share/tensor/itensor.lisp: make X and D shared lexical variables for the functions...
[maxima.git] / share / minpack / fortran / hybrj.f
blob3070dad3fabc924ce176b3d1542e63ea05523718
1 subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,mode,
2 * factor,nprint,info,nfev,njev,r,lr,qtf,wa1,wa2,
3 * wa3,wa4)
4 integer n,ldfjac,maxfev,mode,nprint,info,nfev,njev,lr
5 double precision xtol,factor
6 double precision x(n),fvec(n),fjac(ldfjac,n),diag(n),r(lr),
7 * qtf(n),wa1(n),wa2(n),wa3(n),wa4(n)
8 c **********
10 c subroutine hybrj
12 c the purpose of hybrj is to find a zero of a system of
13 c n nonlinear functions in n variables by a modification
14 c of the powell hybrid method. the user must provide a
15 c subroutine which calculates the functions and the jacobian.
17 c the subroutine statement is
19 c subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,
20 c mode,factor,nprint,info,nfev,njev,r,lr,qtf,
21 c wa1,wa2,wa3,wa4)
23 c where
25 c fcn is the name of the user-supplied subroutine which
26 c calculates the functions and the jacobian. fcn must
27 c be declared in an external statement in the user
28 c calling program, and should be written as follows.
30 c subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
31 c integer n,ldfjac,iflag
32 c double precision x(n),fvec(n),fjac(ldfjac,n)
33 c ----------
34 c if iflag = 1 calculate the functions at x and
35 c return this vector in fvec. do not alter fjac.
36 c if iflag = 2 calculate the jacobian at x and
37 c return this matrix in fjac. do not alter fvec.
38 c ---------
39 c return
40 c end
42 c the value of iflag should not be changed by fcn unless
43 c the user wants to terminate execution of hybrj.
44 c in this case set iflag to a negative integer.
46 c n is a positive integer input variable set to the number
47 c of functions and variables.
49 c x is an array of length n. on input x must contain
50 c an initial estimate of the solution vector. on output x
51 c contains the final estimate of the solution vector.
53 c fvec is an output array of length n which contains
54 c the functions evaluated at the output x.
56 c fjac is an output n by n array which contains the
57 c orthogonal matrix q produced by the qr factorization
58 c of the final approximate jacobian.
60 c ldfjac is a positive integer input variable not less than n
61 c which specifies the leading dimension of the array fjac.
63 c xtol is a nonnegative input variable. termination
64 c occurs when the relative error between two consecutive
65 c iterates is at most xtol.
67 c maxfev is a positive integer input variable. termination
68 c occurs when the number of calls to fcn with iflag = 1
69 c has reached maxfev.
71 c diag is an array of length n. if mode = 1 (see
72 c below), diag is internally set. if mode = 2, diag
73 c must contain positive entries that serve as
74 c multiplicative scale factors for the variables.
76 c mode is an integer input variable. if mode = 1, the
77 c variables will be scaled internally. if mode = 2,
78 c the scaling is specified by the input diag. other
79 c values of mode are equivalent to mode = 1.
81 c factor is a positive input variable used in determining the
82 c initial step bound. this bound is set to the product of
83 c factor and the euclidean norm of diag*x if nonzero, or else
84 c to factor itself. in most cases factor should lie in the
85 c interval (.1,100.). 100. is a generally recommended value.
87 c nprint is an integer input variable that enables controlled
88 c printing of iterates if it is positive. in this case,
89 c fcn is called with iflag = 0 at the beginning of the first
90 c iteration and every nprint iterations thereafter and
91 c immediately prior to return, with x and fvec available
92 c for printing. fvec and fjac should not be altered.
93 c if nprint is not positive, no special calls of fcn
94 c with iflag = 0 are made.
96 c info is an integer output variable. if the user has
97 c terminated execution, info is set to the (negative)
98 c value of iflag. see description of fcn. otherwise,
99 c info is set as follows.
101 c info = 0 improper input parameters.
103 c info = 1 relative error between two consecutive iterates
104 c is at most xtol.
106 c info = 2 number of calls to fcn with iflag = 1 has
107 c reached maxfev.
109 c info = 3 xtol is too small. no further improvement in
110 c the approximate solution x is possible.
112 c info = 4 iteration is not making good progress, as
113 c measured by the improvement from the last
114 c five jacobian evaluations.
116 c info = 5 iteration is not making good progress, as
117 c measured by the improvement from the last
118 c ten iterations.
120 c nfev is an integer output variable set to the number of
121 c calls to fcn with iflag = 1.
123 c njev is an integer output variable set to the number of
124 c calls to fcn with iflag = 2.
126 c r is an output array of length lr which contains the
127 c upper triangular matrix produced by the qr factorization
128 c of the final approximate jacobian, stored rowwise.
