2 * Introduction to interpol::
3 * Functions and Variables for interpol::
6 @node Introduction to interpol, Functions and Variables for interpol, Package interpol, Package interpol
7 @section Introduction to interpol
9 Package @code{interpol} defines the Lagrangian, the linear and the cubic
10 splines methods for polynomial interpolation.
12 For comments, bugs or suggestions, please contact me at @var{'mario AT edu DOT xunta DOT es'}.
14 @opencatbox{Categories:}
15 @category{Numerical methods}
16 @category{Share packages}
17 @category{Package interpol}
20 @node Functions and Variables for interpol, , Introduction to interpol, Package interpol
21 @section Functions and Variables for interpol
25 @deffn {Function} lagrange @
26 @fname{lagrange} (@var{points}) @
27 @fname{lagrange} (@var{points}, @var{option})
29 Computes the polynomial interpolation by the Lagrangian method. Argument @var{points} must be either:
33 a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
35 a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
37 a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
40 In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
42 With the @var{option} argument it is possible to select the name for the independent variable, which is @code{'x} by default; to define another one, write something like @code{varname='z}.
44 Note that when working with high degree polynomials, floating point evaluations are unstable.
46 See also @mrefcomma{linearinterpol} @mrefcomma{cspline} and @mrefdot{ratinterpol}
51 (%i1) load("interpol")$
52 (%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
54 (x - 7) (x - 6) (x - 3) (x - 1)
55 (%o3) -------------------------------
57 (x - 8) (x - 6) (x - 3) (x - 1)
58 - -------------------------------
60 7 (x - 8) (x - 7) (x - 3) (x - 1)
61 + ---------------------------------
63 (x - 8) (x - 7) (x - 6) (x - 1)
64 - -------------------------------
66 (x - 8) (x - 7) (x - 6) (x - 3)
67 + -------------------------------
70 (x - 7) (x - 6) (x - 3) (x - 1)
71 (%o4) f(x) := -------------------------------
73 (x - 8) (x - 6) (x - 3) (x - 1)
74 - -------------------------------
76 7 (x - 8) (x - 7) (x - 3) (x - 1)
77 + ---------------------------------
79 (x - 8) (x - 7) (x - 6) (x - 1)
80 - -------------------------------
82 (x - 8) (x - 7) (x - 6) (x - 3)
83 + -------------------------------
85 (%i5) /* Evaluate the polynomial at some points */
86 expand(map(f,[2.3,5/7,%pi]));
88 919062 73 %pi 701 %pi 8957 %pi
89 (%o5) [- 1.567535, ------, ------- - -------- + ---------
95 (%o6) [- 1.567535, 10.9366573451538, 2.89319655125692]
96 (%i7) load("draw")$ /* load draw package */
97 (%i8) /* Plot the polynomial together with points */
100 key = "Lagrange polynomial",
101 explicit(f(x),x,0,10),
104 key = "Sample points",
106 (%i9) /* Change variable name */
107 lagrange(p, varname=w);
108 (w - 7) (w - 6) (w - 3) (w - 1)
109 (%o9) -------------------------------
111 (w - 8) (w - 6) (w - 3) (w - 1)
112 - -------------------------------
114 7 (w - 8) (w - 7) (w - 3) (w - 1)
115 + ---------------------------------
117 (w - 8) (w - 7) (w - 6) (w - 1)
118 - -------------------------------
120 (w - 8) (w - 7) (w - 6) (w - 3)
121 + -------------------------------
125 @opencatbox{Categories:}
126 @category{Package interpol}
133 @deffn {Function} charfun2 (@var{x}, @var{a}, @var{b})
135 The characteristic or indicator function on the half-open interval @math{[@var{a}, @var{b})},
136 that is, including @var{a} and excluding @var{b}.
138 When @math{@var{x} >= @var{a}} and @math{@var{x} < @var{b}} evaluates to @code{true} or @code{false},
139 @code{charfun2} returns 1 or 0, respectively.
