1 \section{Truss Design}
\r
3 For the demonstration of the efficiency of the Solver finally the examples stated in the introduction \ref{TM} and \ref{ET} are solved. In the following the complete display of the outputs of the two program runs are reported. We use the following lexicon:
\r
6 \begin {tabular} {r r | l }
\r
7 {\sf LEXICON:} & {\it\color{black} German} & {\color{blue} English } \\
\r
9 & Stabzweischlags & \color{blue} two-bar truss \\
\r
11 & Zweischlag & \color{blue} two-bar \\
\r
12 & Stababmessungen & \color{blue} bar dimensions \\
\r
13 & Zweischlagparameter & \color{blue} two-bar parameters
\r
19 \begin{literatim}{|}
\r
22 F*cos(gamma) - S1*cos(alpha) - S2*cos(beta) = 0,
\r
23 F*sin(gamma) - S1*sin(alpha) + S2*sin(beta) = 0,
\r
24 Delta_l1 = l1*S1/(E*A1),
\r
25 Delta_l2 = l2*S2/(E*A2),
\r
28 a = Delta_l2/sin(alpha+beta),
\r
29 b = Delta_l1/sin(alpha+beta),
\r
30 u = a*sin(alpha) + b*sin(beta),
\r
31 w = -a*cos(alpha) + b*cos(beta),
\r
36 (COM2) Stababmessungen : [h1, h2]$
\r
38 (COM3) Zweischlagparameter : [alpha, beta, gamma, F, c, E, u, w]$
\r
40 (COM4) SolverRepeatImmed : SolverRepeatLinear : FALSE$
\r
42 (COM5) MsgLevel : 'DETAIL$
\r
44 (COM6) Solver( Zweischlag, Stababmessungen, Zweischlagparameter );
\r
45 The variables to be solved for are [H1, H2]
\r
46 The parameters are [ALPHA, BETA, C, E, F, U, W, GAMMA]
\r
47 Checking for inconsistencies...
\r
49 Searching for immediate assignments.
\r
51 Assigning L1 = ----------
\r
54 Assigning L2 = ---------
\r
56 Checking for inconsistencies...
\r
58 Searching for linear equations...
\r
59 ...with respect to: [H1, H2, A, A1, A2, B, DELTA_L1, DELTA_L2, S1, S2]
\r
60 Found 7 linear equations in 7 variables.
\r
61 The variables to be solved for are [A, A1, B, DELTA_L1, DELTA_L2, S1, S2]
\r
62 The equations are [F COS(GAMMA) - COS(BETA) S2 - COS(ALPHA) S1,
\r
64 F SIN(GAMMA) + SIN(BETA) S2 - SIN(ALPHA) S1,
\r
66 A SIN(BETA + ALPHA) - DELTA_L2, B SIN(BETA + ALPHA) - DELTA_L1,
\r
69 U - B SIN(BETA) - A SIN(ALPHA), W - B COS(BETA) + A COS(ALPHA), A1 - H1 ]
\r
70 Solving linear equations.
\r
71 COS(BETA) U - SIN(BETA) W
\r
72 The solutions are [A = -------------------------------------------,
\r
73 COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)
\r
75 2 SIN(ALPHA) W + COS(ALPHA) U
\r
76 A1 = H1 , B = -------------------------------------------,
\r
77 COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)
\r
79 DELTA_L1 = (SIN(ALPHA) SIN(BETA + ALPHA) W
\r
81 + COS(ALPHA) SIN(BETA + ALPHA) U)/(COS(ALPHA) SIN(BETA)
\r
83 + SIN(ALPHA) COS(BETA)), DELTA_L2 =
\r
85 COS(BETA) SIN(BETA + ALPHA) U - SIN(BETA) SIN(BETA + ALPHA) W
\r
86 -------------------------------------------------------------,
\r
87 COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)
\r
89 COS(BETA) F SIN(GAMMA) + SIN(BETA) F COS(GAMMA)
\r
90 S1 = -----------------------------------------------,
\r
91 COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)
\r
93 SIN(ALPHA) F COS(GAMMA) - COS(ALPHA) F SIN(GAMMA)
\r
94 S2 = -------------------------------------------------]
\r
95 COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)
\r
96 Checking for inconsistencies...
\r
98 Checking for remaining equations.
\r
99 3 equation(s) and 2 variable(s) left.
