Clean up implementation of printing options table
[maxima.git] / share / lbfgs / mcstep.f
blob3d95b248d2ce81db43144bbbcde6ae0ee77155ba
1 SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT,
2 * STPMIN,STPMAX,INFO)
3 INTEGER INFO
4 DOUBLE PRECISION STX,FX,DX,STY,FY,DY,STP,FP,DP,STPMIN,STPMAX
5 LOGICAL BRACKT,BOUND
7 C SUBROUTINE MCSTEP
9 C THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR
10 C A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR
11 C A MINIMIZER OF THE FUNCTION.
13 C THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION
14 C VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS
15 C ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE
16 C DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A
17 C MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY
18 C WITH ENDPOINTS STX AND STY.
20 C THE SUBROUTINE STATEMENT IS
22 C SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT,
23 C STPMIN,STPMAX,INFO)
25 C WHERE
27 C STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP,
28 C THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED
29 C SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION
30 C OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE
31 C SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY.
33 C STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP,
34 C THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF
35 C THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE
36 C UPDATED APPROPRIATELY.
38 C STP, FP, AND DP ARE VARIABLES WHICH SPECIFY THE STEP,
39 C THE FUNCTION, AND THE DERIVATIVE AT THE CURRENT STEP.
40 C IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE
41 C BETWEEN STX AND STY. ON OUTPUT STP IS SET TO THE NEW STEP.
43 C BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER
44 C HAS BEEN BRACKETED. IF THE MINIMIZER HAS NOT BEEN BRACKETED
45 C THEN ON INPUT BRACKT MUST BE SET FALSE. IF THE MINIMIZER
46 C IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE.
48 C STPMIN AND STPMAX ARE INPUT VARIABLES WHICH SPECIFY LOWER
49 C AND UPPER BOUNDS FOR THE STEP.
51 C INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
52 C IF INFO = 1,2,3,4,5, THEN THE STEP HAS BEEN COMPUTED
53 C ACCORDING TO ONE OF THE FIVE CASES BELOW. OTHERWISE
54 C INFO = 0, AND THIS INDICATES IMPROPER INPUT PARAMETERS.
56 C SUBPROGRAMS CALLED
58 C FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT
60 C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
61 C JORGE J. MORE', DAVID J. THUENTE
63 DOUBLE PRECISION GAMMA,P,Q,R,S,SGND,STPC,STPF,STPQ,THETA
64 INFO = 0
66 C CHECK THE INPUT PARAMETERS FOR ERRORS.
68 IF ((BRACKT .AND. (STP .LE. MIN(STX,STY) .OR.
69 * STP .GE. MAX(STX,STY))) .OR.
