Rename *ll* and *ul* to ll and ul in limit-subs
[maxima.git] / src / conjugate.lisp
blob8b5c3175a04bf9af487575658a8e43fa645c04ee
1 ;; Copyright 2005, 2006, 2020, 2021 by Barton Willis
3 ;; This is free software; you can redistribute it and/or
4 ;; modify it under the terms of the GNU General Public License,
5 ;; http://www.gnu.org/copyleft/gpl.html.
7 ;; This software has NO WARRANTY, not even the implied warranty of
8 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
10 (in-package :maxima)
12 (macsyma-module conjugate)
14 ($put '$conjugate 1 '$version)
15 ;; Let's remove built-in symbols from list for user-defined properties.
16 (setq $props (remove '$conjugate $props))
18 (setf (get 'conjugate-superscript-star 'tex-lbp) (tex-lbp 'mexpt))
19 (setf (get 'conjugate-superscript-star 'tex-rbp) (tex-rbp 'mexpt))
21 (defun tex-conjugate (x l r)
22 ;; Punt to TeX output for MEXPT, but defeat the special case for
23 ;; powers of trig functions, e.g. sin(x)^2 which is set as sin^2 x,
24 ;; by supplying an expression which has a different operator
25 ;; (namely CONJUGATE-SUPERSCRIPT-STAR) instead of MEXPT.
26 (tex-mexpt `((conjugate-superscript-star) ,(second x) "\\ast") l r))
28 (defprop $conjugate tex-conjugate tex)
29 (defprop $conjugate 121. tex-lbp)
30 (defprop $conjugate 120. tex-rbp)
32 (defprop $conjugate simp-conjugate operators)
34 ;; Maybe $conjugate should have a msimpind property. But with some Maxima versions,
35 ;; kill(conjugate) eliminates the msimpind property; after that, conjugate gives rubbish.
36 ;; Until this is resolved, $conjugate doesn't have a msimpind property.
38 (eval-when
39 (:load-toplevel :execute)
40 (let (($context '$global) (context '$global))
41 (meval '(($declare) $conjugate $complex))
42 ;; Let's remove built-in symbols from list for user-defined properties.
43 (setq $props (remove '$conjugate $props))))
45 ;; When a function commutes with the conjugate, give the function the
46 ;; commutes-with-conjugate property. The log function commutes with
47 ;; the conjugate on all of C except on the negative real axis. Thus
48 ;; log does not get the commutes-with-conjugate property. Instead,
49 ;; log gets the conjugate-function property.
51 ;; What important functions have I missed?
53 ;; (1) Arithmetic operators
55 (setf (get 'mplus 'commutes-with-conjugate) t)
56 (setf (get 'mtimes 'commutes-with-conjugate) t)
57 ;(setf (get 'mnctimes 'commutes-with-conjugate) t) ;; generally I think users will want this
58 (setf (get '%signum 'commutes-with-conjugate) t) ;; x=/=0, conjugate(signum(x)) = conjugate(x/abs(x)) = signum(conjugate(x))
59 ;; Trig-like functions and other such functions
61 (setf (get '%cosh 'commutes-with-conjugate) t)
62 (setf (get '%sinh 'commutes-with-conjugate) t)
63 (setf (get '%tanh 'commutes-with-conjugate) t)
64 (setf (get '%sech 'commutes-with-conjugate) t)
65 (setf (get '%csch 'commutes-with-conjugate) t)
66 (setf (get '%coth 'commutes-with-conjugate) t)
67 (setf (get '%cos 'commutes-with-conjugate) t)
68 (setf (get '%sin 'commutes-with-conjugate) t)
69 (setf (get '%tan 'commutes-with-conjugate) t)
70 (setf (get '%sec 'commutes-with-conjugate) t)
71 (setf (get '%csc 'commutes-with-conjugate) t)
72 (setf (get '%cot 'commutes-with-conjugate) t)
73 (setf (get '%atan2 'commutes-with-conjugate) t)
75 (setf (get '%jacobi_cn 'commutes-with-conjugate) t)
76 (setf (get '%jacobi_sn 'commutes-with-conjugate) t)
77 (setf (get '%jacobi_dn 'commutes-with-conjugate) t)
79 (setf (get '%gamma 'commutes-with-conjugate) t)
80 (setf (get '$pochhammer 'commutes-with-conjugate) t)
82 ;; Collections
84 (setf (get '$matrix 'commutes-with-conjugate) t)
85 (setf (get 'mlist 'commutes-with-conjugate) t)
86 (setf (get '$set 'commutes-with-conjugate) t)
88 ;; Relations
90 (setf (get 'mequal 'commutes-with-conjugate) t)
91 (setf (get 'mnotequal 'commutes-with-conjugate) t)
92 (setf (get '%transpose 'commutes-with-conjugate) t)
94 ;; Oddball functions
96 (setf (get '$max 'commutes-with-conjugate) t)
97 (setf (get '$min 'commutes-with-conjugate) t)
99 ;; When a function has the conjugate-function property, use a non-generic function to conjugate it.
