Restore previous display for sum and product signs in ASCII art mode;
[maxima.git] / archive / share / trash / determ.mac
blob22f6b3482459ecce114e4de6a0724bbebc40d79d
1 /*
2 ?putprop(?quote(gcdivide),?filestrip(?cdr([functs,lisp,dsk,share])),
3         ?quote(?autoload)); */
4 eval_when([translate,batch,demo,load,loadfile],
5 load("functs"))$
7 det&&  det(m):=block([n,a],/* local(a), */
8     n:length(m),
9     if n < 2 then error ("improper argument:",m),
10 /*    array(a,n,n), */
11 a:?gensym(),
12 apply('array,[a,n,n]),
13     for i thru n do for j thru n do arrayapply(a,[i,j])::m[i,j],
14     arrayapply(a,[0,0])::1,
15     catch(for k from 2 step 2 thru n do  /* iterate for each pair of rows */
16         (if k#n then block([c0,l1,l2,u],  /* omit calculation on last
17                                         iteration for n even */
18             l1:(if a[k-1,k-1]#0 then  /* check for possible pivoting */
19                 false
20             else        /* zero element means pivoting is necessary */
21                 for s from k thru n do  /* search for nonzero element */
22                     if a[s,k-1]#0 then  /* found pivot */
23                         (for j thru n do /* interchange rows s and k-1 */
24                             block([t],
25                             t:a[k-1,j],
26                             a[k-1,j]:a[s,j],
27                             a[s,j]:t),
28                         return(false))  /* indicate pivot was found */
29                     else  /* no pivot found means */
30                         if s=n then throw(0)),  /* singular matrix */
31             l2:(if l1 then
32                 true
33             else
34                 /* search through rows for nonzero multiplier */
35                 for t from k thru n do
36                     (c0:determinant(matrix(
37 [a[k-1,k-1],a[k-1,k]],
38 [a[t,k-1],a[t,k]])),
39                     if c0#0 then
40                         (u:t,
41                         return(false))  /* indicate multiplier was found */
42                     else  /* no multiplier means singular matrix */
43                         if t=n then throw(0))),
44             if l2 then
45                 return(true)
46             else  /* calculate coefficient from multiplier */
47                 (c0:gcdivide(c0,a[k-2,k-2]),
48                 if u#k then  /* if multiplier was found in a different row */
49                     for j thru n do block([t],  /* interchange rows t and k */
50                         t:a[k,j],
51                         a[k,j]:a[t,j],
52                         a[t,j]:t),
53                 /* iterate through remaining rows */
54                 for i from k+1 thru n do block([c1,c2],
55                     c1:gcdivide(-determinant(matrix(
56 [a[k-1,k-1],a[k-1,k]],
57 [a[i,k-1],a[i,k]])),a[k-2,k-2]),
58                     c2:gcdivide(determinant(matrix(
59 [a[k,k-1],a[k,k]],
60 [a[i,k-1],a[i,k]])),a[k-2,k-2]),
61                     a[i,k-1]:0,
62                     a[i,k]:0,
63                     /* iterate through remaining columns */
64                     for j from k+1 thru n do
65                         a[i,j]:gcdivide(c0*a[i,j]+c1*a[k,j]+c2*a[k-1,j],
66                             a[k-2,k-2])),
67                 c0:0,
68                 for j from k+1 thru n do
69                     (a[k,j]:0,
70                     a[k-1,j]:0))),
71         /* omit calculation on last iteration for n odd */
72         a[k,k]:if k=n-1 then 0 else
73                 gcdivide(determinant(genmatrix(a,k,k,k-1)),a[k-2,k-2]),
74         a[k-2,k-2]:0,
75         a[k-1,k-1]:0,
76         a[k,k-1]:0,
77         a[k-1,k]:0,
78         /* on last iteration indicate nonsingular matrix */
79         if k=n or k=n-1 then return(false)),
80     a[n,n]))  /* if a singular matrix has not been thrown,
81                 then catch the determinant */$
82 "end of determ.mc"$