130 c lr is a positive integer input variable not less than
131 c (n*(n+1))/2.
133 c qtf is an output array of length n which contains
134 c the vector (q transpose)*fvec.
136 c wa1, wa2, wa3, and wa4 are work arrays of length n.
138 c subprograms called
140 c user-supplied ...... fcn
142 c minpack-supplied ... dogleg,dpmpar,enorm,
143 c qform,qrfac,r1mpyq,r1updt
145 c fortran-supplied ... dabs,dmax1,dmin1,mod
147 c argonne national laboratory. minpack project. march 1980.
148 c burton s. garbow, kenneth e. hillstrom, jorge j. more
150 c **********
151 integer i,iflag,iter,j,jm1,l,ncfail,ncsuc,nslow1,nslow2
152 integer iwa(1)
153 logical jeval,sing
154 double precision actred,delta,epsmch,fnorm,fnorm1,one,pnorm,
155 * prered,p1,p5,p001,p0001,ratio,sum,temp,xnorm,
156 * zero
157 double precision dpmpar,enorm
158 data one,p1,p5,p001,p0001,zero
159 * /1.0d0,1.0d-1,5.0d-1,1.0d-3,1.0d-4,0.0d0/
161 c epsmch is the machine precision.
163 epsmch = dpmpar(1)
165 info = 0
166 iflag = 0
167 nfev = 0
168 njev = 0
170 c check the input parameters for errors.
172 if (n .le. 0 .or. ldfjac .lt. n .or. xtol .lt. zero
173 * .or. maxfev .le. 0 .or. factor .le. zero
174 * .or. lr .lt. (n*(n + 1))/2) go to 300
175 if (mode .ne. 2) go to 20
176 do 10 j = 1, n
177 if (diag(j) .le. zero) go to 300
178 10 continue
179 20 continue
181 c evaluate the function at the starting point
182 c and calculate its norm.
184 iflag = 1
185 call fcn(n,x,fvec,fjac,ldfjac,iflag)
186 nfev = 1
187 if (iflag .lt. 0) go to 300
188 fnorm = enorm(n,fvec)
190 c initialize iteration counter and monitors.
192 iter = 1
193 ncsuc = 0
194 ncfail = 0
195 nslow1 = 0
196 nslow2 = 0
198 c beginning of the outer loop.
200 30 continue
201 jeval = .true.
203 c calculate the jacobian matrix.
205 iflag = 2
206 call fcn(n,x,fvec,fjac,ldfjac,iflag)
207 njev = njev + 1
208 if (iflag .lt. 0) go to 300
210 c compute the qr factorization of the jacobian.
212 call qrfac(n,n,fjac,ldfjac,.false.,iwa,1,wa1,wa2,wa3)
214 c on the first iteration and if mode is 1, scale according
215 c to the norms of the columns of the initial jacobian.
217 if (iter .ne. 1) go to 70
218 if (mode .eq. 2) go to 50
219 do 40 j = 1, n
220 diag(j) = wa2(j)
221 if (wa2(j) .eq. zero) diag(j) = one
222 40 continue
223 50 continue
225 c on the first iteration, calculate the norm of the scaled x
226 c and initialize the step bound delta.
228 do 60 j = 1, n
229 wa3(j) = diag(j)*x(j)
230 60 continue
231 xnorm = enorm(n,wa3)
232 delta = factor*xnorm
233 if (delta .eq. zero) delta = factor
234 70 continue
236 c form (q transpose)*fvec and store in qtf.
238 do 80 i = 1, n
239 qtf(i) = fvec(i)
240 80 continue
241 do 120 j = 1, n
242 if (fjac(j,j) .eq. zero) go to 110
243 sum = zero
244 do 90 i = j, n
245 sum = sum + fjac(i,j)*qtf(i)
246 90 continue
247 temp = -sum/fjac(j,j)
248 do 100 i = j, n
249 qtf(i) = qtf(i) + fjac(i,j)*temp
250 100 continue
251 110 continue
252 120 continue
254 c copy the triangular factor of the qr factorization into r.
256 sing = .false.
257 do 150 j = 1, n
258 l = j
259 jm1 = j - 1
260 if (jm1 .lt. 1) go to 140
261 do 130 i = 1, jm1
262 r(l) = fjac(i,j)
263 l = l + n - i
264 130 continue
265 140 continue
266 r(l) = wa1(j)
267 if (wa1(j) .eq. zero) sing = .true.
268 150 continue
270 c accumulate the orthogonal factor in fjac.
272 call qform(n,n,fjac,ldfjac,wa1)
274 c rescale if necessary.
276 if (mode .eq. 2) go to 170
277 do 160 j = 1, n
278 diag(j) = dmax1(diag(j),wa2(j))
279 160 continue
280 170 continue
282 c beginning of the inner loop.