100 ;; The argument to a conjugate function for an operator op is the CL list of arguments to op. For
101 ;; example, the conjugate function for log gets the argument for log, not the expression log(x).
102 ;; It would be a bit more efficient if a conjugate function received the full expression--that
103 ;; way for a pure nounform return (for example, return conjugate(log(x))), a conjugate function
104 ;; would not not need to apply the operator to the argument to the conjugate function, instead it
105 ;; could simply paste ($conjugate simp) onto the expression.
107 ;; Not done: conjugate-functions for all the inverse trigonometric functions.
109 ;; Trig like and hypergeometric like functions
111 (setf (get '%log 'conjugate-function) 'conjugate-log)
112 (setf (get '%plog 'conjugate-function) 'conjugate-plog)
113 (setf (get 'mexpt 'conjugate-function) 'conjugate-mexpt)
114 (setf (get '%asin 'conjugate-function) 'conjugate-asin)
115 (setf (get '%acos 'conjugate-function) 'conjugate-acos)
116 (setf (get '%atan 'conjugate-function) 'conjugate-atan)
117 (setf (get '%atanh 'conjugate-function) 'conjugate-atanh)
118 (setf (get '%asec 'conjugate-function) 'conjugate-asec)
119 (setf (get '%acsc 'conjugate-function) 'conjugate-acsc)
121 (setf (get '%bessel_j 'conjugate-function) 'conjugate-bessel-j)
122 (setf (get '%bessel_y 'conjugate-function) 'conjugate-bessel-y)
123 (setf (get '%bessel_i 'conjugate-function) 'conjugate-bessel-i)
124 (setf (get '%bessel_k 'conjugate-function) 'conjugate-bessel-k)
126 (setf (get '%hankel_1 'conjugate-function) 'conjugate-hankel-1)
127 (setf (get '%hankel_2 'conjugate-function) 'conjugate-hankel-2)
128 (setf (get '%log_gamma 'conjugate-function) 'conjugate-log-gamma)
130 ;; conjugate of polylogarithm li & psi
131 (setf (get '$li 'conjugate-function) 'conjugate-li)
132 (setf (get '$psi 'conjugate-function) 'conjugate-psi)
133 ;; Other things:
135 (setf (get '%sum 'conjugate-function) 'conjugate-sum)
136 (setf (get '%product 'conjugate-function) 'conjugate-product)
138 ;; Return true iff Maxima can prove that z is not on the
139 ;; negative real axis.
141 (defun off-negative-real-axisp (z)
142 (setq z (trisplit z)) ; split into real and imaginary
143 (or (eql t (mnqp (cdr z) 0)) ; y # 0
144 (eql t (mgqp (car z) 0)))) ; x >= 0
146 (defun on-negative-real-axisp (z)
147 (setq z (trisplit z))
148 (and (eql t (meqp (cdr z) 0))
149 (eql t (mgrp 0 (car z)))))
151 (defun off-negative-one-to-onep (z)
152 (setq z (trisplit z)) ; split z into real and imaginary parts
154 (eq t (mnqp (cdr z) 0)) ; y # 0
155 (eq t (mgrp (car z) 1)) ; x > 1
156 (eq t (mgrp -1 (car z))))) ; -1 > x
158 (defun in-domain-of-asin (z)
159 (setq z (trisplit z)) ; split z into real and imaginary parts
160 (let ((x (car z)) (y (cdr z))) ;z = x+%i*y
162 (eq t (mnqp y 0)) ; y # 0
163 (and
164 (eq t (mgrp x -1)) ; x > -1
165 (eq t (mgrp 1 x)))))) ; x < 1
167 ;; Return conjugate(log(x)). Actually, x is a lisp list (x).