\r
100 The variables to be solved for are [H1, H2]
\r
101 Applying valuation strategy.
\r
102 Trying to solve equation 3 for H2
\r
105 The equation is A2 - H2 = 0
\r
106 Checking if equation was solved correctly.
\r
107 The solutions are [H2 = - SQRT(A2), H2 = SQRT(A2)]
\r
108 Solution is correct.
\r
109 The solution is not unique. Tracing paths separately.
\r
111 Checking for inconsistencies...
\r
114 Checking for inconsistencies...
\r
116 Consistent solutions for H2 : [H2 = - SQRT(A2), H2 = SQRT(A2)]
\r
117 Checking for remaining equations.
\r
118 2 equation(s) and 2 variable(s) left.
\r
119 The variables to be solved for are [A2, H1]
\r
120 Applying valuation strategy.
\r
121 Trying to solve equation 2 for A2
\r
123 The equation is COS(ALPHA) C F SIN(GAMMA) - SIN(ALPHA) C F COS(GAMMA)
\r
125 - A2 COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W
\r
128 + A2 COS (BETA) SIN(BETA + ALPHA) E U = 0
\r
129 Checking if equation was solved correctly.
\r
130 The solutions are [A2 = (COS(ALPHA) C F SIN(GAMMA)
\r
132 - SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W
\r
135 - COS (BETA) SIN(BETA + ALPHA) E U)]
\r
136 Solution is correct.
\r
138 Checking for inconsistencies...
\r
140 Consistent solutions for A2 : [A2 = (COS(ALPHA) C F SIN(GAMMA)
\r
142 - SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W
\r
145 - COS (BETA) SIN(BETA + ALPHA) E U)]
\r
146 Checking for remaining equations.
\r
147 1 equation(s) and 1 variable(s) left.
\r
148 The variables to be solved for are [H1]
\r
149 Trying to solve equation 1 for H1
\r
150 Valuation: (irrelevant)
\r
151 The equation is - COS(BETA) C F SIN(GAMMA) - SIN(BETA) C F COS(GAMMA)
\r
154 + COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E H1 W
\r
157 + COS (ALPHA) SIN(BETA + ALPHA) E H1 U = 0
\r
158 Checking if equation was solved correctly.
\r
159 The solutions are [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)
\r
161 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
164 + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
166 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
169 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
171 H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)
\r
174 E W + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
176 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
179 + COS (ALPHA) SIN(BETA + ALPHA) E U))]
\r
180 Solution is correct.
\r
181 The solution is not unique. Tracing paths separately.
\r
183 Checking for inconsistencies...
\r
186 Checking for inconsistencies...
\r
188 Consistent solutions for H1 : [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)
\r
190 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
193 + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
195 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
198 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
200 H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)
\r
203 E W + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
205 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
208 + COS (ALPHA) SIN(BETA + ALPHA) E U))]
\r
209 Checking for remaining equations.
\r
210 All variables solved for. No equations left.
\r
211 Checking for remaining equations.
\r
212 All variables solved for. No equations left.
\r
213 Checking for remaining equations.
\r
214 2 equation(s) and 2 variable(s) left.