284 180 continue
286 c if requested, call fcn to enable printing of iterates.
288 if (nprint .le. 0) go to 190
289 iflag = 0
290 if (mod(iter-1,nprint) .eq. 0)
291 * call fcn(n,x,fvec,fjac,ldfjac,iflag)
292 if (iflag .lt. 0) go to 300
293 190 continue
295 c determine the direction p.
297 call dogleg(n,r,lr,diag,qtf,delta,wa1,wa2,wa3)
299 c store the direction p and x + p. calculate the norm of p.
301 do 200 j = 1, n
302 wa1(j) = -wa1(j)
303 wa2(j) = x(j) + wa1(j)
304 wa3(j) = diag(j)*wa1(j)
305 200 continue
306 pnorm = enorm(n,wa3)
308 c on the first iteration, adjust the initial step bound.
310 if (iter .eq. 1) delta = dmin1(delta,pnorm)
312 c evaluate the function at x + p and calculate its norm.
314 iflag = 1
315 call fcn(n,wa2,wa4,fjac,ldfjac,iflag)
316 nfev = nfev + 1
317 if (iflag .lt. 0) go to 300
318 fnorm1 = enorm(n,wa4)
320 c compute the scaled actual reduction.
322 actred = -one
323 if (fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
325 c compute the scaled predicted reduction.
327 l = 1
328 do 220 i = 1, n
329 sum = zero
330 do 210 j = i, n
331 sum = sum + r(l)*wa1(j)
332 l = l + 1
333 210 continue
334 wa3(i) = qtf(i) + sum
335 220 continue
336 temp = enorm(n,wa3)
337 prered = zero
338 if (temp .lt. fnorm) prered = one - (temp/fnorm)**2
340 c compute the ratio of the actual to the predicted
341 c reduction.
343 ratio = zero
344 if (prered .gt. zero) ratio = actred/prered
346 c update the step bound.
348 if (ratio .ge. p1) go to 230
349 ncsuc = 0
350 ncfail = ncfail + 1
351 delta = p5*delta
352 go to 240
353 230 continue
354 ncfail = 0
355 ncsuc = ncsuc + 1
356 if (ratio .ge. p5 .or. ncsuc .gt. 1)
357 * delta = dmax1(delta,pnorm/p5)
358 if (dabs(ratio-one) .le. p1) delta = pnorm/p5
359 240 continue
361 c test for successful iteration.
363 if (ratio .lt. p0001) go to 260
365 c successful iteration. update x, fvec, and their norms.
367 do 250 j = 1, n
368 x(j) = wa2(j)
369 wa2(j) = diag(j)*x(j)
370 fvec(j) = wa4(j)
371 250 continue
372 xnorm = enorm(n,wa2)
373 fnorm = fnorm1
374 iter = iter + 1
375 260 continue
377 c determine the progress of the iteration.
379 nslow1 = nslow1 + 1
380 if (actred .ge. p001) nslow1 = 0
381 if (jeval) nslow2 = nslow2 + 1
382 if (actred .ge. p1) nslow2 = 0
384 c test for convergence.
386 if (delta .le. xtol*xnorm .or. fnorm .eq. zero) info = 1
387 if (info .ne. 0) go to 300
389 c tests for termination and stringent tolerances.
391 if (nfev .ge. maxfev) info = 2
392 if (p1*dmax1(p1*delta,pnorm) .le. epsmch*xnorm) info = 3
393 if (nslow2 .eq. 5) info = 4
394 if (nslow1 .eq. 10) info = 5
395 if (info .ne. 0) go to 300
397 c criterion for recalculating jacobian.
399 if (ncfail .eq. 2) go to 290
401 c calculate the rank one modification to the jacobian
402 c and update qtf if necessary.
404 do 280 j = 1, n
405 sum = zero
406 do 270 i = 1, n
407 sum = sum + fjac(i,j)*wa4(i)
408 270 continue
409 wa2(j) = (sum - wa3(j))/pnorm
410 wa1(j) = diag(j)*((diag(j)*wa1(j))/pnorm)
411 if (ratio .ge. p0001) qtf(j) = sum
412 280 continue
414 c compute the qr factorization of the updated jacobian.
416 call r1updt(n,n,r,lr,wa1,wa2,wa3,sing)
417 call r1mpyq(n,n,fjac,ldfjac,wa2,wa3)
418 call r1mpyq(1,n,qtf,1,wa2,wa3)
420 c end of the inner loop.
422 jeval = .false.
423 go to 180
424 290 continue
426 c end of the outer loop.
428 go to 30
429 300 continue
431 c termination, either normal or user imposed.
433 if (iflag .lt. 0) info = iflag
434 iflag = 0
435 if (nprint .gt. 0) call fcn(n,x,fvec,fjac,ldfjac,iflag)
436 return
438 c last card of subroutine hybrj.