70 * DX*(STP-STX) .GE. 0.0D0 .OR. STPMAX .LT. STPMIN) RETURN
72 C DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN.
74 SGND = DP*(DX/DABS(DX))
76 C FIRST CASE. A HIGHER FUNCTION VALUE.
77 C THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER
78 C TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN,
79 C ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN.
81 IF (FP .GT. FX) THEN
82 INFO = 1
83 BOUND = .TRUE.
84 THETA = 3*(FX - FP)/(STP - STX) + DX + DP
85 S = MAX(DABS(THETA),DABS(DX),DABS(DP))
86 GAMMA = S*DSQRT((THETA/S)**2 - (DX/S)*(DP/S))
87 IF (STP .LT. STX) GAMMA = -GAMMA
88 P = (GAMMA - DX) + THETA
89 Q = ((GAMMA - DX) + GAMMA) + DP
90 R = P/Q
91 STPC = STX + R*(STP - STX)
92 STPQ = STX + ((DX/((FX-FP)/(STP-STX)+DX))/2)*(STP - STX)
93 IF (DABS(STPC-STX) .LT. DABS(STPQ-STX)) THEN
94 STPF = STPC
95 ELSE
96 STPF = STPC + (STPQ - STPC)/2
97 END IF
98 BRACKT = .TRUE.
100 C SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF
101 C OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC
102 C STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP,
103 C THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN.
105 ELSE IF (SGND .LT. 0.0D0) THEN
106 INFO = 2
107 BOUND = .FALSE.
108 THETA = 3*(FX - FP)/(STP - STX) + DX + DP
109 S = MAX(DABS(THETA),DABS(DX),DABS(DP))
110 GAMMA = S*DSQRT((THETA/S)**2 - (DX/S)*(DP/S))
111 IF (STP .GT. STX) GAMMA = -GAMMA
112 P = (GAMMA - DP) + THETA
113 Q = ((GAMMA - DP) + GAMMA) + DX
114 R = P/Q
115 STPC = STP + R*(STX - STP)
116 STPQ = STP + (DP/(DP-DX))*(STX - STP)
117 IF (DABS(STPC-STP) .GT. DABS(STPQ-STP)) THEN
118 STPF = STPC
119 ELSE
120 STPF = STPQ
121 END IF
122 BRACKT = .TRUE.
124 C THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
125 C SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES.
126 C THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY
127 C IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC
128 C IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE
129 C EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO
130 C COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP
131 C CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN.
133 ELSE IF (DABS(DP) .LT. DABS(DX)) THEN
134 INFO = 3
135 BOUND = .TRUE.
136 THETA = 3*(FX - FP)/(STP - STX) + DX + DP
137 S = MAX(DABS(THETA),DABS(DX),DABS(DP))
139 C THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND
140 C TO INFINITY IN THE DIRECTION OF THE STEP.
142 GAMMA = S*DSQRT(MAX(0.0D0,(THETA/S)**2 - (DX/S)*(DP/S)))
143 IF (STP .GT. STX) GAMMA = -GAMMA
144 P = (GAMMA - DP) + THETA
145 Q = (GAMMA + (DX - DP)) + GAMMA
146 R = P/Q
147 IF (R .LT. 0.0D0 .AND. GAMMA .NE. 0.0D0) THEN
148 STPC = STP + R*(STX - STP)
149 ELSE IF (STP .GT. STX) THEN
150 STPC = STPMAX
151 ELSE
152 STPC = STPMIN
153 END IF
154 STPQ = STP + (DP/(DP-DX))*(STX - STP)
155 IF (BRACKT) THEN
156 IF (DABS(STP-STPC) .LT. DABS(STP-STPQ)) THEN
157 STPF = STPC
158 ELSE
159 STPF = STPQ
160 END IF
161 ELSE
162 IF (DABS(STP-STPC) .GT. DABS(STP-STPQ)) THEN
163 STPF = STPC
164 ELSE
165 STPF = STPQ
166 END IF
167 END IF
169 C FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
170 C SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES
171 C NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP
172 C IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN.
174 ELSE
175 INFO = 4
176 BOUND = .FALSE.
177 IF (BRACKT) THEN
178 THETA = 3*(FP - FY)/(STY - STP) + DY + DP
179 S = MAX(DABS(THETA),DABS(DY),DABS(DP))
180 GAMMA = S*DSQRT((THETA/S)**2 - (DY/S)*(DP/S))
181 IF (STP .GT. STY) GAMMA = -GAMMA
182 P = (GAMMA - DP) + THETA
183 Q = ((GAMMA - DP) + GAMMA) + DY
184 R = P/Q
185 STPC = STP + R*(STY - STP)
186 STPF = STPC
187 ELSE IF (STP .GT. STX) THEN
188 STPF = STPMAX
189 ELSE
190 STPF = STPMIN
191 END IF
192 END IF
194 C UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT
195 C DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE.
197 IF (FP .GT. FX) THEN
198 STY = STP
199 FY = FP
200 DY = DP
201 ELSE
202 IF (SGND .LT. 0.0D0) THEN
203 STY = STX
204 FY = FX
205 DY = DX
206 END IF
207 STX = STP
208 FX = FP
209 DX = DP
210 END IF
212 C COMPUTE THE NEW STEP AND SAFEGUARD IT.
214 STPF = MIN(STPMAX,STPF)
215 STPF = MAX(STPMIN,STPF)
216 STP = STPF
217 IF (BRACKT .AND. BOUND) THEN
218 IF (STY .GT. STX) THEN
219 STP = MIN(STX+0.66D0*(STY-STX),STP)
220 ELSE
221 STP = MAX(STX+0.66D0*(STY-STX),STP)
222 END IF
223 END IF
224 RETURN
226 C LAST LINE OF SUBROUTINE MCSTEP.