\r
215 The variables to be solved for are [A2, H1]
\r
216 Applying valuation strategy.
\r
217 Trying to solve equation 2 for A2
\r
219 The equation is COS(ALPHA) C F SIN(GAMMA) - SIN(ALPHA) C F COS(GAMMA)
\r
221 - A2 COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W
\r
224 + A2 COS (BETA) SIN(BETA + ALPHA) E U = 0
\r
225 Checking if equation was solved correctly.
\r
226 The solutions are [A2 = (COS(ALPHA) C F SIN(GAMMA)
\r
228 - SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W
\r
231 - COS (BETA) SIN(BETA + ALPHA) E U)]
\r
232 Solution is correct.
\r
234 Checking for inconsistencies...
\r
236 Consistent solutions for A2 : [A2 = (COS(ALPHA) C F SIN(GAMMA)
\r
238 - SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W
\r
241 - COS (BETA) SIN(BETA + ALPHA) E U)]
\r
242 Checking for remaining equations.
\r
243 1 equation(s) and 1 variable(s) left.
\r
244 The variables to be solved for are [H1]
\r
245 Trying to solve equation 1 for H1
\r
246 Valuation: (irrelevant)
\r
247 The equation is - COS(BETA) C F SIN(GAMMA) - SIN(BETA) C F COS(GAMMA)
\r
250 + COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E H1 W
\r
253 + COS (ALPHA) SIN(BETA + ALPHA) E H1 U = 0
\r
254 Checking if equation was solved correctly.
\r
255 The solutions are [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)
\r
257 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
260 + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
262 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
265 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
267 H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)
\r
270 E W + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
272 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
275 + COS (ALPHA) SIN(BETA + ALPHA) E U))]
\r
276 Solution is correct.
\r
277 The solution is not unique. Tracing paths separately.
\r
279 Checking for inconsistencies...
\r
282 Checking for inconsistencies...
\r
284 Consistent solutions for H1 : [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)
\r
286 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
289 + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
291 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
294 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
296 H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)
\r
299 E W + COS (ALPHA) SIN(BETA + ALPHA) E U)
\r
301 + SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
304 + COS (ALPHA) SIN(BETA + ALPHA) E U))]
\r
305 Checking for remaining equations.
\r
306 All variables solved for. No equations left.
\r
307 Checking for remaining equations.
\r
308 All variables solved for. No equations left.
\r
309 Postprocessing results.
\r
311 (D6) [[H1 = - SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))
\r
313 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
316 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
318 H2 = - SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))
\r
321 /(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)
\r
323 E W))], [H1 = SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))
\r
325 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
328 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