169 (defun conjugate-log (x)
170 (setq x (car x))
171 (cond ((off-negative-real-axisp x)
172 (take '(%log) (take '($conjugate) x)))
173 ((on-negative-real-axisp x)
174 (add (take '(%log) (neg x)) (mul -1 '$%i '$%pi)))
175 (t (list '($conjugate simp) (take '(%log) x)))))
178 ;; Return conjugate(plog(x)); again, x is the CL list (x).
179 (defun conjugate-plog (x)
180 (setq x (car x))
181 (cond ((off-negative-real-axisp x)
182 (take '(%plog) (take '($conjugate) x)))
183 ((on-negative-real-axisp x)
184 (add (take '(%plog) (neg x)) (mul -1 '$%i '$%pi)))
185 (t (list '($conjugate simp) (take '(%plog) x)))))
187 ;; Return conjugate(x^p), where e = (x, p). Suppose x isn't on the negative real axis.
188 ;; Then conjugate(x^p) == conjugate(exp(p * log(x))) == exp(conjugate(p) * conjugate(log(x)))
189 ;; == exp(conjugate(p) * log(conjugate(x)) = conjugate(x)^conjugate(p). Thus, when
190 ;; x is off the negative real axis, commute the conjugate with ^. Also if p is an integer
191 ;; ^ commutes with the conjugate.
193 ;; We don't need to call $ratdisrep before checking if p is a declared integer--the
194 ;; simpcheck at the top level of simp-conjugate does that for us. So we can call
195 ;; maxima-integerp on p instead of using $featurep.
197 ;; The rule that is commented out is, I think, correct, but I'm not sure how useful it is and
198 ;; the testsuite plus the share testsuite never use this rule. For now, let's keep
199 ;; it commented out.
201 ;; Running the testsuite plus the share testsuite calls conjugate-mexpt 63,441
202 ;; times. This is far more times than all the other conjugate functions. Of these
203 ;; calls, the exponent is an integer 63,374 times. So for efficiency, we check
204 ;; (maxima-integerp p) first.
206 ;; The case of a nounform return only happens 9 times. For the nounform return, the power has
207 ;; been simplified at the higher level. So at least for running the testsuite, we shouldn't
208 ;; worry all that much about re-simplifying the power for the nounform return.
210 (defun conjugate-mexpt (e)
211 (let ((x (first e)) (p (second e)))
212 (cond ((or (maxima-integerp p) (off-negative-real-axisp x))
213 (power (take '($conjugate) x) (take '($conjugate) p)))
214 ;((on-negative-real-axisp x) ;conjugate(x^p) = exp(-%i %pi conjugate(p)) (-x)^p
215 ; (setq p (take '($conjugate) p))
216 ; (mul (power '$%e (mul -1 '$%i '$%pi p)) (power (mul -1 x) p)))
218 (list '($conjugate simp) (power x p))))))
220 (defun conjugate-sum (e)
221 (if (and ($featurep (third e) '$real) ($featurep (fourth e) '$real))
222 (take '(%sum) (take '($conjugate) (first e)) (second e) (third e) (fourth e))
223 (list '($conjugate simp) (simplifya (cons '(%sum) e) t))))
225 (defun conjugate-product (e)
226 (if (and ($featurep (third e) '$real) ($featurep (fourth e) '$real))
227 (take '(%product) (take '($conjugate) (first e)) (second e) (third e) (fourth e))
228 (list '($conjugate simp) (simplifya (cons '(%product) e) t))))
230 (defun conjugate-asin (x)
231 (setq x (car x))
232 (if (in-domain-of-asin x) (take '(%asin) (take '($conjugate) x))
233 (list '($conjugate simp) (take '(%asin) x))))
235 (defun conjugate-acos (x)
236 (setq x (car x))
237 (if (in-domain-of-asin x) (take '(%acos) (take '($conjugate) x))
238 (list '($conjugate simp) (take '(%acos) x))))
240 (defun conjugate-acsc (x)
241 (setq x (car x))
242 (if (off-negative-one-to-onep x) (take '(%acsc) (take '($conjugate) x))
243 (list '($conjugate simp) (take '(%acsc) x))))