141 Otherwise, @code{charfun2} returns a partially-evaluated result in terms of @mref{charfun}.
143 Package @code{interpol} loads this function.
145 See also @mrefdot{charfun}
149 When @math{@var{x} >= @var{a}} and @math{@var{x} < @var{b}} evaluates to @code{true} or @code{false},
150 @code{charfun2} returns 1 or 0, respectively.
153 @c load ("interpol") $
154 @c charfun2 (5, 0, 100);
155 @c charfun2 (-5, 0, 100);
158 (%i1) load ("interpol") $
159 (%i2) charfun2 (5, 0, 100);
161 (%i3) charfun2 (-5, 0, 100);
165 Otherwise, @code{charfun2} returns a partially-evaluated result in terms of @mref{charfun}.
168 @c load ("interpol") $
169 @c charfun2 (t, 0, 100);
170 @c charfun2 (5, u, v);
171 @c assume (v > u, u > 5);
172 @c charfun2 (5, u, v);
175 (%i1) load ("interpol") $
176 (%i2) charfun2 (t, 0, 100);
177 (%o2) charfun((0 <= t) and (t < 100))
178 (%i3) charfun2 (5, u, v);
179 (%o3) charfun((u <= 5) and (5 < v))
180 (%i4) assume (v > u, u > 5);
182 (%i5) charfun2 (5, u, v);
186 @opencatbox{Categories:}
187 @category{Package interpol}
193 @anchor{linearinterpol}
194 @deffn {Function} linearinterpol @
195 @fname{linearinterpol} (@var{points}) @
196 @fname{linearinterpol} (@var{points}, @var{option})
198 Computes the polynomial interpolation by the linear method. Argument @var{points} must be either:
202 a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
204 a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
206 a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
209 In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
211 With the @var{option} argument it is possible to select the name for the independent variable, which is @code{'x} by default; to define another one, write something like @code{varname='z}.
213 See also @mrefcomma{lagrange} @mrefcomma{cspline} and @mrefdot{ratinterpol}
218 (%i1) load("interpol")$
219 (%i2) p: matrix([7,2],[8,3],[1,5],[3,2],[6,7])$
220 (%i3) linearinterpol(p);
222 (%o3) (-- - ---) charfun2(x, minf, 3)
224 + (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)
226 + (--- - 3) charfun2(x, 3, 6)
231 (%o4) f(x) := (-- - ---) charfun2(x, minf, 3)
233 + (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)
235 + (--- - 3) charfun2(x, 3, 6)
237 (%i5) /* Evaluate the polynomial at some points */
238 map(f,[7.3,25/7,%pi]);
240 (%o5) [2.3, --, ----- - 3]
243 (%o6) [2.3, 2.952380952380953, 2.235987755982989]
244 (%i7) load("draw")$ /* load draw package */
245 (%i8) /* Plot the polynomial together with points */
248 key = "Linear interpolator",
249 explicit(f(x),x,-5,20),
252 key = "Sample points",
254 (%i9) /* Change variable name */
255 linearinterpol(p, varname='s);
257 (%o9) (-- - ---) charfun2(s, minf, 3)
259 + (s - 5) charfun2(s, 7, inf) + (37 - 5 s) charfun2(s, 6, 7)
261 + (--- - 3) charfun2(s, 3, 6)
265 @opencatbox{Categories:}
266 @category{Package interpol}
274 @deffn {Function} cspline @
275 @fname{cspline} (@var{points}) @
276 @fname{cspline} (@var{points}, @var{option1}, @var{option2}, ...)
278 Computes the polynomial interpolation by the cubic splines method. Argument @var{points} must be either:
282 a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
284 a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
286 a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
289 In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
291 There are three options to fit specific needs:
294 @code{'d1}, default @code{'unknown}, is the first derivative at @math{x_1}; if it is @code{'unknown}, the second derivative at @math{x_1} is made equal to 0 (natural cubic spline); if it is equal to a number, the second derivative is calculated based on this number.