330 H2 = - SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))
\r
333 /(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)
\r
335 E W))], [H1 = - SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))
\r
337 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
340 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
342 H2 = SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))
\r
345 /(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)
\r
347 E W))], [H1 = SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))
\r
349 /(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W
\r
352 + COS (ALPHA) SIN(BETA + ALPHA) E U)),
\r
354 H2 = SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))
\r
357 /(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)
\r
362 For the system of equations, which describe the
\r
364 Solver gives four distinct analytical solutions, which are different only in their signs.
\r
365 Due to the physical boundary condition, that the lengths
\r
366 $h_1$ and $h_2$ cannot have negative values, only the last solutionis meaningful
\r
370 \cos \beta \, c \, F \, \sin \gamma + \sin \beta \, c \, F \,
\r
373 \cos \alpha \, \sin \alpha \, \sin \left( \beta + \alpha \right) \,
\r
374 E \, w + \cos^2 \alpha \, \sin \left( \beta + \alpha \right) \, E \,
\r
380 \sin \alpha \, c \, F \, \cos \gamma - \cos \alpha \, c \, F \,
\r
383 \cos^2 \beta \, \sin \left( \beta + \alpha \right) \, E \, u
\r
384 - \cos \beta \, \sin \beta \, \sin \left( \beta + \alpha \right) \,
\r
391 \section{Transistor Amplifier Design}
\r
393 We use the following
\r
396 \begin {tabular} {r r | l }
\r
397 {\sf LEXICON:} & {\it\color{black} German} & {\color{blue} English } \\
\r
399 & Verstaerker & \color{blue} amplifier \\
\r
400 & Widerstaende & \color{blue} resistances \\
\r
401 & Designparameter & \color{blue} design parameter
\r
407 \begin{literatim}{|}
\r
408 (COM7) Verstaerker :
\r
410 -V_V1+V_R1+V_OC_1+V_FIX2_Q1 = 0,-V_V1+V_R2+V_OC_1+V_I1+V_FIX2_Q1 = 0,
\r
411 -V_V1+V_OC_1+V_I1+V_FIX2_Q2+V_FIX2_Q1-V_FIX1_Q2-V_FIX1_Q1 = 0,
\r
412 V_V1-V_R6+V_R3-V_OC_1-V_I1-V_FIX2_Q1+V_FIX1_Q1 = 0,
\r
413 -V_V1+V_R7+V_R4+V_OC_1+V_I1-V_FIX1_Q2 = 0,-V_V1+V_R7+V_R5+V_OC_1 = 0,
\r
414 V_OC_2-V_I1+V_FIX1_Q2 = 0,V_V_CC-V_V1+V_R6+V_OC_1+V_FIX2_Q1-V_FIX1_Q1 = 0,
\r
415 I_V1+I_OC_1 = 0,I_R7-I_OC_1+I_FIX2_Q1 = 0,I_R2+I_R1-I_FIX2_Q1-I_FIX1_Q1 = 0,
\r
416 I_R6+I_FIX2_Q2+I_FIX1_Q1 = 0,-I_R7+I_R5+I_R4 = 0,
\r
417 -I_R4+I_OC_2-I_FIX2_Q2-I_FIX1_Q2 = 0,I_R3-I_R2+I_I1+I_FIX1_Q2 = 0,
\r
418 I_V_CC-I_R6-I_R3 = 0,V_V1 = 0,I_I1 = 0,I_OC_1 = 0,V_FIX1_Q1 = 2.72,
\r
419 V_FIX2_Q1 = 0.607,I_R1*R1-V_R1 = 0,I_R7*R7-V_R7 = 0,I_R2*R2-V_R2 = 0,
\r
420 I_R6*R6-V_R6 = 0,V_FIX1_Q2 = 6.42,V_FIX2_Q2 = 0.698,I_R3*R3-V_R3 = 0,
\r
421 I_R4*R4-V_R4 = 0,I_R5*R5-V_R5 = 0,I_OC_2 = 0,V_V_CC = VCC,
\r
422 I_FIX1_Q1 = 1.11e-4,I_FIX2_Q1 = 5.75001e-7,I_FIX1_Q2 = 0.00401,
\r
423 I_FIX2_Q2 = 1.26e-5,
\r
424 A = 145303681853*R2/(145309663773*R1),
\r
426 ZOUT = (1675719398828125*R2*R7+394048139880824192*R1*R2)
\r
427 /(136552890630303121408*R1)
\r
430 (COM8) Widerstaende : [R1, R2, R3, R4, R5, R6, R7]$
\r
432 (COM9) Designparameter : [VCC, A, ZIN, ZOUT]$
\r
434 (COM10) SolverRepeatImmed : SolverRepeatLinear : TRUE$
\r
436 (COM11) Solver( Verstaerker, Widerstaende, Designparameter );
