share/tensor/itensor.lisp: make X and D shared lexical variables for the functions...
[maxima.git] / share / minpack / fortran / dogleg.f
blobb812f1966e85f0c66a00f0f783f2118e201e5d2e
1 subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2)
2 integer n,lr
3 double precision delta
4 double precision r(lr),diag(n),qtb(n),x(n),wa1(n),wa2(n)
5 c **********
7 c subroutine dogleg
9 c given an m by n matrix a, an n by n nonsingular diagonal
10 c matrix d, an m-vector b, and a positive number delta, the
11 c problem is to determine the convex combination x of the
12 c gauss-newton and scaled gradient directions that minimizes
13 c (a*x - b) in the least squares sense, subject to the
14 c restriction that the euclidean norm of d*x be at most delta.
16 c this subroutine completes the solution of the problem
17 c if it is provided with the necessary information from the
18 c qr factorization of a. that is, if a = q*r, where q has
19 c orthogonal columns and r is an upper triangular matrix,
20 c then dogleg expects the full upper triangle of r and
21 c the first n components of (q transpose)*b.
23 c the subroutine statement is
25 c subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2)
27 c where
29 c n is a positive integer input variable set to the order of r.
31 c r is an input array of length lr which must contain the upper
32 c triangular matrix r stored by rows.
34 c lr is a positive integer input variable not less than
35 c (n*(n+1))/2.
37 c diag is an input array of length n which must contain the
38 c diagonal elements of the matrix d.
40 c qtb is an input array of length n which must contain the first
41 c n elements of the vector (q transpose)*b.
43 c delta is a positive input variable which specifies an upper
44 c bound on the euclidean norm of d*x.
46 c x is an output array of length n which contains the desired
47 c convex combination of the gauss-newton direction and the
48 c scaled gradient direction.
50 c wa1 and wa2 are work arrays of length n.
52 c subprograms called
54 c minpack-supplied ... dpmpar,enorm
56 c fortran-supplied ... dabs,dmax1,dmin1,dsqrt
58 c argonne national laboratory. minpack project. march 1980.
59 c burton s. garbow, kenneth e. hillstrom, jorge j. more
61 c **********
62 integer i,j,jj,jp1,k,l
63 double precision alpha,bnorm,epsmch,gnorm,one,qnorm,sgnorm,sum,
64 * temp,zero
65 double precision dpmpar,enorm
66 data one,zero /1.0d0,0.0d0/
68 c epsmch is the machine precision.
70 epsmch = dpmpar(1)
72 c first, calculate the gauss-newton direction.
74 jj = (n*(n + 1))/2 + 1
75 do 50 k = 1, n
76 j = n - k + 1
77 jp1 = j + 1
78 jj = jj - k
79 l = jj + 1
80 sum = zero
81 if (n .lt. jp1) go to 20
82 do 10 i = jp1, n
83 sum = sum + r(l)*x(i)
84 l = l + 1
85 10 continue
86 20 continue
87 temp = r(jj)
88 if (temp .ne. zero) go to 40
89 l = j
90 do 30 i = 1, j
91 temp = dmax1(temp,dabs(r(l)))
92 l = l + n - i
93 30 continue
94 temp = epsmch*temp
95 if (temp .eq. zero) temp = epsmch
96 40 continue
97 x(j) = (qtb(j) - sum)/temp
98 50 continue
100 c test whether the gauss-newton direction is acceptable.
102 do 60 j = 1, n
103 wa1(j) = zero
104 wa2(j) = diag(j)*x(j)
105 60 continue
106 qnorm = enorm(n,wa2)
107 if (qnorm .le. delta) go to 140
109 c the gauss-newton direction is not acceptable.
110 c next, calculate the scaled gradient direction.
112 l = 1
113 do 80 j = 1, n
114 temp = qtb(j)
115 do 70 i = j, n
116 wa1(i) = wa1(i) + r(l)*temp
117 l = l + 1
118 70 continue
119 wa1(j) = wa1(j)/diag(j)
120 80 continue
122 c calculate the norm of the scaled gradient and test for
123 c the special case in which the scaled gradient is zero.
125 gnorm = enorm(n,wa1)
126 sgnorm = zero
127 alpha = delta/qnorm
128 if (gnorm .eq. zero) go to 120
130 c calculate the point along the scaled gradient
131 c at which the quadratic is minimized.
133 do 90 j = 1, n
134 wa1(j) = (wa1(j)/gnorm)/diag(j)
135 90 continue
136 l = 1
137 do 110 j = 1, n
138 sum = zero
139 do 100 i = j, n
140 sum = sum + r(l)*wa1(i)
141 l = l + 1
142 100 continue
143 wa2(j) = sum
144 110 continue
145 temp = enorm(n,wa2)
146 sgnorm = (gnorm/temp)/temp
148 c test whether the scaled gradient direction is acceptable.
150 alpha = zero
151 if (sgnorm .ge. delta) go to 120
153 c the scaled gradient direction is not acceptable.
154 c finally, calculate the point along the dogleg
155 c at which the quadratic is minimized.
157 bnorm = enorm(n,qtb)
158 temp = (bnorm/gnorm)*(bnorm/qnorm)*(sgnorm/delta)
159 temp = temp - (delta/qnorm)*(sgnorm/delta)**2
160 * + dsqrt((temp-(delta/qnorm))**2
161 * +(one-(delta/qnorm)**2)*(one-(sgnorm/delta)**2))
162 alpha = ((delta/qnorm)*(one - (sgnorm/delta)**2))/temp
163 120 continue
165 c form appropriate convex combination of the gauss-newton
166 c direction and the scaled gradient direction.
168 temp = (one - alpha)*dmin1(sgnorm,delta)
169 do 130 j = 1, n
170 x(j) = temp*wa1(j) + alpha*x(j)
171 130 continue
172 140 continue
173 return
175 c last card of subroutine dogleg.