297 @code{'dn}, default @code{'unknown}, is the first derivative at @math{x_n}; if it is @code{'unknown}, the second derivative at @math{x_n} is made equal to 0 (natural cubic spline); if it is equal to a number, the second derivative is calculated based on this number.
300 @code{'varname}, default @code{'x}, is the name of the independent variable.
303 See also @mrefcomma{lagrange} @mrefcomma{linearinterpol} and @mrefdot{ratinterpol}
307 (%i1) load("interpol")$
308 (%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
309 (%i3) /* Unknown first derivatives at the extremes
310 is equivalent to natural cubic splines */
313 1159 x 1159 x 6091 x 8283
314 (%o3) (------- - ------- - ------ + ----) charfun2(x, minf, 3)
317 2587 x 5174 x 494117 x 108928
318 + (- ------- + ------- - -------- + ------) charfun2(x, 7, inf)
321 4715 x 15209 x 579277 x 199575
322 + (------- - -------- + -------- - ------) charfun2(x, 6, 7)
325 3287 x 2223 x 48275 x 9609
326 + (- ------- + ------- - ------- + ----) charfun2(x, 3, 6)
330 (%i5) /* Some evaluations */
331 map(f,[2.3,5/7,%pi]), numer;
332 (%o5) [1.991460766423356, 5.823200187269903, 2.227405312429507]
333 (%i6) load("draw")$ /* load draw package */
334 (%i7) /* Plotting interpolating function */
337 key = "Cubic splines",
338 explicit(f(x),x,0,10),
341 key = "Sample points",
343 (%i8) /* New call, but giving values at the derivatives */
344 cspline(p,d1=0,dn=0);
346 1949 x 11437 x 17027 x 1247
347 (%o8) (------- - -------- + ------- + ----) charfun2(x, minf, 3)
350 1547 x 35581 x 68068 x 173546
351 + (- ------- + -------- - ------- + ------) charfun2(x, 7, inf)
354 607 x 35147 x 55706 x 38420
355 + (------ - -------- + ------- - -----) charfun2(x, 6, 7)
358 3895 x 1807 x 5146 x 2148
359 + (- ------- + ------- - ------ + ----) charfun2(x, 3, 6)
361 (%i8) /* Defining new interpolating function */
363 (%i9) /* Plotting both functions together */
366 key = "Cubic splines (default)",
367 explicit(f(x),x,0,10),
369 key = "Cubic splines (d1=0,dn=0)",
370 explicit(g(x),x,0,10),
373 key = "Sample points",
377 @opencatbox{Categories:}
378 @category{Package interpol}
384 @deffn {Function} ratinterpol @
385 @fname{ratinterpol} (@var{points}, @var{numdeg}) @
386 @fname{ratinterpol} (@var{points}, @var{numdeg}, @var{option1})
388 Generates a rational interpolator for data given by @var{points} and the degree of the numerator
389 being equal to @var{numdeg}; the degree of the denominator is calculated
390 automatically. Argument @var{points} must be either:
394 a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
396 a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
398 a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
401 In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
403 There is one option to fit specific needs:
406 @code{'varname}, default @code{'x}, is the name of the independent variable.
409 See also @mrefcomma{lagrange} @mrefcomma{linearinterpol} @mrefcomma{cspline} @mrefcomma{minpack_lsquares} and @ref{Package lbfgs}
414 (%i1) load("interpol")$
416 (%i3) p:[[7.2,2.5],[8.5,2.1],[1.6,5.1],[3.4,2.4],[6.7,7.9]]$
417 (%i4) for k:0 thru length(p)-1 do
419 explicit(ratinterpol(p,k),x,0,9),
422 title = concat("Degree of numerator = ",k),
426 @opencatbox{Categories:}
427 @category{Package interpol}