\r
437 The variables to be solved for are [R1, R2, R3, R4, R5, R6, R7]
\r
438 The parameters are [A, VCC, ZIN, ZOUT]
\r
439 Checking for inconsistencies...
\r
441 Searching for immediate assignments.
\r
444 Assigning I_OC_1 = 0
\r
446 Assigning V_FIX1_Q1 = --
\r
449 Assigning V_FIX2_Q1 = ----
\r
452 Assigning V_FIX1_Q2 = ---
\r
455 Assigning V_FIX2_Q2 = ---
\r
457 Assigning I_OC_2 = 0
\r
458 Assigning V_V_CC = VCC
\r
460 Assigning I_FIX1_Q1 = -------
\r
463 Assigning I_FIX2_Q1 = -------
\r
466 Assigning I_FIX1_Q2 = ------
\r
469 Assigning I_FIX2_Q2 = -------
\r
472 Checking for inconsistencies...
\r
474 Searching for immediate assignments.
\r
476 Checking for inconsistencies...
\r
478 Searching for immediate assignments.
\r
479 No immediate assignments found.
\r
480 Searching for linear equations...
\r
481 ...with respect to: [R1, R2, R3, R4, R5, R6, I_R1, I_R2, I_R3, I_R4,
\r
483 I_R5, I_R6, I_R7, I_V_CC, V_I1, V_OC_1, V_OC_2, V_R1, V_R2, V_R3, V_R4,
\r
486 Found 18 linear equations in 18 variables.
\r
487 The variables to be solved for are [I_R1, I_R2, I_R3, I_R4, I_R5, I_R6,
\r
489 I_R7, I_V_CC, V_I1, V_OC_1, V_OC_2, V_R1, V_R2, V_R3, V_R4, V_R5, V_R6,
\r
492 The equations are [1000 V_R1 + 1000 V_OC_1 + 607,
\r
494 1000 V_R2 + 1000 V_OC_1 + 1000 V_I1 + 607, 200 V_OC_1 + 200 V_I1 - 1567,
\r
496 - 1000 V_R6 + 1000 V_R3 - 1000 V_OC_1 - 1000 V_I1 + 2113,
\r
498 50 V_R7 + 50 V_R4 + 50 V_OC_1 + 50 V_I1 - 321, V_R7 + V_R5 + V_OC_1,
\r
500 50 V_OC_2 - 50 V_I1 + 321, 1000 V_R6 + 1000 V_OC_1 + 1000 VCC - 2113,
\r
502 8695637 I_R7 + 5, 8695637000000 I_R2 + 8695637000000 I_R1 - 970215707,
\r
504 1984127000000 I_R6 + 245238097, - I_R7 + I_R5 + I_R4,
\r
506 - 198412700000 I_R4 - 798134927, 100000 I_R3 - 100000 I_R2 + 401,
\r
508 I_V_CC - I_R6 - I_R3, I_R7 ZIN - V_R7]
\r
509 Solving linear equations.
\r
510 8695637000000 I_R3 + 33899288663
\r
511 The solutions are [I_R1 = - --------------------------------,
\r
514 100000 I_R3 + 401 798134927
\r
515 I_R2 = -----------------, I_R4 = - ------------,
\r
516 100000 198412700000
\r
518 6939299538713499 245238097 5
\r
519 I_R5 = -------------------, I_R6 = - -------------, I_R7 = - -------,
\r
520 1725324815389900000 1984127000000 8695637
\r
522 1984127000000 I_R3 - 245238097 200 V_OC_1 - 1567
\r
523 I_V_CC = ------------------------------, V_I1 = - -----------------,
\r
526 200 V_OC_1 - 283 1000 V_OC_1 + 607 4221
\r
527 V_OC_2 = - ----------------, V_R1 = - -----------------, V_R2 = - ----,
\r
530 200 V_OC_1 + 200 VCC - 1567 1000 ZIN - 2460865271
\r
531 V_R3 = - ---------------------------, V_R4 = ---------------------,
\r
534 8695637 V_OC_1 - 5 ZIN 1000 V_OC_1 + 1000 VCC - 2113
\r
535 V_R5 = - ----------------------, V_R6 = - -----------------------------,
\r
541 Checking for inconsistencies...
\r
543 Searching for linear equations...
\r
544 ...with respect to: [I_R3, R1, R2, R3, R4, R5, R6, V_OC_1]
\r
545 Found 6 linear equations in 5 variables.
\r
546 The variables to be solved for are [R2, R4, R5, R6, V_OC_1]
\r
547 The equations are [8695637000000 V_OC_1 - 8695637000000 I_R3 R1
\r
549 - 33899288663 R1 + 5278251659000, 1984127000000 V_OC_1 + 1984127000000 VCC
\r
551 - 245238097 R6 - 4192460351000, 200 V_OC_1 + 200 VCC + 200 I_R3 R3
\r
553 - 1567, - 992063500000 ZIN - 6940291602213499 R4 + 2441334613776708500,
\r
555 - 992063500000 ZIN + 1725324815389900000 V_OC_1 + 6939299538713499 R5,
\r
557 145309663773 A R1 - 145303681853 R2]
