categories:}
2958 @category{Polynomials}
2959 @category{Rational expressions}
2960 @closecatbox
2961 @end deffn
2963 @include extensions.texi