245 (defun conjugate-asec (x)
246 (setq x (car x))
247 (if (off-negative-one-to-onep x) (take '(%asec) (take '($conjugate) x))
248 (list '($conjugate simp) (take '(%asec) x))))
250 (defun conjugate-atan (x)
251 (let ((xx))
252 (setq x (car x))
253 (setq xx (mul '$%i x))
254 (if (in-domain-of-asin xx)
255 (take '(%atan) (take '($conjugate) x))
256 (list '($conjugate simp) (take '(%atan) x)))))
258 ;; atanh and asin are entire on the same set; DLMF http://dlmf.nist.gov/4.37.F1 and
259 ;; http://dlmf.nist.gov/4.23.F1
261 (defun conjugate-atanh (x)
262 (setq x (car x))
263 (if (in-domain-of-asin x) (take '(%atanh) (take '($conjugate) x))
264 (list '($conjugate simp) (take '(%atanh) x))))
266 ;; Integer order Bessel functions are entire; thus they commute with the
267 ;; conjugate (Schwartz refection principle). But non-integer order Bessel
268 ;; functions are not analytic along the negative real axis. Notice that DLMF
269 ;; http://dlmf.nist.gov/10.11.E9 isn't correct; we have, for example
270 ;; conjugate(bessel_j(1/2,-1)) =/= bessel_j(1/2,conjugate(-1))
272 (defun conjugate-bessel-j (z)
273 (let ((n (first z)) (x (second z)))
274 (if (or ($featurep n '$integer) (off-negative-real-axisp x))
275 (take '(%bessel_j) (take '($conjugate) n) (take '($conjugate) x))
276 (list '($conjugate simp) (simplifya (cons '(%bessel_j) z) t)))))
278 (defun conjugate-bessel-y (z)
279 (let ((n (first z)) (x (second z)))
280 (if (off-negative-real-axisp x)
281 (take '(%bessel_y) (take '($conjugate) n) (take '($conjugate) x))
282 (list '($conjugate simp) (simplifya (cons '(%bessel_y) z) t)))))
284 (defun conjugate-bessel-i (z)
285 (let ((n (first z)) (x (second z)))
286 (if (or ($featurep n '$integer) (off-negative-real-axisp x))
287 (take '(%bessel_i) (take '($conjugate) n) (take '($conjugate) x))
288 (list '($conjugate simp) (simplifya (cons '(%bessel_i) z) t)))))
290 (defun conjugate-bessel-k (z)
291 (let ((n (first z)) (x (second z)))
292 (if (off-negative-real-axisp x)
293 (take '(%bessel_k) (take '($conjugate) n) (take '($conjugate) x))
294 (list '($conjugate simp) (simplifya (cons '(%bessel_k) z) t)))))
296 (defun conjugate-hankel-1 (z)
297 (let ((n (first z)) (x (second z)))
298 (if (off-negative-real-axisp x)
299 (take '(%hankel_2) (take '($conjugate) n) (take '($conjugate) x))
300 (list '($conjugate simp) (simplifya (cons '(%hankel_1) z) t)))))
302 (defun conjugate-hankel-2 (z)
303 (let ((n (first z)) (x (second z)))
304 (if (off-negative-real-axisp x)
305 (take '(%hankel_1) (take '($conjugate) n) (take '($conjugate) x))
306 (list '($conjugate simp) (simplifya (cons '(%hankel_2) z) t)))))
308 (defun conjugate-log-gamma (z)
309 (setq z (first z))
310 (if (off-negative-real-axisp z)
311 (take '(%log_gamma) (take '($conjugate) z))
312 (list '($conjugate simp) (take '(%log_gamma) z))))
314 ;; conjugate of polylogarithm li[s](x), where z = (s,x). We have li[s](x) = x+x^2/2^s+x^3/3^s+...
315 ;; Since for all integers k, we have conjugate(x^k/k^s) = conjugate(x)^k/k^conjugate(s), we
316 ;; commute conjugate with li.
317 (defun conjugate-li (z)
318 (let ((s (take '($conjugate) (first z))) (x (take '($conjugate) (second z))))
319 (take '(mqapply) `(($li array) ,s) x)))
321 (defun conjugate-psi (z)
322 (let ((s (take '($conjugate) (first z))) (x (take '($conjugate) (second z))))
323 (take '(mqapply) `(($psi array) ,s) x)))
325 ;; When all derivative variables & orders are real, commute the derivative with
326 ;; the conjugate.
