Add note that the lapack package needs to loaded to get the functions.
[maxima.git] / src / mopers.lisp
blob9b1c1f16d3405fec6c7d551945eac7f08409d18e
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module mopers macro)
15 ;; This file is the compile-time half of the OPERS package, an interface to the
16 ;; Maxima general representaton simplifier. When new expressions are being
17 ;; created, the macros in this file or the functions in NOPERS should be called
18 ;; rather than the entrypoints in SIMP such as SIMPLIFYA or SIMPLUS.
20 ;; The basic functions are ADD, SUB, MUL, DIV, POWER, NCMUL, NCPOWER, INV.
21 ;; Each of these functions assume that their arguments are simplified. Some
22 ;; functions will have a "*" adjoined to the end of the name (as in ADD*).
23 ;; These do not assume that their arguments are simplified. The above
24 ;; functions are the only entrypoints to this package.
26 ;; The functions ADD2, MUL2, and MUL3 are for use internal to this package
27 ;; and should not be called externally.
29 ;; I have added the macro DEFGRAD as an interface to the $DERIVATIVE function
30 ;; for use by macsyma programmers who want to do a bit of lisp programming. -GJC
32 (defmacro =0 (x) `(equal ,x 0))
33 (defmacro =1 (x) `(equal ,x 1))
35 ;; Addition -- call ADD with simplified operands,
36 ;; ADD* with unsimplified operands.
38 (defun add (&rest terms)
39 (if (= (length terms) 2)
40 (apply #'add2 terms)
41 (apply #'addn `(,terms t))))
43 (define-compiler-macro add (&rest terms)
44 (if (= (length terms) 2)
45 `(add2 ,@terms)
46 `(addn (list ,@terms) t)))
48 (defun add* (&rest terms)
49 (if (= (length terms) 2)
50 (apply #'add2* terms)
51 (apply #'addn `(,terms nil))))
53 (define-compiler-macro add* (&rest terms)
54 (if (= (length terms) 2)
55 `(add2* ,@terms)
56 `(addn (list ,@terms) nil)))
58 ;; Multiplication -- call MUL or NCMUL with simplified operands,
59 ;; MUL* or NCMUL* with unsimplified operands.
61 (defun mul (&rest factors)
62 (cond ((= (length factors) 2) (apply #'mul2 factors))
63 ((= (length factors) 3) (apply #'mul3 factors))
64 (t (apply #'muln `(,factors t)))))
66 (define-compiler-macro mul (&rest factors)
67 (cond ((= (length factors) 2) `(mul2 ,@factors))
68 ((= (length factors) 3) `(mul3 ,@factors))
69 (t `(muln (list ,@factors) t))))
71 (defun mul* (&rest factors)
72 (if (= (length factors) 2)
73 (apply #'mul2* factors)
74 (apply #'muln `(,factors nil))))
76 (define-compiler-macro mul* (&rest factors)
77 (if (= (length factors) 2)
78 `(mul2* ,@factors)
79 `(muln (list ,@factors) nil)))
81 (defmacro inv (x)
82 `(power ,x -1))
84 (defmacro inv* (x)
85 `(power* ,x -1))
87 (defmacro ncmul (&rest factors)
88 (if (= (length factors) 2)
89 `(ncmul2 ,@factors)
90 `(ncmuln (list ,@factors) t)))
92 ;; (TAKE '(%TAN) X) = tan(x)
94 ;; Stavros says it's named take:
95 ;; "Take as in 'take the sine of ...'. call or apply might imply
96 ;; it's a function call, which it isn't."
98 ;; This syntax really loses. Not only does this syntax lose, but this macro
99 ;; has to look like a subr. Otherwise, the definition would look like
100 ;; (DEFMACRO TAKE ((NIL (OPERATOR)) . ARGS) ...)
102 ;; (TAKE A B) --> (SIMPLIFYA (LIST A B) T)
103 ;; (TAKE '(%SIN) A) --> (SIMP-%SIN (LIST '(%SIN) A) 1 T)
105 (defmacro take (operator &rest args)
106 `(simplifya (list ,operator ,@args) t))
108 ;; take* does not assume that the arguments are simplified.
109 (defmacro take* (operator &rest args)
110 `(simplifya (list ,operator ,@args) nil))
112 ;; Like TAKE, but you only need to specify then name. So
114 ;; (ftake name x y) => (take '(name) x y)
116 ;; The name should be the verb form, like %foo.
117 (defmacro ftake (name &rest args)
118 `(simplifya (list (list ,name) ,@args)
121 (defmacro ftake* (name &rest args)
122 `(simplifya (list (list ,name) ,@args)
123 nil))
125 ;; Apply a function f to a list of its arguments 'args' and simplify the result. Assume
126 ;; that the list args is simplified.
127 (defmacro fapply (f args)
128 `(simplifya (cons (list ,f) ,args) t))
130 ;; Same as fapply, but don't assume that the list of arguments is simplified.
131 (defmacro fapply* (f args)
132 `(simplifya (cons (list ,f) ,args) nil))
134 (declaim (inline simplify))
135 (defun simplify (x)
136 (simplifya x nil))
138 ;; A hand-made DEFSTRUCT for dealing with the Maxima MDO structure.
139 ;; Used in GRAM, etc. for storing/retrieving from DO structures.
141 (defmacro make-mdo () '(list (list 'mdo) nil nil nil nil nil nil nil))
143 (defmacro mdo-op (x) `(car (car ,x)))
145 (defmacro mdo-for (x) `(second ,x))
146 (defmacro mdo-from (x) `(third ,x))
147 (defmacro mdo-step (x) `(fourth ,x))
148 (defmacro mdo-next (x) `(fifth ,x))
149 (defmacro mdo-thru (x) `(sixth ,x))
150 (defmacro mdo-unless (x) `(seventh ,x))
151 (defmacro mdo-body (x) `(eighth ,x))
153 (defmacro defgrad (name arguments &body body)
154 `(defprop ,name (,arguments ,@body) grad))