\r
558 Solving linear equations.
\r
559 Checking for inconsistencies...
\r
562 The solutions are [R2 = -----------------,
\r
565 992063500000 ZIN - 2441334613776708500
\r
566 R4 = - --------------------------------------,
\r
569 R5 = - (- 9920635000000 ZIN + (17253248153899000000 I_R3
\r
571 + 67260493917052201) R1 - 10472721629416693000)/69392995387134990,
\r
573 R6 = (17253248153899000000 VCC + (17253248153899000000 I_R3
\r
575 + 67260493917052201) R1 - 46928834978605280000)/2132501470082789,
\r
577 (8695637000000 I_R3 + 33899288663) R1 - 5278251659000
\r
578 V_OC_1 = -----------------------------------------------------]
\r
580 Checking for inconsistencies...
\r
582 Searching for linear equations...
\r
583 ...with respect to: [I_R3, R1, R3]
\r
584 No linear equations found.
\r
585 Checking for remaining equations.
\r
586 3 equation(s) and 3 variable(s) left.
\r
587 The variables to be solved for are [I_R3, R1, R3]
\r
588 Applying valuation strategy.
\r
589 Trying to solve equation 1 for I_R3
\r
591 The equation is 14530966377300000 A I_R3 R1 + 58269175172973 A R1
\r
593 + 122665368220302600 = 0
\r
594 Checking if equation was solved correctly.
\r
595 6474352796997 A R1 + 13629485357811400
\r
596 The solutions are [I_R3 = - --------------------------------------]
\r
597 1614551819700000 A R1
\r
598 Solution is correct.
\r
599 Solution 1 for I_R3
\r
600 Checking for inconsistencies...
\r
602 Consistent solutions for I_R3 : [I_R3 =
\r
604 6474352796997 A R1 + 13629485357811400
\r
605 - --------------------------------------]
\r
606 1614551819700000 A R1
\r
607 Checking for remaining equations.
\r
608 2 equation(s) and 2 variable(s) left.
\r
609 The variables to be solved for are [R1, R3]
\r
610 Applying valuation strategy.
\r
611 Trying to solve equation 1 for R3
\r
613 The equation is - R1 (- 16062755182397110876073408478539448677201569671148#
\r
615 116383372395290156600000000 A VCC + 64411648281412414613054367998943189195#
\r
617 578294381303946697323305113527966000 A R3 + 135601779249796410015811714375#
\r
619 830025732935651163832398508429761039502017200000 A + 135596196971410595846#
\r
621 324806740533400875556129557784494104259093864172929200000) - 1355961969714#
\r
623 10595846324806740533400875556129557784494104259093864172929200000 R3 - 179#
\r
625 2201925592952751292050414582157181324535016813917972727234536207382600 A
\r
629 Checking if equation was solved correctly.
\r
630 The solutions are [R3 = (140395565418006489000000 A R1 VCC
\r
633 - 15664635352383720279 A R1 + (- 1185219363258810780138000 A
\r
635 - 1185170571683430488618000) R1)/(562986217326206020890 A R1
\r
637 + 1185170571683430488618000)]
\r
638 Solution is correct.
\r
640 Checking for inconsistencies...
\r
642 Consistent solutions for R3 : [R3 = (140395565418006489000000 A R1 VCC
\r
645 - 15664635352383720279 A R1 + (- 1185219363258810780138000 A
\r
647 - 1185170571683430488618000) R1)/(562986217326206020890 A R1
\r
649 + 1185170571683430488618000)]
\r
650 Checking for remaining equations.
\r
651 1 equation(s) and 1 variable(s) left.