327 (defun conjugate-derivative (z)
328 (cond ((every #'manifestly-real-p (cdr z))
329 (setq z (cons (take '($conjugate) (car z)) (cdr z)))
330 (simplifya (cons (list '%derivative) z) t))
332 (list '($conjugate simp) (simplifya (cons (list '%derivative) z) t)))))
334 (setf (get '%derivative 'conjugate-function) 'conjugate-derivative)
336 ;; When a function maps "everything" into the reals, put real-valued on the
337 ;; property list of the function name. This duplicates some knowledge that
338 ;; $rectform has. So it goes.
340 (setf (get '%imagpart 'real-valued) t)
341 (setf (get 'mabs 'real-valued) t)
342 (setf (get '%realpart 'real-valued) t)
343 (setf (get '%carg 'real-valued) t)
344 (setf (get '$ceiling 'real-valued) t)
345 (setf (get '$floor 'real-valued) t)
346 (setf (get '$mod 'real-valued) t)
347 (setf (get '$unit_step 'real-valued) t)
348 (setf (get '$charfun 'real-valued) t)
351 ;; The function manifestly-real-p makes some effort to determine if its input is
352 ;; real valued.
354 ;; manifestly-real-p isn't a great name, but it's OK. Since (manifestly-real-p '$inf) --> true
355 ;; it might be called manifestly-extended-real-p. A nonscalar isn't real.
357 ;; There might be some advantage to requiring that the subscripts to a $subvarp
358 ;; all be real. Why? Well li[n] maps reals to reals when n is real, but li[n] does
359 ;; not map the reals to reals when n is nonreal.
361 (defun manifestly-real-p (e)
362 (let (($inflag t))
364 ($numberp e)
365 (and ($mapatom e)
366 (not (manifestly-pure-imaginary-p e))
367 (not (manifestly-complex-p e))
368 (not (manifestly-nonreal-p e)))
369 (and (consp e) (consp (car e)) (get (caar e) 'real-valued)) ;F(xxx), where F is declared real-valued
370 (and ($subvarp e) (manifestly-real-p ($op e)))))) ;F[n], where F is declared real-valued
372 ;; The function manifestly-pure-imaginary-p makes some effort to determine if its input is
373 ;; a multiple of %i.
375 (defun manifestly-pure-imaginary-p (e)
376 (let (($inflag t))
377 (or
378 (and ($mapatom e)
380 (eq e '$%i)
381 (and (symbolp e) (kindp e '$imaginary) (not ($nonscalarp e)))
382 (and ($subvarp e) (manifestly-pure-imaginary-p ($op e)))))
383 ;; For now, let's use $csign on constant expressions only; once $csign improves,
384 ;; the ban on nonconstant expressions can be removed.
385 (and ($constantp e) (not (eq '$und e)) (not (eq '$ind e)) (eq '$imaginary ($csign e))))))
387 ;; Don't use (kindp e '$complex)!
389 (defun manifestly-complex-p (e)
390 (let (($inflag t))
391 (or (and (symbolp e) (decl-complexp e) (not ($nonscalarp e)))
392 (eq e '$infinity)
393 (and ($subvarp e) (manifestly-complex-p ($op e)) (not ($nonscalarp e))))))
395 (defun manifestly-nonreal-p (e)
396 (and (symbolp e) (or (member e `($und $ind t nil)) ($nonscalarp e))))
398 ;; We could make commutes_with_conjugate and maps_to_reals features. But I
399 ;; doubt it would get much use.
401 (defun simp-conjugate (e f z)
402 (oneargcheck e)
403 (setq e (simpcheck (cadr e) z)) ; simp and disrep if necessary
405 (cond ((complexp e) (conjugate e)) ; never happens, but might someday.
406 ((manifestly-real-p e) e)
407 ((manifestly-pure-imaginary-p e) (mul -1 e))
408 ((or (manifestly-nonreal-p e) ($mapatom e))
409 (list '($conjugate simp) e))
411 ((op-equalp e '$conjugate) (car (margs e)))
413 ((and (symbolp (mop e)) (get (mop e) 'real-valued)) e)
415 ((and (symbolp (mop e)) (get (mop e) 'commutes-with-conjugate))
416 (simplify (cons (list (mop e)) (mapcar #'(lambda (s) (take '($conjugate) s)) (margs e)))))
418 ((setq f (and (symbolp (mop e)) (get (mop e) 'conjugate-function)))
419 (funcall f (margs e)))
421 ;;subscripted functions
422 ((setq f (and ($subvarp (mop e)) (get (caar (mop e)) 'conjugate-function)))
423 (funcall f (append (margs (mop e)) (margs e))))
426 (list '($conjugate simp) e))))