\r
652 The variables to be solved for are [R1]
\r
653 Trying to solve equation 1 for R1
\r
654 Valuation: (irrelevant)
\r
655 The equation is R1 (19841637776253069394020865409024 ZOUT
\r
657 - 243498222421608533966015625 A ZIN)
\r
660 - 57259002716458635629644396416 A R1 = 0
\r
661 Checking if equation was solved correctly.
\r
662 The solutions are [R1 =
\r
664 19841637776253069394020865409024 ZOUT - 243498222421608533966015625 A ZIN
\r
665 -------------------------------------------------------------------------,
\r
666 57259002716458635629644396416 A
\r
669 Solution is correct.
\r
670 The solution is not unique. Tracing paths separately.
\r
672 Checking for inconsistencies...
\r
675 Checking for inconsistencies...
\r
677 Consistent solutions for R1 : [R1 =
\r
679 19841637776253069394020865409024 ZOUT - 243498222421608533966015625 A ZIN
\r
680 -------------------------------------------------------------------------,
\r
681 57259002716458635629644396416 A
\r
684 Checking for remaining equations.
\r
685 All variables solved for. No equations left.
\r
686 Checking for remaining equations.
\r
687 All variables solved for. No equations left.
\r
688 Postprocessing results.
\r
690 (D11) [[R1 = - (243498222421608533966015625 A ZIN
\r
692 - 19841637776253069394020865409024 ZOUT)
\r
694 /(57259002716458635629644396416 A), R2 =
\r
696 1493854125285941926171875 A ZIN - 121727839118116990147367272448 ZOUT
\r
697 - ---------------------------------------------------------------------,
\r
698 351267764122759016747201152
\r
700 R3 = (334763184724568105702258732451550460395708593115792893559436793085952
\r
706 (106256457337115768692100530787195899963103895496024350000000000000 A ZIN
\r
708 - 8658388208766832396126274743883820688291739892383476917089599488000000 A
\r
712 (73094113258409599088098011387867214250558868171501312134070398877696000
\r
716 (- 8216483067762383568115091483320660991714242249851965644800000000 ZOUT
\r
718 - 896980085605567678321894471091892803815897329518698154700000000000))
\r
720 + 73091104214643137701992515955008538217110816411520639295650692857856000
\r
723 ZOUT + A (50416680420198682402077210492446131565566605185394287109375
\r
726 ZIN - 897017012839931319298712680905507787488523085777437562700000000000
\r
730 (- 34720136717154997908466361722974120960049876968457742437529293946880
\r
734 - 210926324831111746833250971831897544037167089192987941918299029504000)
\r
737 + 426088393921834232455323128456655558852046620939057643500000000 A
\r
739 992063500000 ZIN - 2441334613776708500
\r
740 ZIN), R4 = - --------------------------------------,
\r
743 R5 = (38195771383195691504052086845016246794667687936 ZOUT
\r
745 + A (99303995957664108704965549227744192421875 ZIN
\r
747 + 599657596227485533261336202180916694139772288000)
\r
749 + 8339540409811836894068029655629814665587863808000)
\r
751 /(3973373711375163964000922192169533030064195840 A),
\r
753 R6 = (- 38195771383195691504052086845016246794667687936 ZOUT
\r
755 + A (468741670456330507974731687410699967578125 ZIN
\r
757 - 2687098289520198765190831087202789799110676480000)
\r
759 + 987903782911837781320158487942202132025984000000 A VCC
\r
761 - 8339540409811836894068029655629814665587863808000)
\r
763 /(122104907468322449250303944919525361454884224 A), R7 = ZIN],
\r
765 992063500000 ZIN - 2441334613776708500
\r
766 [R1 = 0, R2 = 0, R3 = 0, R4 = - --------------------------------------,
\r
769 992063500000 ZIN + 1047272162941669300
\r
770 R5 = --------------------------------------,
\r
773 1984127000000 VCC - 5396825440000
\r
774 R6 = ---------------------------------, R7 = ZIN]]
\r
777 Here we have more than one solution of the system ,too, but only first one is
\r
778 physically meaningful result.
\r